
AMIGA ROM Kernel
Reference Manual

AmigaDOS

FIRST EDITION

AMIGA TECHNICAL REFERENCE SERIES

„

«

«2

*

Thomas Richter
with a p reface by Olaf Barthel

Amiga ROM Kernel Reference Manual

AmigaDOS
THOMAS RICHTER

Copyright © 2024 by Thomas Richter, all rights reserved. This publication is freely distributable under the restrictions
stated below, but is also Copyright © Thomas Richter.

Distribution of the Publication by a commercial organization without written permission from the author to any
third party is prohibited if any payment is made in connection with such distribution, whether directly (as in payment
for a copy of the Publication) or indirectly (as in payment for some service related to the Publication, or payment for
some product or service that includes a copy of the Publication “without charge”; these are only examples, and not an
exhaustive enumeration of prohibited activities).

However, the following methods of distribution involving payment shall not in and of themselves be a violation of
this restriction:

1. Distributing the Publication on a physical data carrier (e.g. CD-ROM, DVD, USB-Stick, Disk...) provided that:

(a) the Publication is reproduced entirely and verbatim on such data carrier, including especially this license
agreement;

(b) the data carrier is made available to the public for a nominal fee only, i.e. for a fee that covers the costs of
the data carrier, and shipment of the data carrier;

(c) a data carrier with the Publication installed is made available to the author for free except for shipment costs,
and

(d) provided further that all information on said data carrier is redistributable for non-commercial purposes
without charge.

Redistribution of a modified version of the publication is prohibited in any way, by any organization, regardless
whether commercial or non-commercial. Everything must be kept together, in original and unmodified form.

DISCLAIMER: THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT ANY WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR ANY PARTICULAR PURPOSE. FURTHER, THE AUTHOR DOES NOT WARRANT, GUARANTEE, OR MAKE

ANY REPRESENTATION REGARDING THE USE OF, OR THE RESULTS OF THE USE OF, THE INFORMATION CONTAINED

HEREIN IN TERM OF CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS, OR OTHERWISE; THE ENTIRE RISK

AS TO ITS QUALITY AND ACCURACY IS ASSUMED SOLELY BY THE USER. SHOULD THE INFORMATION PROVE IN-
ACCURATE, THE USER (AND NOT THE AUTHOR) ASSUMES THE EITHER COST OF ALL NECESSARY CORRECTION.
IN NO EVENT WILL THE AUTHOR BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES

RESULTING FROM ANY DEFECT OR INACCURACY IN THIS PUBLICATION, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES. SOME LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR

LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY

NOT APPLY.

Amiga is a registered trademark, Amiga-DOS, Exec and Kickstart are registered trademarks of Amiga Intl. Motorola
is a registered trademark of Motorola, inc. Unix is a trademark of the Open Group.

ii Rom Kernel Reference Manual: DOS

Contents

1 Introduction 1
1.1 Preface by Olaf Barthel . 1
1.2 Foreword of the Author . 2
1.2.1 Acknowledgments . 3

1.3 Language and Type Setting Conventions . 3

2 Elementary Concepts 5
2.1 Purpose of the dos.library . 5
2.2 The DosLibrary Object . 5
2.3 Booleans . 7
2.4 Pointers and BPTRs . 7
2.5 C Strings and BSTRs . 8
2.6 Elementary Conversion Functions . 9
2.6.1 Convert a String to a Number . 9
2.6.2 Print Formatted into a Buffer . 10

2.7 Paths . 12
2.8 Files . 12
2.9 Directories . 12
2.10 Locks . 12
2.11 Processes . 12
2.12 Handlers and File Systems . 12
2.13 The AmigaDOS Shell . 13

3 Date and Time 15
3.1 Elementary Time and Date Functions . 16
3.1.1 Obtaining the Time and Date . 16
3.1.2 Comparing two Times and Dates . 16
3.1.3 Delaying Program Execution . 16

3.2 Conversion Into and From Strings . 17
3.2.1 Converting a Time and Date to a String . 18
3.2.2 Convert a String to a Date and Time . 19

4 Paths and File Names 21
4.1 Case Sensitivity and Character Encoding . 21
4.2 Maximum Path Length . 23
4.3 Devices, Volumes and Assigns . 23
4.3.1 Devices . 23
4.3.2 Volumes . 24
4.3.3 Assigns . 25

4.4 Relative and Absolute Paths . 26

CONTENTS iii

4.5 Flat vs. Hierarchical File Systems . 27
4.6 Locating Files or Directories . 27
4.6.1 Open a File From an Overlong File Name . 27

5 Files 29
5.1 What are Files? . 29
5.2 Interactive vs. non-Interactive Files . 29
5.3 Opening and Closing Files . 30
5.3.1 Opening Files . 30
5.3.2 Closing Files . 31

5.4 Unbuffered Input and Output . 32
5.4.1 Reading Data . 32
5.4.2 Writing Data . 32
5.4.3 Adjusting the File Pointer . 33
5.4.4 Setting the Size of a File . 34

5.5 Interactive File and Handler Support . 34
5.5.1 Test whether an File Handle is Interactive . 35
5.5.2 Test whether a Path addresses a Handler or File System 35
5.5.3 Test Interactive Files for Availability of Data . 36
5.5.4 Setting the Console Buffer Mode . 37

5.6 Buffered Input and Output . 38
5.6.1 Buffered Read From a File . 39
5.6.2 Buffered Write to a File . 39
5.6.3 Buffered Write to the Output Stream . 40
5.6.4 Adjusting the Buffer . 40
5.6.5 Synchronize the File to the Buffer . 41
5.6.6 Write a Character Buffered to a File . 41
5.6.7 Write a String Buffered to a File . 42
5.6.8 Write a String Buffered to the Output Stream . 42
5.6.9 Read a Character from a File . 42
5.6.10 Read a Line from a File . 43
5.6.11 Revert a Single Byte Read . 43
5.6.12 Macros for Buffered I/O . 43

5.7 Working with File Handles . 44
5.7.1 The FileHandle Structure . 44
5.7.2 String Streams . 45
5.7.3 Cloning File Handles . 46
5.7.4 An FSkip() Implementation . 47
5.7.5 An FGet() Implementation . 48

5.8 Formatted Output . 48
5.8.1 Print Formatted using C-Syntax to a File . 48
5.8.2 Print Formatted using C-Syntax to the Output Stream 49
5.8.3 BCPL Style Formatted Print to a File . 49

5.9 Record Locking . 50
5.9.1 Locking a Region of a File . 51
5.9.2 Locking Multiple Regions of a File . 51
5.9.3 Unlocking a Region of a File . 52
5.9.4 Unlocking Multiple Records of a File . 52

iv Rom Kernel Reference Manual: DOS

6 Locks 55
6.1 Obtaining and Releasing Locks . 55
6.1.1 Obtaining a Lock from a Path . 56
6.1.2 Duplicating a Lock . 56
6.1.3 Obtaining the Parent of an Object . 57
6.1.4 Creating a Directory . 57
6.1.5 Releasing a Lock . 57
6.1.6 Changing the Type of a Lock or File Handle . 58
6.1.7 Comparing two Locks . 58
6.1.8 Compare two Locks for their Device . 59

6.2 Locks and Files . 60
6.2.1 Duplicate the Implicit Lock of a File . 60
6.2.2 Obtaining the Directory a File is Located in . 60
6.2.3 Opening a File from a Lock . 61

6.3 Retrieve Information on the State of the Medium . 62
6.4 The FileLock structure . 64

7 Working with Directories 67
7.1 Examining Objects on File Systems . 67
7.1.1 Retrieving Information on an Directory Entry . 71
7.1.2 Retrieving Information from a File Handle . 71
7.1.3 Scanning through a Directory Step by Step . 72
7.1.4 Examine Multiple Entries at once . 73
7.1.5 Aborting a Directory Scan . 76

7.2 Modifying Directory Entries . 77
7.2.1 Delete Objects on the File System . 77
7.2.2 Rename or Relocate an Object . 77
7.2.3 Set the File Comment . 78
7.2.4 Setting Protection Bits . 78
7.2.5 Set the Modification Date . 79
7.2.6 Set User and Group ID . 79

7.3 Working with Paths . 79
7.3.1 Find the Path From a Lock . 80
7.3.2 Find the Path from a File Handle . 80
7.3.3 Append a Component to a Path . 81
7.3.4 Find the Last Component of a Path . 81
7.3.5 Find End of Next-to-Last Component in a Path . 81
7.3.6 Extract a Component From a Path . 82

7.4 Links . 82
7.4.1 Creating Links . 84
7.4.2 Resolving Soft Links . 85

7.5 Notification Requests . 88
7.5.1 Request Notification on File or Directory Changes . 88
7.5.2 Canceling a Notification Request . 91

8 Administration of Volumes, Devices and Assigns 93
8.1 The Device List and the Mountlist . 98
8.1.1 Keywords defining the DosList structure . 98
8.1.2 Keywords controlling the FileSysStartupMsg . 98
8.1.3 Keywords controlling the Environment Vector . 99

8.2 Finding Handler or File System Ports . 106

CONTENTS v

8.2.1 Iterate through Devices Matching a Path . 106
8.2.2 Releasing DevProc Information . 109
8.2.3 Legacy Handler Port Access . 110
8.2.4 Obtaining the Current Console Handler . 110
8.2.5 Obtaining the Default File System . 111

8.3 Iterating and Accessing the Device List . 111
8.3.1 Gaining Access to the Device List . 111
8.3.2 Attempting Access to the Device List . 112
8.3.3 Release Access to the Device List . 113
8.3.4 Iterate through the Device List . 113
8.3.5 Find a Device List Entry by Name . 114
8.3.6 Accessing Mount Parameters . 115

8.4 Adding or Removing Entries to the Device List . 117
8.4.1 Adding an Entry to the Device List . 117
8.4.2 Removing an Entry from the Device List . 118

8.5 Creating and Deleting Device List Entries . 119
8.5.1 Creating a Device List Entry . 119
8.5.2 Releasing a Device List Entry . 120

8.6 Creating and Updating Assigns . 120
8.6.1 Create, Update or Remove an Assign . 121
8.6.2 Create or Update a Non-Binding Assign . 121
8.6.3 Create a Late Binding Assign . 122
8.6.4 Add a Directory to a Multi-Assign . 123
8.6.5 Remove a Directory From a Multi-Assign . 123

8.7 File System Support Functions . 124
8.7.1 Adjusting File System Buffers . 124
8.7.2 Change the Name of a Volume . 124
8.7.3 Initializing a File System . 125
8.7.4 Inhibiting a File System . 126

9 Pattern Matching 129
9.1 Scanning Directories . 130
9.1.1 Starting a Directory Scan . 133
9.1.2 Continuing a Directory Scan . 134
9.1.3 Terminating a Directory Scan . 136

9.2 Matching Strings against Patterns . 136
9.2.1 Tokenizing a Case-Sensitive Pattern . 136
9.2.2 Tokenizing a Case-Insensitive Pattern . 137
9.2.3 Match a String against a Pattern . 137
9.2.4 Match a String against a Pattern ignoring Case . 138

10 Processes 139
10.1 Creating and Terminating Processes . 145
10.1.1 Creating a New Process from a TagList . 145
10.1.2 Create a Process (Legacy) . 148
10.1.3 Terminating a Process . 149

10.2 Process Properties Accessor Functions . 150
10.2.1 Retrieve the Process Input File Handle . 150
10.2.2 Replace the Input File Handle . 150
10.2.3 Retrieve the Output File Handle . 150
10.2.4 Replace the Output File Handle . 151

vi Rom Kernel Reference Manual: DOS

10.2.5 Retrieve the Error File Handle . 151
10.2.6 Replace the Error File Handle . 151
10.2.7 Retrieve the Current Directory . 152
10.2.8 Replace the Current Directory . 152
10.2.9 Return the Error Code of the Previous Operation, List of Error Codes 152
10.2.10 Setting IoErr . 157
10.2.11 Select the Console Handler . 157
10.2.12 Select the Default File System . 158
10.2.13 Retrieve the Lock to the Program Directory . 158
10.2.14 Set the Program Directory . 158
10.2.15 Retrieve Command Line Arguments . 159
10.2.16 Set the Command Line Arguments . 159

11 Binary File Structure 161
11.1 Conventions and Pseudo-Code . 162
11.2 Executable File Format . 163
11.2.1 HUNK_HEADER . 165
11.2.2 HUNK_CODE . 166
11.2.3 HUNK_DATA . 166
11.2.4 HUNK_BSS . 166
11.2.5 HUNK_RELOC32 . 167
11.2.6 HUNK_RELOC32SHORT . 167
11.2.7 HUNK_RELRELOC32 . 168
11.2.8 HUNK_NAME . 169
11.2.9 HUNK_SYMBOL . 169
11.2.10 HUNK_DEBUG . 170
11.2.11 HUNK_END . 171

11.3 The AmigaDOS Loader . 171
11.3.1 Loading an Executable . 171
11.3.2 Loading an Executable with Additional Parameters . 172
11.3.3 Loading an Executable through Call-Back Functions 173
11.3.4 Unloading a Binary . 174
11.3.5 UnLoading a Binary through Call-Back Functions . 174

11.4 Overlays . 175
11.4.1 The Overlay File Format . 175
11.4.2 The Hierarchical Overlay Manager . 177
11.4.3 HUNK_OVERLAY . 178
11.4.4 HUNK_BREAK . 179
11.4.5 Loading an Overlaid Node . 179
11.4.6 Loading an Overlay Node through Call-Back Functions 180
11.4.7 Unloading Overlay Nodes . 181
11.4.8 Unloading Overlay Binaries . 181
11.4.9 An Implementation of the Hierarchical Overlay Manager 182
11.4.10 The MANX Overlay Manager . 186

11.5 Structures within Hunks . 189
11.5.1 The Version Cookie . 189
11.5.2 The Stack Cookie . 190
11.5.3 Extending the Stack Size from the Stack Cookie . 190
11.5.4 Runtime binding of BCPL programs . 191

11.6 Object File Format . 193
11.6.1 HUNK_UNIT . 194

CONTENTS vii

11.6.2 HUNK_NAME . 194
11.6.3 HUNK_RELOC16 . 195
11.6.4 HUNK_RELOC8 . 196
11.6.5 HUNK_DRELOC32 . 196
11.6.6 HUNK_DRELOC16 . 197
11.6.7 HUNK_DRELOC8 . 197
11.6.8 HUNK_EXT . 197

11.7 Link Library File Format . 200
11.7.1 HUNK_LIB . 200
11.7.2 HUNK_INDEX . 202

12 Direct Packet Communication 205
12.1 Request an Action from a Handler and Wait for Reply . 205
12.2 Asynchronous Packet Interface . 206
12.2.1 The DosPacket Structure . 207
12.2.2 Send a Packet to a Handler Asynchronously . 208
12.2.3 Waiting for a Packet to Return . 209
12.2.4 Aborting a Packet . 209

12.3 Reply a Packet to its Sender . 209

13 Handlers, Devices and File Systems 211
13.1 The Handler Interface . 211
13.1.1 Locating a Handler from a Path . 211
13.1.2 Starting a a Handler . 212
13.1.3 Handler Main Processing Loop . 214
13.1.4 Handler Shutdown . 217

13.2 The CON-Handler . 218
13.2.1 CON-Handler Path for Graphical Consoles . 218
13.2.2 CON-Handler Path for Serial Consoles . 220
13.2.3 CON-Handler Startup and Mount Parameters . 221
13.2.4 CON-Handler Buffer Modes . 222

13.3 The Port-Handler . 226
13.3.1 Port-Handler Path . 226
13.3.2 Port-Handler Startup and Mount Parameters . 227

13.4 The Queue-Handler . 228
13.4.1 Queue-Handler Path . 228
13.4.2 Queue-Handler Startup and Mount Parameters . 229

13.5 The RAM-Handler . 230
13.6 The Fast File System . 230
13.6.1 FFS Startup and Mount Parameters . 230
13.6.2 The Boot Block . 231
13.6.3 Disk Keys and Sectors . 233
13.6.4 The Root Block . 234
13.6.5 The User Directory Block . 236
13.6.6 The File Header Block . 239
13.6.7 The Soft and Hard Link Block . 241
13.6.8 The File Extension Block . 244
13.6.9 The Comment Block . 245
13.6.10 The Directory Cache Block . 245
13.6.11 The Data Block . 247
13.6.12 The Bitmap Block . 248

viii Rom Kernel Reference Manual: DOS

13.6.13 The Bitmap Extension Block . 250
13.6.14 The Deleted Block . 250

14 Packet Documentation 251
14.1 Packets for File Interactions . 251
14.1.1 Opening a File for Shared Access . 252
14.1.2 Opening a File for Exclusive Access . 253
14.1.3 Opening or Creating a File for Shared Access . 254
14.1.4 Opening a File from a Lock . 254
14.1.5 Closing a File . 255
14.1.6 Reading from a File . 256
14.1.7 Writing to a File . 257
14.1.8 Adjusting the File Pointer . 257
14.1.9 Setting the File Size . 258
14.1.10 Locking a Record of a File . 259
14.1.11 Release a Record of a File . 260

14.2 Packets for Interacting with Locks . 260
14.2.1 Obtaining a Lock . 261
14.2.2 Duplicating a Lock . 262
14.2.3 Finding the Parent of a Lock . 262
14.2.4 Duplicating a Lock from a File Handle . 263
14.2.5 Finding the Parent Directory of a File Handle . 263
14.2.6 Creating a new Directory . 264
14.2.7 Comparing two Locks . 264
14.2.8 Changing the Mode of a Lock or a File Handle . 265
14.2.9 Releasing a Lock . 265

14.3 Packets for Examining Objects . 266
14.3.1 Examining a Locked Object . 266
14.3.2 Scanning Directory Contents . 267
14.3.3 Examining Multiple Entries at once . 268
14.3.4 Aborting a Directory Scan . 270
14.3.5 Examining from a File Handle . 271

14.4 Packets for Working with Links . 271
14.4.1 Creating Links . 272
14.4.2 Resolving a Soft Link . 273

14.5 Packets for Adjusting Metadata . 278
14.5.1 Renaming or Moving Objects . 278
14.5.2 Deleting an Object . 279
14.5.3 Changing the Protection Bits . 280
14.5.4 Setting the Comment to an Object . 281
14.5.5 Setting the Creation Date of an Object . 281
14.5.6 Setting the Owner of an Object . 282

14.6 Packets for Starting and Canceling Notification Requests 283
14.6.1 Registering a Notification Request . 283
14.6.2 Canceling a Notification Request . 285

14.7 Packets Operating on Entire Volumes . 285
14.7.1 Determining the Currently Inserted Volume . 285
14.7.2 Retrieving Volume Information from a Lock . 286
14.7.3 Retrieving Information on the Currently Inserted Volume 287
14.7.4 Relabeling a Volume . 288
14.7.5 Initializing a New File System . 288

CONTENTS ix

14.7.6 Make a Copied Disk Unique . 289
14.7.7 Write Protecting a Volume . 290

14.8 Packets for Interactive Handlers . 290
14.8.1 Waiting for Input Becoming Available . 291
14.8.2 Setting the Line Buffer Mode . 291
14.8.3 Retrieving IORequest and Window Pointer from the Console 292
14.8.4 Releasing Console Resources . 296
14.8.5 Stack a Line at the Top of the Output Buffer . 297
14.8.6 Queue a Line at the End of the Output Buffer . 297
14.8.7 Force Characters into the Input Buffer . 298
14.8.8 Drop all Stacked and Queued Lines in the Output Buffer 299
14.8.9 Bring the Console Window to the Foreground . 299
14.8.10 Change the Target Port to Receive Break Signals . 300

14.9 Packets Controlling the Handler in Total . 301
14.9.1 Adjusting the File System Cache . 301
14.9.2 Inhibiting the File System . 301
14.9.3 Check if a Handler is a File System . 302
14.9.4 Write out all Pending Modifications . 303
14.9.5 Shutdown a Handler . 303
14.9.6 Do Nothing . 304

14.10 Handler Internal Packets . 305
14.10.1 Receive a Returning Read . 305
14.10.2 Receive a Returning Write . 305
14.10.3 Receive a Returning Timer Request . 305

14.11 Obsolete and Third-Party Packets . 306

15 The AmigaDOS Shell 307
15.1 The Shell Syntax . 307
15.1.1 Input/Output Redirection . 307
15.1.2 Compound Commands and Binary Operators . 309
15.1.3 Unary Shell Operators . 309
15.1.4 Quoting and Escaping . 310
15.1.5 Variables and Variable Expansion . 312
15.1.6 Pre-defined Shell Variables, Configuring the Shell . 312
15.1.7 Backtick Expansion . 313
15.1.8 Alias Substitution . 314
15.1.9 Command Location and Execution . 314
15.1.10 The Execute Command . 315

15.2 Creating and Controlling the Shell . 318
15.2.1 Create New Shells and Execute Scripts . 318
15.2.2 Execute Shell Scripts (Legacy) . 322
15.2.3 Run a Command Overloading the Calling Process . 323
15.2.4 Checking for Signals . 324
15.2.5 Request a Function of the Shell . 324
15.2.6 Find a Shell Process by Task Number . 325
15.2.7 Retrieve the Size of the Process Table . 326

15.3 The CLI Structure . 326
15.3.1 Obtaining the Name of the Current Directory . 326
15.3.2 Set the Current Directory Name . 327
15.3.3 Obtaining the Current Program Name . 327
15.3.4 Set the Current Program Name . 328

x Rom Kernel Reference Manual: DOS

15.3.5 Obtaining the Shell Prompt . 328
15.3.6 Setting the Shell Prompt . 329
15.3.7 Retrieving the CLI Structure . 329

15.4 Accessing Shell Variables . 332
15.4.1 Reading a Shell Variable . 332
15.4.2 Setting a Shell Variable . 333
15.4.3 Finding a Shell Variable . 334
15.4.4 Deleting a Shell Variable . 335

15.5 Command Line Argument Parsing . 336
15.5.1 Parsing Command Line Arguments . 336
15.5.2 Releasing Argument Parser Resources . 339
15.5.3 Reading a Single Argument from the Command Line 340
15.5.4 Find an Argument in a Template . 341

15.6 Resident Segments . 341
15.6.1 Find a Resident Segment by Name . 343
15.6.2 Adding a Resident Segment . 343
15.6.3 Removing a Resident Segment . 344

15.7 Writing Custom Shells . 344
15.7.1 Initializing a new Shell . 347

16 Miscellaneous Functions 353
16.1 Object Constructors and Destructors . 353
16.1.1 Allocating a DOS Object . 353
16.1.2 Releasing a DOS Object . 355

16.2 Reporting Errors . 355
16.2.1 Display an Error Requester . 355
16.2.2 Receive Information when a Volume is Requested . 357
16.2.3 Generating an Error Message . 357
16.2.4 Printing an Error Message . 358
16.2.5 Printing a String to the Error Stream . 358

17 The DOS Library 361
17.1 The Library Structure . 361
17.2 The Root Node . 362
17.3 The DosInfo Structure . 364
17.4 The AmigaDOS Boot Process . 365
17.4.1 The System-Startup Module . 365

CONTENTS xi

Chapter 1

Introduction

1.1 Preface by Olaf Barthel

The Amiga operating system is composed of libraries, devices and also resources, all of which provide APIs
and data structures for shell commands and Workbench tools to make use of. The foundations on which
everything else in the operating system rests are the Multitasking Executive (“exec.library”) and AmigaDOS
(“dos.library”).

dos.library itself depends upon exec.library, it is “just” another operating system component after all.
You might have expected that AmigaDOS plays a much greater part in the operating system, but the Amiga
operating system is not constructed around its DOS component. Almost every Amiga program makes use
of exec.library, such as for accessing libraries and devices, but not every Amiga program has need of what
dos.library provides. Of course, also libraries and devices can make use of dos.library, such as by opening
files on the context of the caller of a library function. Great care must be taken to verify that the caller is
indeed a process1.

AmigaDOS encompasses dos.library, the CON-Handler, the RAM disk implemented by the RAM-
Handler, the default file system and the command line Shell, as well as the shell commands on disk. These
components came, mostly, from TRIPOS (Trivially portable operating system) [11] where they were part
of a much larger networked multitasking operating system2. As one of the last pieces to fall into place in
1985, the components were specially adapted for the Amiga and were not written by the original Amiga and
Commodore developers. Both the Amiga operating system and TRIPOS had in common that they were built
around non-copying message passing in a shared memory space, which enabled AmigaDOS to work “hand
in glove” with the architecture and the means provided by exec.library.

dos.library connects the functions adapted from TRIPOS, such as for opening and closing files, reading
and writing data, to a regular shared Amiga library API, callable from both ’C’ and assembly language. With
a mere 31 functions the original 1985 dos.library API was very compact.

The same could be said, in a different context, for the AmigaDOS developer material for dos.library at
the time, which covered both the available API functions as well as selected data structures [12] in only 56
pages. This documentation was most helpful for creating programs which made use of dos.library functions,
such as reading and writing files.

How you would go about implementing and mounting a file system was virtually undocumented until
October 1986 [13]. How dos.library communicates with file systems — through a special message type
known as “DOS packets” — and how the system-global data structures, which file systems depend upon,

1with the exception of very few functions, dos.library requires its callers to be processes.
2To learn additional backgrounds, an interview with Dr. Tim King on the creation of TRIPOS and AmigaDOS is available online on

YouTube: https://www.youtube.com/watch?v=pm-szurM5VY (retrieved 2024)

Preface by Olaf Barthel 1

https://www.youtube.com/watch?v=pm-szurM5VY

would be used would not be documented (partially, that is) until February 1987 [15, 14, 16]. These gaps in
the documentation could never be closed by the three editions of the official AmigaDOS manual [1].

This state of affairs would change for the better by 1989, when Ralph Babel’s book “Das Amiga-Guru-
Buch” was published [6]. On 270 pages, chapter III “AmigaDOS” meticulously covers each component, the
data structures being used as well as every single function of the dos.library in Kickstart 1.3. In both detail
and scope, chapter III of “Das Amiga-Guru-Buch” by far exceeds what “The AmigaDOS manual” and its
corresponding Autodocs could cover at the time.

AmigaDOS in Kickstart 2.0 (1989) would replace the TRIPOS underpinnings, which had been adapted
for the Amiga, with equivalent code written in ’C’ and assembly language. This went along with a much ex-
panded API, which cast into library functions what was previously only attainable by manually manipulating
underdocumented/undocumented data structures.

Again, Ralph Babel provided the authoritative AmigaDOS documentation in “The Amiga Guru Book”[7].
With the same meticulous approach as applied to “Das Amiga-Guru-Buch”, chapter III "AmigaDOS" covers
the entire dos.library, file system, DOS packet and data structure documentation on 419 pages.

The book which you are reading now covers the entirety of AmigaDOS and its components, filling in the
gap between “The Amiga Guru Book” and the Amiga operating system changes in Kickstart 3.0, 3.1, 3.5,
3.1.4, 3.2 and beyond.

Essential to the understanding and use of dos.library and its data structures is the knowledge of its short-
comings such as undefined behaviour, side effects and bugs, as well as its limitations and what constraints
dos.library imposes on the software which makes use of its API. While dos.library Autodocs would cover
this field to a great degree, they mostly focus on the 1989-1991 dos.library version.

One of the goals of the RKRM AmigaDOS is to provide you with the means to gauge how thin the
ice really is which you are walking on when developing software for AmigaDOS. What works, and how?
What will fail silently if you attempt it? What was never implemented? The RKRM AmigaDOS attempts to
give you answers, enabling you to render your programs more robust where they previously stumbled over
unexpected/undocumented behaviour.

1.2 Foreword of the Author
The purpose of this manual is to provide a comprehensive documentation of the AmigaDOS subsystem of the
Amiga Operation System. AmigaDOS provides elementary services similar to other contemporary operating
systems, such as file systems and handlers implementing stream-based input and output, process manage-
ment, volume and device management, command line execution and command line parsing. Its interface to
applications is dos.library, a ROM based shared library that offers the API for AmigaDOS subsystems such
as file systems or the Shell.

While the Amiga ROM Kernel Reference Manuals [4] document major parts of the AmigaOs, they do
not include a volume on AmigaDOS and its subsystems. This is due to the history of AmigaDOS which is
nothing but a port of Tripos, an experimental operating system developed at the University of Cambridge
by Dr. Martin Richards and Dr. Tim King. Instead, its documentation became available as the AmigaDOS
manual [1] separately. It is based on the Tripos manual which has been augmented and updated to reflect the
changes that were necessary to fit Tripos into AmigaOs. Unfortunately, the AmigaDOS manual is now out
of print, does not reflect the current state of AmigaDOS anymore, and leaves multiple parts of AmigaDOS
undocumented.

Good third party documentation is available in the form of the Guru Book [7], though this source is also
out of print and even harder to obtain. It also covers aspects of AmigaOs that go beyond AmigaDOS and its
focus is a bit different than that of this work.

The book in your hands attempts to fill this gap and attempts to provide a comprehensive and complete
documentation of AmigaDOS and its subsystems, closely following the style of the ROM Kernel Reference
Manuals.

2 Rom Kernel Reference Manual: DOS

1.2.1 Acknowledgments
A book of this size would be impossible without additional help from others. I want to thank in particular
Frank Wille for helping me to compile the description of the Amiga binary format and Olaf Barthel for many
fruitful discussions and for answering many questions while compiling many chapters of this volume. Special
thank goes to Rainer Müller for proof-reading the manuscript and providing many fixes and corrections.

1.3 Language and Type Setting Conventions
The words shall and shall not indicate normative requirements software shall or shall not follow or in order
to satisfy the interface requirements of AmigaDOS. The words should and should not indicate best practice
and recommendations that are advisable, but not strictly necessary to satisfy a particular interface. The word
may provides a hint to a possible implementation strategy.

The word must indicates a logical consequence from existing requirements or conditions that follows
necessarily without introducing a new restriction, such as in “if a is 2, a+ a must be 4”.

Worth remembering! Important aspects of the text are indicated with a bold vertical bar like this.

Terms are indicated in italics, e.g. the dos.library implements an interface of AmigaDOS, and are also
used when new terms are introduced for the first time. Data structures and source code are printed in
courier in fixed-width font, resembling the output of a terminal, e.g.

typedef unsigned char UBYTE; /* an 8-bit unsigned integer */
typedef long LONG; /* a 32-bit integer */

Language and Type Setting Conventions 3

4 Rom Kernel Reference Manual: DOS

Chapter 2

Elementary Concepts

2.1 Purpose of the dos.library
AmigaDOS is part of the Amiga Operating System or short AmigaOs. dos.library provides the application
interface to AmigaDOS, even though it consists of components beyond this library, e.g. the AmigaDOS Shell
and the Fast File System, which is the default (ROM-based) file system organizing the data on volumes such
as floppy disks or hard disks.

Unlike many other operating systems, dos.library does not manage disks or files itself, neither does it
provide access to hardware interface components. It rather implements a virtual file system which forwards
requests to its subsystems, called handlers or file systems. The FFS is only one of the multiple file systems
AmigaDOS is able to handle; instead, the library provides an abstract interface to handlers that enables exten-
sions through third-party file systems and handlers. Handlers and file systems are introduced in section 2.12,
and the interface between the dos.library and such handlers is specified in chapter 13.

2.2 The DosLibrary Object
dos.library is typically opened by the startup code of most compilers, and its base pointer is placed into the
DOSBase object by such startup code:

struct DosLibrary *DOSBase;

Hence, in general, there is no need to open this library manually.
The DosLibrary structure is defined in dos/dosextens.h, but most programs do not require and

should not access to its elements. However, chapter 17 documents its structure and objects referenced by
it. Instead, the library offers functions to application programs through its library vector offsets — or short
_LVOs — which are made available to a C compiler by including proto/dos.h:

#include <proto/dos.h>

This book is organized around groups of functions defined through the above file, roughly by functionality
and by increasing complexity.

If you do not link with compiler startup code, the base pointer of dos.library is obtained similar to any
other AmigaOs library:

#include <proto/exec.h>
#include <proto/dos.h>
#include <exec/libraries.h>

The DosLibrary Object 5

#include <dos/dos.h>

struct DosLibrary *DOSBase;
struct ExecBase *SysBase;

int __saveds startup(void)
{

SysBase = *((struct ExecBase **)(4L);
...
if ((DOSBase = (struct DosLibrary *)(OpenLibrary(DOSNAME,47)))) {

...
CloseLibrary((struct Library *)DOSBase);

}
...

}

The most up to date version of dos.library also discussed in this book is version 47, as indicated by the second
argument of OpenLibrary(). Not all programs will require its most recent version, though; the version
in which a particular function of dos.library appeared is indicated behind the function definition. Rather than
requesting the maximum version, program authors should identify which functions of the library they require,
identify for each of them the minimum version number in which they became available, and then take the
maximum of all the version numbers and supply this maximum as second argument of OpenLibrary().
Table 2.1 provides the relation between AmigaDOS versions and the corresponding library version:

Table 2.1: AmigaDOS Version Numbers

AmigaDOS version dos.library version
1.2 33
1.3 34
1.4 (RAM-based, with Hedley support) 35
2.0 36
2.04 37
2.1 38
3.0 39
3.1 40
3.1 (unpublished, with support for Japanese locale) 41
3.1 (unpublished alpha release) 42
3.2 (unpublished release for the Walker) 43
3.5 44
3.9 45
3.1.4 46
3.2 47

Version 35 was an extension of version 34 with integrated support for the A2024 Hedley monitor that
was entirely RAM-loaded. Most important changes were made in version 36 in which the library was largely
extended, though the release contained many defects that were addressed in version 37. Version 38 was
a pure software update that added localization support. Versions 41 to 43 were never published, with the
exception of some beta versions of the FFS which shipped as version 43. Version 44 was used for AmigaOs
3.5, and 45 for AmigaOs 3.9 and most modules of 3.1.4. Some modules with extended features such as the
FFS with long file name support received the version number 46.

6 Rom Kernel Reference Manual: DOS

2.3 Booleans
AmigaDOS uses a convention for Booleans that differs from the one imposed by the C programming lan-
guage; it uses the following truth values defined in the file dos/dos.h:

Table 2.2: DOS Truth Values
Define Value
DOSFALSE 0
DOSTRUE -1

Note that the C language uses instead the value 1 for TRUE. Code that checks for zero or non-zero return
codes will function normally, however it shall not compare to TRUE in Boolean tests. Instead, programs
shall test whether a value is 0 or different from 0, avoiding this discrepancy between the conventions of
AmigaDOS and the C language.

2.4 Pointers and BPTRs
AmigaDOS is a descendant of the Tripos operating system and as such was originally implemented in the
BCPL language. As of Kickstart 2.0, i.e. version 36 of dos.library, AmigaDOS was re-implemented in C and
assembler, but this new implementation had to preserve the existing interface based on BCPL conventions.

BCPL is a type-less language that structures the memory of its host system as an array of 32-bit elements
enumerated contiguously from zero up. Rather than pointers, BCPL expresses the positions of its objects as
indices of their first 32-bit element in memory. As each 32-bit group is assigned its own index, one can obtain
such an index by dividing the byte-address of an object by 4, or equivalently, by right-shifting the address as
given by a conventional pointer by two bits. This also has the consequence that (most) objects passed into
and out of dos.library shall be aligned to 32-bit boundaries. Similarly, in order to obtain the byte-address of
a BCPL object, its index is multiplied by 4, or left-shifted by 2 bits.

Not on the Stack! Since BCPL objects must have addresses divisible by 4, using automatic storage
duration for AmigaDOS objects is inappropriate. Compilers will typically keep automatic objects
on the hardware stack of the 68K processor [2, 3], but usually do not ensure that their addresses are
aligned to long word boundaries. In case a particular AmigaDOS object cannot be constructed by
AllocDosObject() (see section 16.1.1), a safe strategy is to use exec.library memory allocation
functions such as AllocMem() or AllocVec() to obtain memory for holding them. All three
functions ensure proper alignment.

Indices to 32-bit memory cells in the BCPL abstraction of computer memory are called BCPL pointers
or short BPTRs, even though they are not pointers in the sense of the C language; they are rather integer
numbers as indices to an array of LONG (i.e. 32-bit) integers. In order to communicate this fact more clearly,
the dos/dos.h include file defines the following data type:

typedef long BPTR; /* Long word index */

The include file exec/types.h contains the definition of an untyped C pointer as follows:

typedef void *APTR; /* 32-bit untyped pointer */

This is – unlike a BPTR – a real pointer, though the data type it points to remains undefined.

Conversion from BCPL pointers to conventional C pointers and back are realized by the following
macros, also defined in dos/dos.h:

Pointers and BPTRs 7

/* Convert BPTR to typical C pointer */
#define BADDR(x) ((APTR)((ULONG)(x) << 2))
/* Convert address into a BPTR */
#define MKBADDR(x) (((LONG)(x)) >> 2)

Luckily, in most cases callers of dos.library do not need to convert from and to BPTRs but can rather
use such “pointers” as opaque values or handles representing some AmigaDOS object. Examples for those
objects are file handles specified in chapter 5, and locks, see chapter 6. Both are represented as BPTRs to
some structure the caller usually does not need to care about.

It is certainly a burden to always allocate temporary BCPL objects from the heap through exec.library
or dos.library, and doing so can also fragment the AmigaOs memory unnecessarily. However, allocation
of automatic objects from the stack does not ensure long-word alignment in general. To work around this
burden, one can use a trick and instead request from the compiler a somewhat larger object with automatic
storage duration and align the requested object manually within the memory obtained this way. The following
macro performs this trick:

#define D_S(type,name) char a_##name[sizeof(type)+3]; \
type *name = (type *)((ULONG)(a_##name+3) & ~3UL)

It is used as follows:

D_S (struct FileInfoBlock, fib);

At this point, fib is a pointer to a properly aligned struct FileInfoBlock, e.g. this is equivalent
to

struct FileInfoBlock _tmp;
struct FileInfoBlock *fib = &tmp;

except that the created pointer is aligned to a long-word boundary and thus can be safely passed into
dos.library.

Similar to the C language, a pointer to a non-existing element is expressed by the special pointer value 0.
While this is called the NULL pointer in C, it is better to reserve another name for it in BCPL as BPTRs are
indices instead. The following convention is suggested to express an invalid BPTR:

#define ZERO 0L

Clearly, with the above convention, the BCPL ZERO pointer converts to the C NULL pointer and back,
even though the two are conceptually something different: The first being the index to the first element of the
host memory array, the later the pointer to the first address.

2.5 C Strings and BSTRs
While the C language defines strings as 0-terminated arrays of char, and AmigaOs in particular to 0-
terminated arrays of UBYTEs, that is, unsigned characters, the BCPL language uses a different convention.
Instead, a BCPL string is a UBYTE array whose first element contains the size of the string to follow. They
are not necessarily 0-terminated either. If BCPL strings are passed into BCPL functions, or are part of BCPL
data structures, then typically in the form of a BPTR to the 32-bit element containing the size of the string its
8 most significant bits. The include file dos/dos.h provides its own data type for such strings:

typedef long BSTR; /* Long word index of a BCPL string */

8 Rom Kernel Reference Manual: DOS

Luckily, functions of dos.library take C strings as arguments and perform the conversion from C strings
to their BCPL representation as BSTRs internally, such that one rarely gets in contact with them. They appear
as part of some AmigaDOS structures to be discussed, and as part of the interface between dos.library and
its handlers, e.g. file systems. However, even though users of dos.library rarely come in contact with BSTRs
themselves, the BCPL convention has an important consequence, namely that (most) strings handled by
dos.library cannot be longer than 255 characters as this is the maximum value a byte-sized length value can
take.

Length-Limited Strings Remember that most strings that are passed into dos.library are internally
converted to BSTRs and thus cannot exceed a length of 255 characters.

Unfortunately, even in the latest version of AmigaDOS, dos.library is ill-prepared to take longer strings,
and will likely fail or mis-interpret if such strings are passed in. If longer strings are required, e.g. as part of a
path, it is (unfortunately) in the responsibility of the caller to take this path apart into components and iterate
through the components manually, see also chapter 4 and specifically section 4.6.1 for a workaround.

Finally, the NUL character — note the single “L” — is the name of the ASCII character with code 0 by
which all C strings are terminated. A C string is therefore a NUL-terminated string. This notation will be
used throughout this volume.

All Zero, but of a Different Kind ZERO, NULL and NUL all encode the value 0, but the first is the
name of the first BCPL memory index and indicates an invalid BPTR. Its C equivalent is NULL, which
however denotes a pointer and not a memory cell index. NUL is the first code point of the ASCII code
set and represented by a byte of value 0.

2.6 Elementary Conversion Functions
Functions in this section perform conversions between the elementary data types listed in this chapter; they
convert between strings representing numbers as human-readable decimals and their binary machine rep-
resentations. The StrToLong() takes such a string and converts it to an integer. There is no function
in dos.library to perform the inverse conversion of an integer to a string, though the exec.library function
RawDoFmt() may be used to implement it as a by-product of a more general family of functions. Sec-
tion 2.6.2 provides a very compact and in many cases sufficient implementation of a function that closely
reassembles the sprintf() function of ANSI-C; it prints and formats many elementary data types, includ-
ing integers, into an output buffer, and as such, can also convert an integer into a decimal number.

2.6.1 Convert a String to a Number
The StrToLong() function converts an ASCII encoded decimal number to a signed 32 bit integer.

characters = StrToLong(string,value) /* since V36 */
D0 D1 D2

LONG StrToLong(STRPTR, LONG *)

This function receives a NUL-terminated string containing a decimal number encoded in ASCII and
converts it to a signed integer. The return value is the number of characters it could parse from the string,
or −1 if not a single valid digit could be found. The converted number is placed into the 32-bit long word
pointed to by value.

The function skips leading spaces and tabs, they are included in characters. It also interprets a
leading minus sign (“-”) to indicate negative numbers, but does not accept a leading plus sign (“+”). This

Elementary Conversion Functions 9

function also aborts in case the conversion overflows, i.e. the absolute value of the number is larger than 231,
and then returns the number of characters up to which the conversion could be performed without overflow.
The result of the conversion filled into value is in this case meaningless.

Even in case of error, this function does not alter IoErr().

2.6.2 Print Formatted into a Buffer
While not a function of dos.library, the code example in this section implements a function similar to the
sprintf() function of the ANSI C library; it converts many elementary data types to strings. It is based on
the RawDoFmt() function of exec.library, which is also patched by locale.library and thus formats numbers
according to the currently loaded locale.

#include <stdarg.h> /* for va_list macros */

static void prbuf(char c)
{

__builtin_emit(0x16c0); /* move.b D0,(A3)+ */
}

/*
** convert a list of arguments to a string using an

** ANSI-C format template.

*/
void vsprintf(char *buffer, const char *ctlstr, void *args)
{

RawDoFmt((char *)ctlstr, args, prbuf, buffer);
}

/*
** Convert multiple arguments to a string, using

** an ANSI-C format template.

*/
void sprintf(char *buffer, const char *ctrl,...)
{

va_list args;

va_start(args,ctrl);
vsprintf(buffer,ctrl,args);
va_end(args);

}

/*
** Convert a signed integer to a string

*/
void LongToStr(char buffer *buf, LONG val)
{

sprintf(buffer,"%ld",val);
}

The vsprintf() function defined above takes a target buffer, an ANSI-C conversion string ctlstr
containing formatting directives, see [8], and a buffer of primitive integer data types or strings in args. It
converts these arguments to strings, formats them according to ctlstr and places the result in the target

10 Rom Kernel Reference Manual: DOS

buffer. The full set of conversion directives is found in the description of RawDoFmt() in [4], though the
most elementary directives are shown here:

%s The next argument in args is a pointer to a NUL-terminated string that is inserted into buffer.
To limit the number of characters copied into the target buffer, an ANSI-C precision field should be
included in the format directive, e.g. %.30s truncates the input string to 30 characters.

%b The next argument is a BPTR to a BSTR that is inserted into the buffer. This formatting directive
was added in AmigaOs version 36. Again, it is recommended to truncate the string length by the
ANSI-C precision format directive, see above.

%ld The next argument in args is a 32-bit signed integer that is converted to a decimal string.

%lu Convert a 32-bit unsigned integer to a decimal string — this formatting directive was added in Ami-
gaOs 37.

%lx Convert a 32-bit unsigned integer to hexadecimal. If needed, a leading 0x must be inserted manually,
it is not part of the output of the conversion.

%lc Interpret a 32-bit integer as an ISO-Latin or ASCII code point and insert the single character this code
point represents.

%% Insert the percent sign itself.

As also seen above, the ANSI-C flags, field width, precision and length modifiers may be included in the
format directive starting with “%”, see [4] for more details.

Think Long The knowledgeable C developer will notice that many of the above conversion directives
include an l length modifier which has been added here on purpose, even causing strange directives
such as %lc. This is because the RawDoFmt() function assumes a 16-bit integer model, whereas
most compilers operate with 32-bit integers. The length modifier ensures that exec.library removes
32-bit arguments from args, corresponding to the integer size of many C implementations. Some
older compilers use, in fact, a 16-bit integer model in which case the l shall be dropped (but only
then!). Not following this guideline will cause hard to find bugs resulting in incorrect output.

The vsprintf() function from the above code segment implements the function of the same name
in the ANSI-C library only approximately, and the formatting directives need to be adjusted carefully to
avoid problems. There is, as in the ANSI-C standard library, no check whether the target buffer is large
enough. In particular, string formatting directives should be selected carefully to avoid buffer overruns that
can lead to system crashes. As the FPrintf() function from section 5.8.1 and the Printf() function
from section 5.8.2 are based on the same exec function, the same peculiarities apply there as well.

The sprintf() function is an — albeit basic — re-implementation of the C standard library function
sprintf() which prints all its arguments to a buffer. The same formatting directives apply. It uses the
varargs macros of ANSI-C from stdarg.h to forward its arguments to vsprintf().

The LongToStr() function is a simple application of sprintf() to convert a signed integer to a
string. It does the inverse of the StrToLong() function of dos.library introduced in section 2.6.1.

The prbuf() function is hack using a built-in function of the SAS/C compiler. Its function body con-
sists only of the __builtin_emit() function which injects the object code of the MOVE.B D0,(A3)+
instruction into the function body. It takes the function argument placed in register D0 by RawDoFmt() and
pushes it into the target buffer pointed to by register A3. Other compilers will need a small assembler stub
function of the same name that consists only of this instruction, and an RTS.

Elementary Conversion Functions 11

2.7 Paths
Paths are human-readable strings that uniquely identify an object on a file system, such as a file or a directory,
or represent an interface of the computer system to the outside world, such as the serial or parallel port.
Chapter 4 introduces paths in more detail.

2.8 Files
Files are streams of bytes together with a file pointer that identifies the next position to be read, or the next
byte position to write to. Files are explained in more detail in chapter 5. AmigaDOS represents files through
file handles in the form of a BPTR to a FileHandle structure, though most of the time, the elements of the
structure are not needed and it is sufficient to pass the BPTRs around.

2.9 Directories
Directories are collections of files logically grouped together. They correspond to drawers on the workbench.
Each medium such as a floppy disk, and each partition on a hard disk has at least one top-most directory;
it contains all the objects that are immediately visible if the icon representing the medium is double-clicked
on the Workbench. This top-most directory is also called the root directory of the disk, partition or medium.
Often, directories such as the root directory can also contain other directories as sub-directories.

2.10 Locks
Locks are access rights to a particular object on a file system, such as a file or a directory. A locked file
cannot be overwritten or removed by any other process, a locked directory can be altered, but not be deleted.
Chapter 6 provides more details on locks. AmigaDOS represents locks through the FileLock structure also
introduced in the above chapter, though in most cases, locks are passed around as BPTRs.

2.11 Processes
AmigaDOS is a multi-tasking system operating on top of the exec kernel [4]. As such, it can execute multiple
tasks at once, where the tasks are assigned to the CPU in a round-robin fashion. A Process is an extension
of an AmigaOs Task; it includes additional state information relevant to AmigaDOS, such as a current di-
rectory, a default file system, a console it is connected to, and default input, output and error streams. Most
important, each process includes a MsgPort, see [4], through which it communicates with other AmigaDOS
components such as handlers or file systems. Processes are explained in more detail in chapter 10.

2.12 Handlers and File Systems
Handlers are special processes that perform input or output operations to logical or physical devices, such as
the serial port, a printer, the floppy or even the main memory. dos.library delegates most operations, such as
reading from a stream or file to such handlers. Handlers are explained in more detail in chapter 13.

File systems are special handlers that organize the contents of data volumes such as hard disks, floppies
or CD-Roms in the form of files and directories. File systems interpret paths (see chapter 4) in order to locate
objects such as files and directories on storage media. Thus, every file system is a handler — i.e. the Fast File
System (FFS) is a handler, discussed in section 13.6 — but not every handler implements a file system. The
console window, for example, is provided by the CON-Handler in the form of the CON device, even though
it surely does not organize files. Section 13.2 provides more details on this particular handler.

12 Rom Kernel Reference Manual: DOS

2.13 The AmigaDOS Shell
The AmigaDOS Shell is a command line interpreter and implements a (basic) programming language through
which the user can communicate with the system. Historically, the Shell was also called the CLI for Com-
mand Line Interface, and it is the primary user interface of AmigaDOS. Unlike the graphical user interface,
the Workbench, it is purely text based and available even without a boot medium.

The Shell reads lines from the console, which is a handler of its own, and interprets them as commands,
potentially along with additional arguments to them. Commands are binary executable files (see chapter 11
for their structure) that are contained in a special directory of an AmigaDOS installation, though some ele-
mentary commands are built into the Shell and do not require access to a medium.

The Shell is not restricted to reading commands from the console. Any other handler can serve as source
as well, for example by providing a Shell Script or Batch File located on a partition operated by the Fast File
System (FFS), the Amiga ROM file system. The most important Shell script is Startup-Sequence which is
interpreted by the Shell when booting AmigaOs. Chapter 15 provides more details on the AmigaDOS Shell.

AmigaDOS is not limited to its own Shell, which is also called the Boot Shell; even though this feature is
rarely used, it is possible to install additional alternative shells. The AmigaDOS interface to shells is specified
in section 15.7.

The AmigaDOS Shell 13

14 Rom Kernel Reference Manual: DOS

Chapter 3

Date and Time

Due to its history, AmigaOs uses two incompatible representations of date and time. The timer.device
represents a date as the number of seconds and microseconds since January 1st 1978. As AmigaDOS is
based on Tripos as an independently developed operating system, dos.library uses a different representation
as DateStamp structure defined in dos/dos.h:

struct DateStamp {
LONG ds_Days;
LONG ds_Minute;
LONG ds_Tick;

};

The elements of this structure have the following meaning:

ds_Days counts the number of days since January 1st 1978. It includes intercalary days added approxi-
mately all four years at the end of February.

ds_Minute counts the number of minutes past midnight, i.e. the start of the day.

ds_Tick counts the ticks since the start of the minute. The number of ticks per second is defined as
TICKS_PER_SECOND in dos/dos.h. By dividing the number of ticks by the above constants, one can
derive the number of seconds since the start of the minute. Leap seconds that are added from time to time
cannot be represented by AmigaDOS, instead the clock then requires manual adjustment.

Ticking 50 Times a Second A system “tick” is always 1/50th of a second, regardless whether the
system is an NTSC or PAL system. AmigaDOS detects the clock basis during setup and will scale
times appropriately such that the definition of the “tick” is independent of the clocking of the system
or the monitor refresh frequency.

The system date, or rather the functions to convert between the Amiga timer.device representation
and the AmigaDOS DateStamp representation are currently not able to handle dates after 31th December
2045.

There is no function in AmigaDOS to set the date, this needs to be done through the timer.device
with the TR_SETSYSTIME command. The Kickstart, during bootstrap, takes the current time from the real
time clock, if it is present. If no real time clock is present, then all elements of the rn_Time structure
in the RootNode structure (see section 17.2) of dos.library remain 0, corresponding to a system date of
January 1st 1978. The boot file system shall check this condition and provide a better approximation in such
a case. The FFS will use in this case the creation time of the boot volume recorded in the root block, see
section 13.6.4 and adjusts the system time then through the timer.device. Section 17.4 contains a more
detailed description of the boot process.

CHAPTER 3. DATE AND TIME 15

3.1 Elementary Time and Date Functions
The functions in this section obtain the current system time, compare two times, or delay the system for a
given time. They represent times — and dates if appropriate — in the DateStamp structure as a triple of
days, minutes and ticks.

3.1.1 Obtaining the Time and Date
The DateStamp() function obtains the current date and time from AmigaDOS:

ds = DateStamp(ds);
D0 D1

struct DateStamp *DateStamp(struct DateStamp *)

This function retrieves the current system time and fills it into a DateStamp structure pointed to by ds.
It also returns a pointer to the structure passed in. This function cannot fail.

Unlike many other dos.library functions, there is no requirement to align ds to a long-word boundary.

3.1.2 Comparing two Times and Dates
The CompareDates() function compares two dates as given by DateStamp structures and returns an
indicator which of the dates is earlier.

result = CompareDates(date1,date2) /* since V36 */
D0 D1 D2

LONG CompareDates(struct DateStamp *,struct DateStamp *)

This function takes two pointers to DateStamp structures as date1 and date2 and returns a negative
number if date1 is later than date2, a positive number if date2 is later than date1, or 0 if the two dates
are identical.

This function does not check the dates for validity, and it also assumes that difference between the days
does not exceed 231 days. Note that the logic of this function is different from strcmp() and related
functions of ANSI-C which return a positive number if its first argument is larger than its second.

3.1.3 Delaying Program Execution
The Delay() function delays the execution of the calling process by a specific a number of ticks.

Delay(ticks)
D1

void Delay(ULONG)

This function suspends execution of the calling process by ticksAmigaDOS ticks. The delay is system-
friendly and does not burn CPU cycles; instead, the process is suspended from the CPU the indicated amount
of time, making it available to other processes. Thus, this function is the preferred way of delaying program
execution. A tick is 1/50th of a second.

AmigaDOS variants below version 36 could not handle delays of 0 ticks appropriately, thus passing a 0
argument should be avoided.

16 Rom Kernel Reference Manual: DOS

3.2 Conversion Into and From Strings
Functions in this section convert date and time between the (binary) AmigaDOS representation and a human-
readable string. The functions in this section are patched by locale.library once it is loaded. dos.library then
also offers and recognizes localized strings of the corresponding locale, including four-digit representation
of the year.

Both the input and output of these functions are kept in the DateTime structure that is defined in
dos/datetime.h and reads as follows:

struct DateTime {
struct DateStamp dat_Stamp;
UBYTE dat_Format;
UBYTE dat_Flags;
UBYTE *dat_StrDay;
UBYTE *dat_StrDate;
UBYTE *dat_StrTime;

};

dat_Stamp contains the input or output date represented as a DateStamp structure.

dat_Format defines the format of the date string and the order in which days, months and years appear
within the string. The following formats are available, all defined in dos/datetime.h:

Table 3.1: Date Formatting Options

Format Definition Description
FORMAT_DOS The AmigaDOS default format
FORMAT_INT International (ISO) format
FORMAT_USA USA date format
FORMAT_CDN Canadian and European format
FORMAT_DEF The format defined by the locale1

FORMAT_DOS represents the date as day of the month in two digits, followed by the month as three-
letter abbreviation, followed by a two-digit year counting from the start of the century. An example of this
formatting is 30-Sep-23.

FORMAT_INT starts with a two-digit year, followed by the month represented as two digits starting from
01 for January, followed by two digits for the day of the month. An example of such a date is 23-09-30.

FORMAT_USA places the month first, encoded as two numerical digits, followed by two digits of the day
of the month, followed by two digits of the year. An example of this formatting is 09-30-23.

FORMAT_CDN follows the European and Canadian convention and places the day of the month first,
followed by the month represented as two numerical digits, followed by the year as two digits.

FORMAT_DEF uses the format defined by the locale settings of the system if locale.library is installed.
Otherwise, it falls back to FORMAT_DOS. FORMAT_DEF will, depending on the locale, also use four-digit
years and thus should be the preferred output format.

Unfortunately, it seems that the current NDK does not seem to define this format, yet it is properly
handled. Its definition should therefore be performed manually as such:

#ifndef FORMAT_DEF
define FORMAT_DEF 4
#endif

1Unfortunately not defined in the official includes, see note below.

Conversion Into and From Strings 17

dat_Flags defines additional flags that control the conversion process. They are also defined in
dos/datetime.h:

Table 3.2: Date Conversion Flags

Flag Description
DTF_SUBST Substitute dates by relative description if possible
DTF_FUTURE Reference direction for relative dates is to the future

The include file dos/datetime.h define in addition also bit numbers for the above flags that start
with DTB instead of DTF. The meaning of these flags are as follows:

DTF_SUBST allows, if set, the conversion to substitute dates nearby today’s date by descriptions relative
to today. This flag is only honored when converting a time and date in AmigaDOS representation to human-
readable strings, and is for example used by the List command. In particular, the following substitutions
are made:

If the date provided is identical to the system date, the output date is set to “Today”, or a corresponding
localized string if locale.library is loaded.

If the date is one day later than the current system date, the output date is set to “Tomorrow”, or to an
appropriate localized version of this string.

If the date is one day before the current system date, the output date is set to “Yesterday”, or a localized
version of this string.

If the date is in the past week, the function substitutes it by the name of the day of the week, e.g.
“Saturday”, or its localized version.

A date in the future is substituted by “Future”, or its localized version.

DTF_FUTURE is only only honored when converting a string to the AmigaDOS representation, that is
into DateStamp structure. It indicates whether weekdays such as “Monday” are interpreted as dates in
the past, i.e. “last Monday”, or as dates in the future, i.e. “next Monday”. If the flag is cleared, weekdays
are interpreted as being in the past, as the DateToStr() function would generate them. If the flag is set,
weekdays are assumed as references to the future.

All following elements are string buffers that are either parsed when converting from human-readable
strings, or filled by dos.library when converting to strings. In the latter case, the output buffers shall be at
least LEN_DATSTRING bytes long.

dat_StrDay: This buffer is only used when converting DateStamps to strings, and — if present —
is then filled by the week of the day, e.g. “Saturday”.

dat_StrDate: This element points to a buffer that is either filled with the human-readable date, or is
input to the conversion then containing a human-readable date. The buffer is formatted, or expected to be
formatted according to dat_Format and dat_Flags.

dat_StrTime: This element points to a buffer that is either filled with a human-readable time, or is the
input time to be converted. AmigaDOS expects and provides here a 24h clock, hours, minutes and seconds
in this order, separated by colons, e.g. 21:47:16. If this element is NULL, then the time is not converted.

3.2.1 Converting a Time and Date to a String
The DateToStr() function converts a date and time into a human readable string. The date and time, as
well as formatting instructions are given by a DateTime structure.

success = DateToStr(datetime) /* since V36 */
D0 D1

BOOL DateToStr(struct DateTime *)

18 Rom Kernel Reference Manual: DOS

This function takes the date and time in the AmigaDOS binary representation contained in dat_Stamp
of the passed in DateTime structure introduced in section 3.2 and converts it into human readable strings.
The elements of this structure shall be populated as follows:

dat_Stamp shall be initialized to the date and time to be converted.
dat_Format defines the format of the date string to create. It shall be a value from table 3.1.
dat_Flags defines additional flags that control the conversion process. This function only honors

the DTF_SUBST flag which indicates that DateToStr() is supposed to represent the date relative to the
current system date if possible. That is, if possible, the date is represented as “Today”, “Tomorrow”,
“Yesterday” or a day of the week. The latter always correspond to past days, e.g. “Friday” means past
Friday, not a day in the future.

dat_StrDay: If this pointer is non-NULL, it shall point to a string buffer at least LEN_DATSTRING
bytes large into which the day of the week is filled, e.g. “Saturday”.

dat_StrDate: If this pointer is non-NULL, it shall point to a string buffer at least LEN_DATSTRING
bytes large; this constant is defined in dos/datetime.h. This buffer will then be filled by a description
for the date according to the format selected by dat_Format and dat_Flags.

dat_StrTime: This buffer, if the pointer is non-NULL, is filled by the time of the day, using a 24h
clock. The format is always hours, minutes, seconds, separated by colons.

This function is patched by locale.library once it is loaded, and then replaces the English output by the
corresponding localized output.

The function returns 0 on error; the only source of error here is if dat_Stamp is invalid, e.g. the number
of minutes is larger than 60 × 24 or the number of ticks is larger than 50 × 60. This makes this function
probably unsuitable to handle leap seconds correctly. This function does not touch IoErr(), even in case
of failure.

The FormatDate() function of locale.library is more powerful than this function and should probably
be preferred if this library is available.

3.2.2 Convert a String to a Date and Time
The StrToDate() function converts a date and time from a human-readable string to its binary AmigaDOS
representation.

success = StrToDate(datetime) /* since V36 */
D0 D1

BOOL StrToDate(struct DateTime *)

This function takes a DateTime structure as defined in section 3.2 and converts the date and/or time
strings in this structure to a DateStamp structure in dat_Stamp. In particular, the elements of the
DateTime shall be initialized as follows:

dat_DateTime provides a default time and date that are partially or fully overwritten by output of the
conversion process from dat_StrDate and dat_StrTime. In other words, this element provides the
result of this function.

dat_Format shall be initialized by the format that is used by the input date. Table 3.1 lists the available
input formats. In particular, the ROM code within dos.library only accepts two-digit years and interprets the
anything between 78 and 99 as 1978 to 1999, and years between 00 and 45 as 2000 to 2045. It refuses all
other numbers. However, StrToDate() is patched by locale.library whose replacement implementation
also accepts four-digit years.

dat_Flags shall be initialized by a combination of the flags from table 3.2. As StrToDate() always
accepts relative dates such as “Yesterday”, the DTF_SUBST flag is ignored and only DTF_FUTURE is

Conversion Into and From Strings 19

honored. This flag indicates whether weekdays are considered to correspond to a date in the past or in the
future.

dat_StrDay is ignored by this function. If a relative date given by a day of a week is to be converted,
this weekday goes directly into dat_StrDate.

dat_StrDate, if it is non-NULL, points to a string describing the date, in the format according to
dat_Format. If this string is not given, ds_Days of the dat_Stamp passed in remains unaltered.

dat_StrTime, if it is non-NULL, points to a human-readable string describing the time of the day. This
time shall be formatted as a 24h clock, in the order hours, minutes and seconds, each separated by colon. If
this pointer is NULL, then ds_Minute and ds_Ticks remain unchanged from the time passed in.

This function returns non-zero on success, and 0 on error. It does not set IoErr() in case of error.
Possible errors include ill-formatted input strings the function cannot interpret.

Also note that this function is patched by locale.library once loaded. It adds date and time conventions
according to the current locale when setting dat_Format to FORMAT_DEF.

The ParseDate() function of locale.library is more powerful than this function and should probably
be preferred if this library is available.

20 Rom Kernel Reference Manual: DOS

Chapter 4

Paths and File Names

AmigaDOS organizes data on storage media such as floppies or hard disks in the form of files and directories.
However, the files AmigaDOS manages are not limited to data units stored on media carriers, also denoted
as volumes. The console window and the serial and parallel ports are also represented as files, and can be
accessed through the same interfaces as files on disks. The latter are called interactive files, to distinguish
them from static data stored on media that only change if explicitly modified.

Files and directories are identified by paths, through which their content can be reached, and from which
AmigaDOS also locates a process that moderates access to them. Such processes are called handlers, or,
in case of non-interactive files organized on a data carrier, file systems. The latter organize storage on disk,
records information where on disk a file is located, and finds files given a path. Handlers provide file-like
access to system resources such as the parallel or serial port. dos.library does not interact with files or
directories directly, but delegates their administration to handlers and file systems.

A path is broken up into two parts: An optional device, volume or assign name terminated by a colon
(“:”), followed by a string that allows the handler to locate the file and/or defines its properties.

The first part, if present, is interpreted by dos.library itself. This part is the name of a handler (or file
system), responsible for a physical device or a hard disk partition (see 4.3.1), or the name of a particular
volume or medium inserted in a drive (see 4.3.2), or a logical volume, denoted as assign. The latter type is
best understood as a shortcut to a directory (or even multiple directories) located on some volume(s) known
to AmigaDOS. Handlers, volumes and assigns are administrated in the AmigaDOS device list. This list is
discussed in depth in chapter 8.

The second part of a path, or its only part, is interpreted by the handler or file system; dos.library uses
the first part to find the responsible handler, or the current directory of the calling process if the first part is
missing.

4.1 Case Sensitivity and Character Encoding

Device, volume or assign names are always case-insensitive. dos.library uses the service of the currently
loaded locale to compare the first part of a path with their names, and it assumes by default the ISO-Latin
1 encoding. Whether all other components of a path are case sensitive and how directory and file names
are compared to the names of file system objects is dependent on the file system. While file systems should
be case-insensitive, some variants of the Fast File System do not handle case-insensitive comparisons cor-
rectly on non-ASCII characters, specifically ISO-Latin code points whose most-significant bit is set, see
section 13.6.4 for details. These variants of the FFS should be avoided and the “international” variants
should be preferred, see table 8.3 in section 8.1.3. While the string comparison performed by the library
and the string comparison of the international variants of the FFS as implied by the hashing algorithm of

Case Sensitivity and Character Encoding 21

section 13.6.4 agree for printable ISO-Latin characters, this is not necessarily the case for other encodings or
components containing non-printable characters.

In general, AmigaDOS support functions such as the pattern matcher functions discussed in chapter 9
also assume that file systems are case-insensitive, and use the ISO-Latin character set. Thus, what a file
system considers an identical file name can, actually, be something different from what dos.library considers
a matching name. Code points from the control set of ISO-Latin, i.e. codes between 0x01 to 0x1f or 0x7f
to 0x9f should be avoided1, and the code point 0x00 ASCII NUL shall not be used at all as it terminates C
strings and therefore cannot be part of a file name anyhow2.

The remaining code points from the control sets of ISO-Latin are non-printable characters and multiple
modules of AmigaDOS will behave erratically if component names containing them are encountered. In
particular, the pattern matcher of chapter 9 uses them as tokens for its wildcards and misbehaves if they are
encountered as input. While the Workbench may attempt to display such control characters if the icon font
contains glyphs at their code points, such codes form control sequences of the console and thus, in general,
do not result in useful console output if printed by the Shell, regardless of the console font.

Other than the colon (“:”) and the slash (“/”), names of file system objects on FFS volumes may
contain all printable ISO-Latin characters, that is, code points between 0x20 and 0x7e and 0xa0 to 0xff.
Some file systems can, however, impose additional restrictions that origin from their native operating system.
Regardless of the file system, some characters should be nevertheless avoided as the AmigaDOS Shell and
some functions of dos.library assign special meanings to them; paths containing such characters are hard to
reach from the AmigaDOS Shell:

* The asterisk as stand-alone file name represents the current console of the calling process, see also
section 4.3.1. It is in addition also the escape character of the AmigaDOS Shell that becomes active
within double quotes, see section 15.1.4. While it can always escaped by another asterisk, this can
trigger hard to find defects in Shells scripts.

>,<,| While the angle brackets and the vertical bar are allowed within file names, they are also operators of
the AmigaDOS Shell that redirect the input, output or error stream of a command, or form compound
commands as defined in sections 15.1.1 and 15.1.2. While they can be used in file names, such names
require quoting within the Shell as they could be misinterpreted as syntax elements otherwise.

SPC The ASCII blank space at code point 0x20 can be used within file names, though also separates
arguments and commands in the AmigaDOS Shell and therefore requires proper quoting of paths
within Shell scripts and within the Shell.

#,?,[,],’, ~,(,),% These characters are syntax elements of the pattern matcher described in chapter 9. The
pattern matcher syntax also defines the apostrophe (“’”) as escape character and therefore allows, in
principle, to use them in paths, though there is unfortunately no method to identify whether a particular
shell command passes its arguments through the pattern matcher, thus requiring to escape them, or uses
its arguments literally. Thus, again, for the sake of simplicity, these characters should be better avoided.

The Workbench is less critical in this regard and allows all characters in the above list without requiring
escaping or quoting — the only non-working name for a Workbench disk object is the string consisting of a
single asterisk (“*”) as dos.library and not the Shell assigns a meaning to it.

Avoid Odd File Names While AmigaDOS provides mechanisms to include functional characters
in file names such as quoting and escaping, characters forming syntax elements of the Shell or the
pattern matcher should be avoided as they can trigger hard to find defects in Shell scripts. Characters
from the non-printable C0 and C1 control set of ISO-Latin 1 shall not be used at all, even if they seem
to display correctly on the Workbench; they may trigger side effects of the pattern matcher.

1Unfortunately, the file systems in the Amiga Kickstart are currently inconsistent on which characters they accept. The FFS does not
accept any control characters, the RAM-Handler (probably erroneously) accepts characters in the C1 control set from 0x80 to 0x9f.

2To be very precise, it actually could be as this character does not have a special meaning in a BSTR, though any type of C interface
as for example the one of dos.library would be heavily confused by such a file name.

22 Rom Kernel Reference Manual: DOS

4.2 Maximum Path Length
The maximal length of a path that can be safely passed as argument to most functions of dos.library is 255
characters. This is because the library has to convert paths internally to BSTRs to communicate them to
handlers and file systems, and the lengths of BSTRs are expressed in bytes. The functions from section 7.3
and the ReadLink() function of section 7.4.2 are some notable exceptions. Section 4.6.1 demonstrates
how to work around this restriction by operating with pairs of paths and directory locations.

How large the name of a file or directory can be is a matter of the file system itself. The Fast File System
includes variants that limit names to 30, 54 or 106 characters. The latter is the upper limit that is imposed by
the FileInfoBlock structure, see section 7.1.

File systems typically do not report errors if the maximum file or directory name length is exceeded;
instead, the name is clamped to the maximum size without further notice, which may lead to undesired side
effects. For example, a file system may clip or remove a trailing .info from a file representing a Workbench
icon without ever reporting this, upon which the Workbench would not be able to identify the file as an icon.
icon.library and workbench.library of AmigaOs are aware of this problem, avoid such file names and double
check created objects for correct names.

4.3 Devices, Volumes and Assigns
The first part of a path, up to the colon, identifies the device, the volume or the assign a file or directory is
located in. In addition to the 255 character limit of path names and the size limit of file and directory names,
dos.library also imposes a 30 character limit for device, volume and assign names.

30 Characters Max! For legacy reasons, device, volume and assign names can be at most 30 charac-
ters long. The AmigaDOS functions that locate handlers, most notably GetDeviceProc(), are not
able to handle longer names, and the Assign command creating assigns suffers from the same re-
striction. This 30 character limit does not hold for file names or paths in general as the corresponding
AmigaDOS components have been augmented. However, additional limits also arise, unfortunately,
for paths.

4.3.1 Devices
A device name identifies the handler or file system directly. Handlers are typically responsible for particular
hardware units, or partitions on such units, for example for the first floppy drive, or the second partition of a
hard disk. For example, DF0 is the name of the handler responsible for the first floppy drive, regardless of
which disk is inserted in it.

Table 4.1 lists all device names AmigaDOS creates itself even without a boot volume available. They can
be assumed to be present any time as they are created by the AmigaDOS ROM components:

Table 4.1: System Defined Devices

Device Name Description
DF0 First floppy drive
PRT Printer
PAR Parallel port
SER Serial port
CON Line-interactive console
RAW Character based console
PIPE Pipeline between processes
RAM RAM-based file system

Devices, Volumes and Assigns 23

If more than one floppy drive is connected to the system, they are named DF1 through DF3. If a hard disk
is present, then the device name(s) of the hard disk partitions depend on the contents of Rigid Disk Block,
see [5]. These names can be selected upon installation of the hard disks, e.g. through the HDToolBox. The
general convention is to assign hard disk partitions the device names DH0 and following. As for floppy disks,
partitions also have a volume name, see section 4.3.2, which should be different from their device names.
The Workbench shows the latter, and not the device name, on its screen.

The devices SER, PAR, PRT and PIPE are created by the Kickstart ROM, but the corresponding handlers
are disk-based and loaded as soon as the corresponding device is needed. The addition of PIPE to this list is
relatively recent, AmigaDOS V47 (Kickstart 3.2) includes it in the ROM-mounted devices as the Boot Shell
requires it. Its handler is neither included in the Kickstart.

The following device names have a special meaning and do not correspond to a particular handler:

Table 4.2: System Defined Devices

Name Description

* The console of the current process
CONSOLE The console of the current process
NIL The data sink

The NIL device is a special device without a handler that is maintained by dos.library itself. Any data
written into it vanishes completely, and any attempt to read data from it results in an end-of-file condition. It
does not take nor allow any file name behind its name.

The *, if used as complete path name without a trailing colon and without a file name, identifies the
current console of the process, if such a console exists. Any data output to the file named * will be printed
on the console. Reading from * will wait for the user to input data on the console, and will return such data.
If no console exists, for example for processes run from the Workbench, then AmigaDOS versions 36 and
later fall back to opening NIL: which absorbs any output. Earlier versions created an error in such a case.

Not a wildcard! Unlike other operating systems, the asterisk * is not a wildcard under AmigaDOS.
It rather identifies the current console of a process. It is also used as escape character in AmigaDOS
Shell scripts, see chapter 15.

The CONSOLE device is the default console of the process. This special device name exists since Ami-
gaDOS version 36. Unlike *, but like any other device name, it shall be followed by a colon. It also takes
an optional name behind the colon that identifies a job, and allows the console to block the input and output
of all but the active foreground job. While the AmigaDOS ROM CON-Handler does not provide job control
features, some third party consoles do.

Prefer the stars The difference between “*” and “CONSOLE:” is subtle, and the former should
be preferred as it identifies the process as part of a particular shell job. An attempt to output to
CONSOLE: may block the current process as it does not identify it properly as part of its job, but
rather denotes the job started when creating the shell. Thus, in case of doubt, use the “*” without any
colon if you mean the console.

Additional devices can be added to the system by the Mount command, see chapter 13. Device names
for custom mount handlers and file systems can be chosen freely as long as they do not conflict with system
mounted devices, the special names listed in table 4.2 or the system-defined assigns in section 4.3.2.

4.3.2 Volumes
A volume name identifies a particular data carrier within a physical drive. It can identify a particular floppy
disk, regardless of the drive it is inserted it. For example, the volume name “Workbench3.2” relates always
to the same floppy, regardless of whether it is inserted in the first DF0 or second DF1 drive. Partitions on a
hard disk also have a volume name by which they can be identified.

24 Rom Kernel Reference Manual: DOS

4.3.3 Assigns
An assign or logical volume identifies one or multiple directories within a file system under a unique name.
Such assigns are created by the system or by the user helping to identify portions of the file system containing
files that are of particular relevance for the system. For example, the assign C contains all commands of
the Boot Shell, and the assign LIBS contains dynamically loadable system libraries. Such assigns can be
changed or relocated, and by that the system can be instructed to take system resources from other parts of
a file system, or entirely different file systems. Assigns can be used interchangeably with device or volume
names and thus form logical volumes within partitions, disks, or even across multiple volumes.

Assigns can be of three types: Regular assigns, non-binding assigns and late binding assigns. Regular
assigns bind to a particular directory or multiple directories on a particular volume. If the assign is accessed,
and the original volume containing the directory the assign binds to is not available, the system will ask to
insert this particular volume, and no other volume, even of identical name, will be accepted.

Assigns can also bind to multiple directories at once, in which case a particular file or directory within
such a multi-assign is searched in all directories included in the assign. A particular use case for this is the
FONTS assign, containing all system-available fonts. Adding another directory to FONTS makes additional
fonts available to the system without losing the original ones.

Regular assigns and multi-assigns have the drawback that the volume remains known to the system, and
the corresponding volume icon will not vanish from the Workbench. They also require the volume to be
present at the time the assign is created.

Non-binding assigns avoid these problems by only storing the symbolic path the assign points to; when-
ever a file or path within the assign is requested, any volume of the name given by the assign target will
satisfy the request. However, this also implies that the target of the assign is not necessarily consistent, i.e.
if the assign is accessed again at a later time, another volume of the same name, but potentially different
content will also satisfy the request.

Late binding assigns are a compromise between regular assigns and non-binding assigns. AmigaDOS
initially only stores a symbolic path for such a late binding assign, but when the assign is accessed the first
time, the assign is converted to a regular assign and then binds to the accessed volume and directory from
this point on.

Table 4.3 lists the assigns made by AmigaDOS automatically during bootstrap; except for the SYS assign,
they all go to a directory of the same name on the boot volume. They are all regular assigns, except for
ENVARC, which is late binding assign. ENVARC was added in version 36 of AmigaDOS.

Table 4.3: System Defined Assigns

Assign Name Description
C Boot Shell commands
L AmigaDOS handlers and file systems
S AmigaDOS Scripts
LIBS AmigaOs libraries
DEVS AmigaOs hardware drivers
FONTS AmigaOs fonts
ENVARC AmigaOs preferences (late)
SYS The boot volume

In addition to the above table, the following (pseudo-)assign is handled by dos.library internally and is
not part of the device list, (see chapter 8), it was also added in version 36 of AmigaDOS:

Table 4.4: System Defined Assigns

Assign Name Description
PROGDIR Location of the executable

Devices, Volumes and Assigns 25

PROGDIR is the directory within which the currently executed process finds the command or application
code it was created from. This allows applications to locate program related data contained in the same
directory as their main program code. PROGDIR does not exist3 in case an executable was not loaded from
disk, probably because it was either taken from ROM or was made resident before and located on the list of
resident segments. More on resident segments is found in section 15.6.

Additional assigns can become necessary for a fully operational system, though these assigns are created
through Startup-sequence, a particular AmigaDOS script residing in the S assign which is executed by the
Boot Shell. Table 4.5 lists some of them.

Table 4.5: Assigns Created During Bootstrap

Assign Name Description
ENV Storage for active preferences and global variables
T Storage for temporary files
CLIPS Storage for clipboard contents
KEYMAPS Keymap layouts
PRINTERS Printer drivers
REXX ARexx scripts
LOCALE Catalogs and localization
CLASSES Boopsi GUI components

The assigns ENV, REXX, LOCALE and CLASSES became part of AmigaDOS in releases 36, 38 and
39, respectively. Additional assigns can always be made with the Assign command or the AmigaDOS
functions discussed in section 8.6.

4.4 Relative and Absolute Paths
As introduced in above, a path consists of an optional device, volume or assign name and a colon (“:”),
followed by a string describing a file or directory within the accessed volume, device or assign. If the colon
is present, such a path is said to be an absolute path because it identifies a location within a logical or
physical volume relative to the topmost or root directory of the volume. If the device name and the colon are
not present, such a path is called a relative path because it corresponds to a location in the file system relative
to the current directory of the process using the path.

If only a colon is present but the device, volume or assign name is omitted, the path is still an absolute path
and is relative to the root directory of volume that contains the current directory of the running processing.
Details on processes and their properties are provided in chapter 10.

If neither a colon nor a device, volume or assign name is present, the path is a relative path; it is relative
to the current directory of the process using it.

The path is forwarded to the handler or file system identified by either the current directory or the device,
volume or assign name. It is within the responsibility of the file system to interpret this path and locate the
file or directory within the volume it manages, or in case of handlers, to configure an interface to the outside
world according to this path. For example, while the Fast File System (FFS) — the Amiga ROM file system
— interprets this path as a location within the file system directory hierarchy, the CON-Handler reads it as a
specification of the dimensions and configuration of the window it is supposed to open.

In general, dos.library does not impose a particular syntax on how this second part looks like. However,
several support functions of AmigaDOS implicitly define conventions file systems should follow to make
these functions workable. It is therefore advisable for file system implementers to follow the conventions of
section 4.6 how to interpret path names.

3Unfortunately, attempting to access a file relative to PROGDIR if it does not exist, e.g. from within resident executables, will create
a requester to insert a volume of this name. This is likely a defect as this requester is not particularly instructive.

26 Rom Kernel Reference Manual: DOS

4.5 Flat vs. Hierarchical File Systems

A flat file system organizes files as a single list of all files available on a physical data carrier. For large
amounts of files, such an organization is clearly burdensome as files will be hard to find and hard to identify.

For this reason, all file systems provided by AmigaOs are hierarchical and organize files in nested direc-
tories, where each directory contains more files or directories. The topmost directory of a volume forms the
root directory of this volume.

While AmigaDOS itself does not enforce a particular convention, all file systems included in AmigaDOS
follow the convention that a path consists of a sequence of zero or more directory names separated by a
forwards slash (“/”), and a final file or directory name. Each directory or file name in the path is denoted as a
component in the following. AmigaDOS therefore separates components by forward slashes; this is different
from some other operating system that use the backslash as component separator.

4.6 Locating Files or Directories

When attempting to locate a particular file or directory, dos.library first checks if the path contains a colon
(“:”) and hence is an absolute path. If so, it locates the handler or file system responsible from the name
upfront the colon and then provides the entire path to this handler.

Otherwise, it uses the current directory of the calling process to locate a file system responsible for the
interpretation of the path name. If the current directory is ZERO (see section 2.4), it uses the default file
system of the process, which is, unless changed, the file system that booted the system.

dos.library then provides to the file system the path, and a directory from which to start locating the
requested object. Interpretation of the path continues then by the file system, outside of dos.library. The
following paragraph describes a recommended algorithm all AmigaDOS file system should follow:

To locate a file, the file system works iteratively through the path, component by component: A single
isolated “/” without a preceding component indicates the parent directory of the current directory. The parent
directory of the root directory is the root directory itself. Otherwise, a component followed by “/” instructs
the file system to enter the directory given by the component, and to continue searching there. Scanning
terminates when the file system reaches the last component. The file or directory to find is then given by the
last component reached during the scan.

As interpreting relative path starts with the current directory and stops when the end of the path has been
reached, the empty string indicates the current directory.

No Dots Here Unlike other operating systems, AmigaDOS does not use “.” and “..” to indicate
the current directory or the parent directory. Rather, the current directory is represented by the empty
string, and the parent directory is represented by an isolated forwards slash without a preceding com-
ponent.

Thus, for example, “:S” is a file or directory named “S” in the root directory of the current directory of
the process, and “//Top/Hi” is a file or directory named “Hi” two directories up from the current directory,
in a directory named “Top”.

4.6.1 Open a File From an Overlong File Name

The following code demonstrates both how to iterate through a path, and also shows how to work around
the 255 character limit of paths dos.library can process. It implements a lookalike of the Open() function
introduced in section 5.3.1 that also works with paths longer than 255 characters, though requires that the
handler addressed by the path is a file system.

Locating Files or Directories 27

BPTR OpenFromLongName(UBYTE *name,LONG mode)
{

LONG pos = 0;
BPTR file = 0;
BPTR old = -1L; /* Never a valid lock */
/* Long enough for a component and a device name */
UBYTE buffer[108+32];

do {
pos = SplitName(name,’/’,buffer,pos,sizeof(buffer));
if (pos < 0) {

/* No separator found, call now Open() */
file = Open(buffer,mode);
break;

} else {
BPTR lock;
/* Lock the partial path so far and abort on error.

** If two slashes are next to each other,

** go to the parent directory.

*/
if (!(lock = Lock(*buffer?buffer:"/",SHARED_LOCK)))
break;

/* Rotate directories */
lock = CurrentDir(lock);

/* Unlock previous directory,

** keep the old directory

*/
if (old >= 0) {
UnLock(lock);

} else {
old = lock;

}
}

} while(1);

/* Restore the current directory if any.

** None of the functions touch IoErr().

*/
if (old >= 0)

UnLock(CurrentDir(old));

/* Return the opened file */
return file;

}

The SplitName() function copies a component of a path into a buffer, splitting it at the indicated
separator. More details on this function are found in 7.3.6. The Lock() and UnLock() functions obtain
and release abstract descriptors of directories, they are discussed in chapter 6. The CurrentDir() function
changes the current directory of the calling process and returns the previous directory. More on this function
in section 10.2.8.

28 Rom Kernel Reference Manual: DOS

Chapter 5

Files

5.1 What are Files?
Files are streams or sequences of bytes that can be read from and written to, along with a file pointer that
points to the next byte to be read, or the next byte to be written or overwritten. Files can run into an end of
file condition upon reaching it no further data can be read from them.

For files that represent an interface of the computer system with its environment, such as the console, the
end of file condition depends on factors beyond the control of the system. If more data becomes available
through the interface, e.g. as being typed into the console, additional data can be read from the stream. For
files stored on a disk, the condition is triggered when the file pointer reaches the last byte of the file, the end
of file position. It can be adjusted by writing additional bytes into the file, or by setting the file size.

5.2 Interactive vs. non-Interactive Files
AmigaDOS knows two types of files: Interactive and non-interactive files.

Non-interactive files are stored on a data carrier whose contents only changes due to processes within the
computer system itself. They also have a defined file size, which is the number of bytes between the start of
the file and the end-of-file position, or short EOF position. It is possible to open the same file by two or more
processes in parallel, and in such a case, the file content and its size can change unpredictably, depending on
how AmigaOs schedules the processes accessing the file. Such situations should be avoided, and AmigaDOS
provides mechanisms to request exclusive access to a file (see section 5.3.1 and chapter 6), or even parts of a
file (see section 5.9).

Examples for non-interactive files are data on a disk, such as on a floppy or a hard disk. Such files have a
name, possibly a path within a hierarchical file system, possibly a creation date, a file comment and multiple
protection flags that define which type of actions can be applied to a file; such flags define whether the file
can be read from, written to, deleted or executed; this so-called meta-information is discussed in more detail
in section 7.1.

Interactive files depend on the interaction of the computer system with the outside world, and their
contents can change due to such interactions. Interactive files do not have a well-defined file size as the
number of bytes that can be read from them depends on events in the environment. An attempt to read from
them or write to them can block an indefinite amount of time until triggered by an external event.

Examples for interactive files are the console, where reading from it depends on the user entering data
in a console window and output corresponds to printing to the console. Another example is the serial port,
where read requests are satisfied by data arriving at the serial port and written bytes are transmitted out of
the port. The parallel port is a third example of an interactive file. Requests to read from it result in an error

Interactive vs. non-Interactive Files 29

condition, while writing prints data on a printer connected to the port. Writing can block indefinitely if the
printer runs out of paper or is turned off.

5.3 Opening and Closing Files
To open a file, an absolute or relative path name needs to be provided. The Open() function uses this
information to construct a file handle through which the contents of the file can be accessed or modified.
Depending on how the file is opened, multiple processes may access the same file simultaneously, or may
even alter the file simultaneously.

Once done with the file, file handles shall be released again with Close(). This not only returns system
resources, it also makes files opened for exclusive access available to other processes, and ensures that all
modifications are written back to the medium the file is located, or written out through the interface the file
represents.

5.3.1 Opening Files
To read data from or write data to a file, it first needs to be opened by the Open() function:

file = Open(name, accessMode)
D0 D1 D2

BPTR Open(STRPTR, LONG)

The name argument is the path of the file to be opened, which is interpreted according to the rules given in
chapter 4. The argument accessMode identifies how the file is opened. The function returns a BPTR to a
file handle on success, or ZERO on failure. A secondary result code can be retrieved from IoErr(); this
function is introduced in section 10.2.9. This result code is undefined on success. In case opening the file
failed, IoErr() delivers one of the error codes from dos/dos.h; section 10.2.9 lists the system defined
codes.

Length Limited As this function needs to convert the path argument from a C string to a BSTR,
path names longer than 255 characters are not supported and results are unpredictable if passed into
Open(). It is the responsibility of the caller to split oversized paths and potentially walk through the
directories manually if necessary, for example by a function similar to that presented in section 4.6.1.
Note that this strategy may not be suitable for interactive files or for handlers that follow conventions
for path names that are different from the conventions described in section 4.6.

The access mode shall be one of modes in table 5.1, they are also defined in dos/dos.h:

Table 5.1: Access Modes for Opening Files

Access Name Description
MODE_OLDFILE Shared access to existing files
MODE_READWRITE Shared access to new or existing files
MODE_NEWFILE Exclusive access to new files

The access mode MODE_OLDFILE attempts to find an existing file. If the file does not exist, the function
fails. If the file exists and Open() succeeds, it can be read from or written to, and simultaneous access from
multiple processes is possible and does not create an error condition. If multiple processes write to the same
file simultaneously, the result is undefined and no particular order of the write operations is imposed.

Under AmigaDOS version 36 and above, the access mode MODE_READWRITE first attempts to find an
existing file, but if the file does not exist, it will be created under the name given by the last component of the

30 Rom Kernel Reference Manual: DOS

path. The function does not attempt to create directories in the middle of the path if they do not exist. Once
the file is opened, access to the file is shared, even if it has been just created. That is, multiple processes may
then access it for reading or writing. If multiple processes write to the file simultaneously, the order in which
the writes are served is undefined and depends on how processes are scheduled.

For AmigaDOS versions 34 and below, MODE_READWRITE implements a mode that is almost the re-
verse of what newer releases provide under the same name. There, MODE_READWRITE requested exclusive
access, but required the file to be existing already; it did not create new files. Due to these inconsistencies,
MODE_READWRITE should probably be best avoided. If exclusive access without deleting existing file con-
tent is required, it is best to first obtain an exclusive lock, see section 6.1.1, and then use this lock to create a
file handle from it though OpenFromLock(), see section 6.2.3.

Finally, the access mode MODE_NEWFILE creates a new file, potentially erasing an already existing file
of the same name. The function does not attempt to create directories within the path if they do not exist.
Access to the file is exclusive, that is, any attempt to access the file from a second process fails with the error
code ERROR_OBJECT_IN_USE.

No Wildcards The Open() function, similar to most dos.library functions, does not attempt to resolve
wildcards. That is, any character potentially resembling a wildcard, such as “?” or “#” will taken as
a literal and will be used as part of the file name. While these characters are valid, they should be
avoided as they make it hard to access such files from the Shell.

5.3.2 Closing Files
The Close() function writes all internally buffered data back and makes an exclusively opened file acces-
sible to other processes again.

success = Close(file)
D0 D1

BOOL Close(BPTR)

The file argument is a BPTR to a file handle identifying the file to close. The return code indicates
whether the file system or handler could successfully close the file; closing a file can fail, for example, if data
is still buffered in file system internal structures and the target volume is not accessible anymore.

If the result code is DOSFALSE, an error code can be obtained through IoErr() described in sec-
tion 10.2.9. On success, IoErr()will not be altered. Under AmigaDOS version 34 and below, this function
does not return a result code and the contents of register d0 cannot be depended upon.

File handles that had been obtained through Input(), Output() or ErrorOutput() should, in
general, not be closed as they had been created by the environment launching the process, e.g. the shell or the
Workbench. These handles will automatically be closed when the running program terminates. Attempting
to close the same file twice will most likely result in a crash.

If closing a file fails not much can be done unfortunately and no general advice is possible how to handle
this situation. At the time Close() returns with an error, an error requester has already been shown to
the user, unless it has been explicitly disabled by setting the pr_WindowPtr to -1, see chapter 10. Thus,
retrying Close() immediately again does not help to resolve the problem. If Close() fails, the file handle
file remains valid and available to the caller.

Attempting to close the ZERO file handle under AmigaDOS version 36 or later returns DOSFALSE im-
mediately1. Under earlier versions of AmigaDOS, attempting to close ZERO caused a crash.

1Returning DOSTRUE would have probably been a wiser decision as there is nothing to close in first place then.

Opening and Closing Files 31

5.4 Unbuffered Input and Output
The functions described in this section read bytes from or write bytes to opened files. These functions are
unbuffered, that is, any request goes directly to the handler. Since a request necessarily performs a task switch
from the caller to the handler managing the file, these functions are inefficient for small amounts of data and
should then be avoided. Instead, files should be read or written in larger chunks, either by buffering data
manually, or by using the buffered I/O functions described in section 5.6.

5.4.1 Reading Data
The following function reads data from an opened file by directly invoking the handler for performing the
read operation:

actualLength = Read(file, buffer, length)
D0 D1 D2 D3

LONG Read(BPTR, void *, LONG)

The Read() function reads length bytes from an opened file identified by the file handle file into
the buffer pointed to by buffer. The buffer is a regular C pointer, not a BPTR.

The return code actualLength is the amount of bytes actually read, which may be less bytes than
requested, or -1 for an error condition. A secondary return code can be retrieved from IoErr() described
in section 10.2.9. It is 0 on success, or an error code from dos/dos.h in case reading failed.

The amount of data read may be less (but not more) data than requested by the length argument, either
because the EOF position has been reached (see section 5.2) for non-interactive files, or because the inter-
active source is depleted. Note that for interactive files, the function may block indefinitely until sufficient
data or a fraction of the requested data becomes available. The WaitForChar() function introduced in
section 5.5.3 may be used to probe interactive file handles for the availability of data.

5.4.2 Writing Data
The Write() function writes an array of bytes unbuffered to a file, interacting directly with the correspond-
ing handler.

returnedLength = Write(file, buffer, length)
D0 D1 D2 D3

LONG Write(BPTR, void *, LONG)

The Write function writes length bytes in the buffer pointed to by buffer to the file handle given by
the file argument. On success, it returns the number of bytes written as returnedLength, and advances
the file pointer of the file by this amount. The number of bytes written can be less than the number of bytes
requested, and in extreme cases, can even be 0 in case the file cannot absorb any more bytes. On error, −1 is
returned.

A secondary return code can be retrieved from IoErr() described in section 10.2.9. It is 0 on success,
or an error code from dos/dos.h in case writing failed.

For interactive files, this function may block indefinitely until the corresponding handler is able to take
additional data, e.g. the PRT device can block until an out-of-paper condition is resolved. Unlike reading,
there is unfortunately no function within AmigaDOS that allows to determine upfront whether a particular
handler will block on an attempt to output data.

32 Rom Kernel Reference Manual: DOS

5.4.3 Adjusting the File Pointer
The Seek() function adjusts the file pointer of a non-interactive file such that subsequent reading or writing
is performed from an alternative position within the file.

oldPosition = Seek(file, position, mode)
D0 D1 D2 D3

LONG Seek(BPTR, LONG, LONG)

This function adjusts the file pointer of file relative to the position determined by mode by position
bytes. The value of mode shall be one of the following value, defined in dos/dos.h:

Table 5.2: Seek Modes
Mode Name Description
OFFSET_BEGINNING Seek relative to the start of the file
OFFSET_CURRENT Seek relative to the current file position
OFFSET_END Seek relative to the end of the file

Undefined on Interactive Files The Seek() function will typically indicate failure if applied
to interactive files. Some (interactive) handlers may nevertheless assign to this function a particular
meaning — see the handler documentation for details. The only way how to find out whether Seek()
is supported is to call it and check its return code.

If mode is OFFSET_BEGINNING, then the new file pointer is placed position bytes from the start
of the file. For that, the position shall be non-negative and smaller or equal than the size of the file.

If mode is OFFSET_CURRENT, then position is added to the current file pointer. That is, the file
pointer is advanced if position is positive, or rewinded if position is negative.

If mode is OFFSET_END, then the end-of-file position is determined, and position is added to the
size of the file. This, in particular, requires that position shall be non-positive, and larger or equal than
the negative file size.

The Seek() function returns the (absolute) file pointer relative to the beginning of the file before its
adjustment, or −1 in case of an error.

A secondary return code can be retrieved from IoErr() described in section 10.2.9. It is 0 on success,
or an error code from dos/dos.h in case adjusting the file pointer failed. Unfortunately, it is not too
uncommon that handlers that do not implement Seek() erroneously return 0 instead of -1 to report this
problem and then set IoErr() to ERROR_ACTION_NOT_KNOWN.

Not 64bit safe Unfortunately, it is not quite clear how Seek() operates on files that are larger
than 2GB, and it is file system dependent how such files could be handled. OFFSET_BEGINNING
can probably only reach the first 2GB of a larger file as the file system may interpret negative values
as an attempt to reach a file position upfront the start of the file and may return an error. Simi-
larly, OFFSET_END may possibly only reach the last 2GB of the file. Any other position within
the file may be reached by splitting the seek into chunks of at most 2GB and perform multiple
OFFSET_CURRENT seeks. However, whether such a strategy succeeds is pretty much file system
dependent. Note in particular that the return code of the function does not allow to distinguish be-
tween a file pointer just below the 4GB barrier and an error condition. A zero result code of IoErr()
should be then used to learn whether a result of -1 indicates a file position of 0xffffffff instead.
Most AmigaDOS file systems may not be able to handle files larger than 2GB.

Even though Seek() is an unbuffered function, it is aware of a buffer and implicitly flushes the file
handle internal buffer. That is, it can be safely used by buffered and unbuffered functions.

Unbuffered Input and Output 33

5.4.4 Setting the Size of a File
The SetFileSize() function truncates or extends the size of an opened file to a given size. Not all
handlers support this function, and it is generally limited to file systems.

newsize = SetFileSize(fh, offset, mode) /* since V36 */
D0 D1 D2 D3

LONG SetFileSize(BPTR, LONG, LONG)

This function extends or truncates the size of the file identified by the file handle fh; the target size is
determined by the current file pointer, offset and the mode. Interpretation of mode and offset is
similar to Seek(), except that the end-of-file position of the file is adjusted. The file pointer is only adjusted
if its position lies beyond the new end of file position.

The mode argument shall be selected from table 5.2. In particular, it is interpreted as follows:
If mode is OFFSET_BEGINNING, then the file size is set to the value of offset, irrespectively of the

current file pointer.
If mode is OFFSET_CURRENT, then the new end-of-file position is set offset bytes relative to the

current file pointer. That is, the file is truncated if offset is negative, and possibly truncated or extended if
offset is positive.

If mode is OFFSET_END, the new file size is given by the current file size plus offset. That is, the
file is extended by offset bytes if positive, or truncated otherwise. The value of the current file pointer is
irrelevant and ignored.

If the file pointer of any file handle opened on the affected file is, after a potential truncation, beyond the
new end-of-file, it is clamped to the end-of-file. File pointers remain unaltered otherwise.

If the file is enlarged, the content of the file beyond the previous end-of-file position is undetermined.
Some handlers set these bytes to zero, but AmigaDOS does not enforce this.

On success, the return value newsize is the size of the file after the adjustment, i.e. the updated file size,
and IoErr() is set to 0. On error, this function returns −1 and an error code from dos/dos.h through
IoErr(). Unfortunately, handlers that do not implement this function can erroneously also return 0, and
thus callers should also check IoErr() if 0 is the primary result code. Handlers that do not implement this
function will set IoErr() to ERROR_ACTION_NOT_KNOWN.

Not 64bit safe Similar to Seek(), SetFileSize() cannot be assumed to work properly if the
(old or new) file size is larger than 2GB. What exactly happens if an attempt is made to adjust the file
by more than 2GB depends on the file system performing the operation. A possible strategy to adjust
the file size to a value above 2GB is to first seek to the closest position, potentially using multiple
seeks, and then perform a call to SetFileSize() with the mode set to OFFSET_CURRENT.
However, whether this strategy succeeds is file system dependent.

5.5 Interactive File and Handler Support
As introduced in 5.2, AmigaDOS distinguishes between non-interactive files managed by file systems and in-
teractive files that interact with the outside world. File systems create non-interactive files; all other handlers
create interactive or non-interactive files, depending on the nature of the handler.

The functions in this section test whether a given file is interactive, or determine from a path whether a
particular handler is a file system and therefore generates non-interactive files. Additional support functions
for interactive files test for the availability of input data or change how they process input and how their input
buffer operates.

34 Rom Kernel Reference Manual: DOS

5.5.1 Test whether an File Handle is Interactive
A file can be either interactive, in which case attempts to read or write data to the file may block indefinitely
and the contents and state of the file depends on conditions of the outside world, or non-interactive where
the amount of available data is determined by the file itself. The IsInteractive() function returns the
nature of an already opened file.

status = IsInteractive(file)
D0 D1

BOOL IsInteractive(BPTR)

The IsInteractive() function returns a non-zero result code in case the file handle passed in is
interactive, or FALSE in case it corresponds to a non-interactive stream of bytes, potentially on a file system.
This function cannot fail and does not alter IoErr().

The Port-Handler and the devices PRT, SER and PAR managed by it generates interactive file handles,
and so does the CON-Handler and the CON, RAW and AUX devices it implements. The Queue-Handler and
its PIPE device is another example of a handler whose files are interactive. The FFS and the RAM-Handler
are file systems and thus create non-interactive files.

While reading from interactive files may block indefinitely, the WaitForChar() function introduced
in section 5.5.3 may be used to test for the availability of data. Interactive files typically do not support repo-
sitioning the file pointer through Seek() (see 5.4.3) or changing the file size through SetFileSize(),
see section 5.4.4.

5.5.2 Test whether a Path addresses a Handler or File System
A handler that manages volumes and allows to access named files on them is a file system. Such handlers
will create non-interactive files. The IsFileSystem() function determines the nature of a handler from
a path.

result = IsFileSystem(name) /* since V36 */
D0 D1

BOOL IsFileSystem(STRPTR)

The name argument is a path that does not need to identify a physically existing object. Instead, it is used
to identify a handler that would be responsible for accessing the hypothetical object, regardless whether the
path corresponds to an exiting object or not.

It is advisable to provide a path that identifies the handler uniquely, i.e. a device or volume name that
is terminated by a colon (“:”). Otherwise, the call checks whether the handler responsible for the current
directory of the calling process is a file system.

The returned result is non-zero in case the handler identified by the path is a file system, and as such
allows access to files on volumes, and is able to examine directories on it. Otherwise, it returns DOSFALSE.

This function did not exist prior to version 36 of dos.library. A possible workaround to check whether a
candidate handler is a file system is to attempt to lock the root directory of the handler:

LONG IsFileSystem34(UBYTE *path)
{

UBYTE *colon = strchr(path,’:’);

if (colon && colon > path) {
BPTR lock;

Interactive File and Handler Support 35

/* A non-empty device name */
colon[1] = ’\0’;
UnLock(lock = Lock(path,SHARED_LOCK));
if (lock == 0)

return DOSFALSE;
} else if (!strcmp(path,"*")) {

/* The console is never a file system */
return DOSFALSE;

}
return DOSTRUE;

}

This workaround should not be used in AmigaDOS version 36 as its dos.library uses a dedicated packet to
identify file systems, see section 14.9.3. However, a similar workaround is also used internally by the newer
library for handlers that do not support IsFileSystem() natively. A side effect of this workaround, but
also of IsFileSystem(), is that they will load and start the corresponding handler if it is not already
running.

5.5.3 Test Interactive Files for Availability of Data

An issue of the Read() function is that it can block indefinitely on an interactive file if the user or the
environment does not provide any input. The WaitForChar() tests for the availability of at least one byte
on an interactive file for limited amount of time and returns either if data becomes available or if it runs out
of time.

status = WaitForChar(file, timeout)
D0 D1 D2

BOOL WaitForChar(BPTR, LONG)

This function waits for a maximum of timeout microseconds for the availability of at least one charac-
ter on file. If data is already available, or becomes available within or before this time, the function returns
a non-zero result. In such a case, a subsequent Read() is able to retrieve at least one byte from the stream
without blocking. Otherwise, and also in case of an error, the function returns DOSFALSE.

This function does not remove any bytes from the stream, it only checks for the availability of bytes at
the level of the handler. This function is neither aware of any bytes buffered in the file handle the buffered IO
functions of section 5.6 would be able to read.

A secondary return code can be obtained from IoErr(). If the function returns DOSFALSE, then
IoErr() returns 0 if no bytes became available and the handler was able to complete the function. On
failure, WaitForChar() returns DOSFALSE and IoErr() returns an error code.

If WaitForChar() returns a non-zero code, then for some handlers, in particular for the CON-Handler,
a secondary result code is provided through IoErr(). The CON-Handler leaves here the number of lines
available in its line buffer. In particular, one shall not depend on IoErr() returning 0 on success.

This function requires an interactive file to work with, file systems will typically not implement this
function as they do not block. File systems rather return DOSFALSE and set instead IoErr() to the error
code ERROR_ACTION_NOT_KNOWN.

Under AmigaDOS prior to version 36, a timeout value of 0 does not function properly. This was fixed in
release 36.

36 Rom Kernel Reference Manual: DOS

5.5.4 Setting the Console Buffer Mode
The SetMode() function sets the buffer mode of an interactive handler. It is typically used in conjunction
with the graphical or serial console, i.e. the CON-Handler and the AUX-Handler, and there sets the input
buffer mode of the console. Depending on this mode, the console either waits for an entire line to be com-
pleted to satisfy a read request, provides each individual key as input to programs, or uses the keystrokes
to implement a line editor except for some control keys that are transmitted immediately. Section 13.2.4
contains further details on the console and its modes.

success = SetMode(fh, mode) /* since V36 */
D0 D1 D2

BOOL SetMode(BPTR, LONG)

This function sets the mode of the handler addressed by the FileHandle fh to the mode provided as
second argument. The meaning of the modes is specific to the handler; however, this function is typically
used in conjunction with both consoles provided by AmigaDOS, the graphical console of the CON and RAW
device, and the serial console corresponding to the AUX device.

For the console(s), the interpretation of the mode argument is as follows:

Table 5.3: Console Modes
Buffer Mode Description
0 Cooked mode
1 Raw mode
2 Medium mode (V47)
All other values Reserved for future use

In the cooked mode, the console buffers entire lines, provides line-editing features, but only makes the
input data available to clients when the user terminates the input with the RETURN key. The CON and AUX
devices operate by default in this mode, but can be switched to any other buffer mode by this function.

In the raw mode, every single keystroke is made available immediately, including control sequences
corresponding to all cursor and function keys. That implies, however, that line editing is not available and
pressed keys are not echoed on the console. If echoing is desired, the application reading from the console
needs to print out each typed key itself. This mode corresponds to the RAW device which is nothing but a
console operating in this mode when opening it under this name.

In the medium mode, the console also buffers lines, but some keystrokes are directly transmitted without
requiring the user to press the RETURN key. In specific, the key combinations consisting of the up- and down
cursor keys as well as the TAB key are reported immediately to the caller through control sequences. These
sequences are documented in section 13.2.4. The Amiga Shell uses this mode to offer a history and provides
by it TAB expansion of commands and command line arguments. No device name corresponds to this mode;
instead, the Shell switches a regular CON: window to this mode in order to offer its services.

Both the CON-Handler and the AUX-Handler implement this function, supporting all three modes. How-
ever, there is — unless explicitly mounted by the user — no device name that corresponds to the medium
mode and no device name that corresponds to an AUX: console in the raw mode.

The SetMode() function returns a Boolean success code, which is non-zero if the function could change
the console mode, or 0 if it failed. In case of success, IoErr() is set to 1 if the console is attached to a
window of the Amiga graphical user interface, or to 0 if the window is currently closed or the console is
operating on top of some other device, such as the serial port. In case of failure, IoErr() returns an error
code from dos/dos.h.

As an application, the following function attempts to read a keystroke from a given file handle, supposed
to be connected to the console, without waiting for the RETURN key; it returns −1 on an error or otherwise
the ISO-Latin code of the pressed key:

Interactive File and Handler Support 37

LONG getch(BPTR file)
{

UBYTE c;
LONG err = -1;

/* switch to raw */
if (SetMode(file,1)) {
if (Read(file,&c,1) == 1)
err = 0;
/* back to cooked */
SetMode(file,0);

}

return (err < 0)?err:c;
}

5.6 Buffered Input and Output
AmigaDOS also offers buffered input and output functions that stores data in an intermediate buffer. It then
transfers data only in larger chunks between the buffer and the handler, minimizing the task switching over-
head and offering better performance if data read or written in smaller units. All file handles of AmigaDOS
allow buffered input and output, and are equipped with a file buffer of a default size of 204 bytes as soon as
buffered input or output is requested. The SetVBuf() function in section 5.6.4 should be used to request
larger buffers.

Buffered I/O functions had always been part of AmigaDOS, they were only available to BCPL programs
through the Global Vector prior to version 36. In version 36, dos.library was rewritten in assembler and C,
and as part of this re-implementation, they became available through the dos.library interface as well.

Performance Improved While buffered I/O functions of AmigaDOS 45 and below were based on
single-byte functions and thus had a massive overhead, the functions in this section were redesigned
in AmigaDOS 47 and now provide significantly better performance. Unfortunately, the default buffer
size AmigaDOS uses is quite small and should be increased by SetVBuf(). A suggested buffer size
is 4096 bytes which corresponds to a disk block of modern hard drives.

The standard input file handle of a shell command provided by Input() is unfortunately a special case
as its input buffer contains the command line parameters where the ReadArgs() function specified in
section 15.5.1 retrieves them. Thus, any buffered read from the input stream will receive the command line
parameters and not the data from the actual stream. To release these buffers and synchronize the buffer of the
input stream with the actual file contents, an Flush() would be necessary. Unfortunately, the input buffer
containing the command line parameters is allocated manually following the algorithm in section 5.7.2, and
an Flush() is not necessarily functional if the original stream was unbuffered. Instead, the input stream
first needs to be converted to a buffered stream, and then flushed. The following function pair prepares the
input stream for buffered I/O:

FGetC(Input()); /* convert to buffered mode */
Flush(Input()); /* release the cmd line parameters */

AmigaDOS provides buffered record-oriented read and write functions similar to ANSI-C fread() and
fwrite(); they are introduced in the next two sections. They read or write one or multiple records, each
of the same size. There is no advantage of setting the record size to a particular value, in effect they read or
write the number of bytes given by the product of record size and record count, though return only the total

38 Rom Kernel Reference Manual: DOS

number of complete records that could be received or written. Thus, a block of bytes can be read or written
by setting the record size (the blocklen argument in the following sections) to 1.

While most buffered I/O functions closely reassemble those of ANSI-C, there is one important difference:
Unlike many ANSI-C functions, the buffered I/O functions of dos.library retrieve the file handle as first and
not as last parameter.

5.6.1 Buffered Read From a File

The FRead() function reads multiple equally-sized records from a file through a buffer, and returns the
number of records retrieved.

count = FRead(fh, buf, blocklen, blocks) /* since V36 */
D0 D1 D2 D3 D4

LONG FRead(BPTR, STRPTR, ULONG, ULONG)

This function reads blocks records each of blocklen bytes from the file fh into the buffer buf. It
returns the number of complete records retrieved from the file. If the file runs out of data, the last record may
be incomplete. Such an incomplete record is not included in count.

From AmigaOs 47 onward, FRead() first attempts to satisfy the request from the file handle internal
buffer, but if the number of remaining bytes is larger than the buffer size, the handler will be invoked directly
for “bursting” the data into the target buffer, bypassing the file buffer.

This function does not modify IoErr() in case the request can be satisfied completely from the file
handle buffer. It neither returns −1 in case of an error. Callers should instead use SetIoErr(0) to clear
the error state before calling this function, and then inspect the return code of IoErr() to learn if any error
occurred when the number of records read is smaller than the number of records requested.

5.6.2 Buffered Write to a File

The FWrite() function writes multiple equally-sized records to a file through a buffer, and returns the
number of records it could write.

count = FWrite(fh, buf, blocklen, blocks) /* since V36 */
D0 D1 D2 D3 D4

LONG FWrite(BPTR, STRPTR, ULONG, ULONG)

This function write blocks records each of blocklen bytes from the buffer buf to the file fh. It
returns the number of complete records written to the file. On an error, the last record written may be
incomplete. Such an incomplete record is not included in count.

From AmigaDOS 47 onward, FWrite() first checks whether the file handle internal buffer contains
already some data. If so, the file handle internal buffer is filled from buf. If any bytes remain to be written,
and the number of bytes is larger than the internal buffer size, the handler will be invoked to write the data in
a single block, bypassing the buffer. Otherwise, the data will be copied into the internal buffer.

This function does not modify IoErr() in case the request can be satisfied completely by using the file
handle buffer. It neither returns −1 in case of an error. Callers should instead use SetIoErr(0) to clear
the error state before calling this function, and then use IoErr() afterwards to learn if any error occurred
if the number of records written is smaller than the number of records passed in.

Buffered Input and Output 39

5.6.3 Buffered Write to the Output Stream
The WriteChars() writes an array of bytes buffered to the output stream.

count = WriteChars(buf, buflen) /* since V36 */
D0 D1 D2

LONG WriteChars(STRPTR, LONG)

This function is equivalent to FWrite(Output(),buf,1,buflen), that is, it writes buflen bytes
from buf to the output stream of the calling process. The number of characters written is returned. There-
fore, this function has similar quirks concerning error reporting as FWrite(): It does not set IoErr()
consistently, namely only when the buffer is written to the stream. It neither returns −1 on an error2. It is
therefore recommended to reset the error upfront with SetIoErr(0).

5.6.4 Adjusting the Buffer
The SetVBuf() function sets the buffer mode and adjust the buffer size for buffered input/output functions
such as FRead() or FWrite(). As the default buffer size is with 204 characters quite small, it is for many
applications advisable to enlarge it by this function.

error = SetVBuf(fh, buff, type, size) /* since V39 */
D0 D1 D2 D3 D4

LONG SetVBuf(BPTR, STRPTR, LONG, LONG)

This function sets the size of the internal buffer of the file handle fh to size bytes. Sizes smaller than
204 bytes will be rounded up to 204 bytes3. If buff is non-NULL, it is a pointer to a user-provided buffer
that will be used for buffering. This buffer shall be aligned to a 32-bit boundary. A user provided buffer will
not be released when the file is closed or another buffer is provided.

Otherwise, if buff is NULL, AmigaDOS will allocate the buffer for you, and will also release it when
the file is closed or the buffer size or buffer is updated.

The type argument identifies the type of buffering according to Table 5.4; the modes there are defined
in the include file dos/stdio.h.

Table 5.4: Buffer Modes
Buffer Name Description
BUF_LINE Buffer up to end of line
BUF_FULL Buffer everything
BUF_NONE No buffering

The buffer mode BUF_LINE automatically flushes the buffer when writing a line feed (0x0a), carriage
return (0x0c) or ASCII NUL (0x00) character to the buffer and the target file is interactive. Otherwise, the
characters remain in the buffer until it either overflows or is flushed manually, for this see the specification
of Flush() in section 5.6.5.

The buffer mode BUF_FULL buffers all characters until the buffer either overflows or is flushed.
The buffer mode BUF_NONE effectively disables the buffer and writes all characters to the target file

immediately.
On reading, BUF_LINE and BUF_FULL are equivalent and fill the entire buffer from the file; BUF_NONE

disables buffering.
2The information in [1] on returning −1 on error is incorrect.
3While the official autodocs and [7] reports a default buffer size of 208 characters, this information is not correct.

40 Rom Kernel Reference Manual: DOS

The function returns 0 on success, and non-zero on error, unlike most other functions of dos.library.
Error conditions are either out-of-memory, an invalid buffer mode or an invalid file handle. Unfortunately,
IoErr() is only set on an out-of-memory condition and remains otherwise unchanged.

Even though this function is documented since AmigaDOS version 36, it was only implemented from
version 39 onward. AmigaDOS prior version 39 always returned 0. Due to another defect present in all
versions of AmigaDOS this function cannot be safely applied to file handles opened to the NIL pseudo-
device. As a workaround, the caller should check first the fh_Type element of the file handle, and should
not call this function if this element is NULL, see also section 5.7.1.

5.6.5 Synchronize the File to the Buffer
The Flush() function flushes the internal buffer of a file handle and synchronizes the file pointer to the
buffer.

success = Flush(fh) /* since V36 */
D0 D1

LONG Flush(BPTR)

This function synchronizes the file pointer to the buffer, that is, if data were written to the buffer, the
buffer will be pushed out to the file. If data were read from the file and non-read bytes remained in the buffer,
such bytes are dropped and the function attempts to seek back to the position of the last read byte.

The return code is currently always DOSTRUE and thus cannot be used as an indication of error, even
if not all bytes could be written, or if seeking failed. If error detection is desired, the caller should first use
SetIoErr(0) to erase an error condition, then call Flush(), and then use IoErr() to check whether
an error occurred.

Flush when switching between reading and writing The Flush() function shall be called when
switching from writing to a file to reading from the same file, or vice versa. The internal buffer
logic is unfortunately not capable to handle this case correctly. Also, Flush() shall be called when
switching from buffered to unbuffered input/output.

For flushing the command line parameters of the input stream of a process, a simple Flush() is not
necessarily sufficient, see the code sequence at the beginning of section 5.6 for further details.

5.6.6 Write a Character Buffered to a File
The FPutC() function writes a single character to a file, using the file handle internal buffer.

char = FPutC(fh, char) /* since V36 */
D0 D1 D2

LONG FPutC(BPTR, LONG)

This function writes the single character char to the file handle fh. Depending on the buffer mode, the
character and the type of file, the character may go to the buffer first, or may cause the buffer to be emptied.
See SetVBuf() for details on buffer modes and conditions for implicit buffer flushes.

It returns the character written, or ENDSTREAMCH on an error. The latter constant is defined in the
include file dos/stdio.h and equals to −1.

This function does not touch IoErr() if the character only goes into the internal buffer; IoErr() is
only updated when the buffer contents is written out.

Buffered Input and Output 41

5.6.7 Write a String Buffered to a File
The FPuts() function writes a NUL-terminated string to a file, using the file handle internal buffer.

error = FPuts(fh, str) /* since V36 */
D0 D1 D2

LONG FPuts(BPTR, STRPTR)

This function writes the NUL-terminated (C-style) string str to the file handle fh. The terminating NUL
character is not written.

Depending on the buffer mode, the string will first go into the buffer, or may be written out immediately.
See SetVBuf() for details on buffer modes and conditions for implicit buffer flushes.

This function returns 0 on success, or ENDSTREAMCH on an error. The latter constant is defined in
dos/stdio.h and equals to −1. The error code IoErr() is only updated when the buffer is flushed.

5.6.8 Write a String Buffered to the Output Stream
The PutStr() function writes a NUL-terminated string to the standard output of the calling process. No
newline is appended.

error = PutStr(str) /* since V36 */
D0 D1

LONG PutStr(STRPTR)

This function is equivalent to FPuts(Output(),str), that is, it writes the NUL-terminated string
pointed to by str to the output. It returns 0 on success and −1 on error. IoErr() is only adjusted when
the buffer of the Output() file handle is flushed. When this happens depends on the buffer mode installed
by SetVBuf(), see section 5.6.4

5.6.9 Read a Character from a File
The FGetC() function reads a single character from a file through the internal buffer of the file handle.

char = FGetC(fh) /* since V36 */
D0 D1

LONG FGetC(BPTR)

This function attempts to read a single character from the file handle fh using the buffer of the handle.
If characters are present in the buffer, the request is satisfied from the buffer first, otherwise the function
attempts to refill the buffer from the file and tries again.

The function returns the character read, or ENDSTREAMCH on an end of file condition or an error. The
latter constant is defined in dos/stdio.h and equals −1.

To distinguish between the error and the end of file case, the caller should first reset the error condition
with SetIoErr(0), and then check IoErr() if the function returns with ENDSTREAMCH.

This function had a defect in version 36 where, after receiving an EOF once, would continue to return
ENDSTREAMCH regardless whether new data became available in the (potentially interactive) input stream.
This was fixed in version 37.

42 Rom Kernel Reference Manual: DOS

5.6.10 Read a Line from a File
The FGets() function reads a newline-terminated string from a file, using the file handle internal buffer.

buffer = FGets(fh, buf, len) /* since V36 */
D0 D1 D2 D3

STRPTR FGets(BPTR, STRPTR, ULONG)

This function reads a line from the file handle into the buffer pointed to by buf, capable of holding len
characters.

Reading terminates either if len-1 characters have been read, filling up the buffer completely. The
function also returns if line-feed character is found, which is copied into the buffer. Finally, if an end of
file condition or an error condition is encountered, reading also stops. In either event, the string is NUL
terminated.

The function returns NULL in case an error or end-of-file condition was detected. Otherwise, the function
returns the buffer passed in. If a line-feed character was read, it remains in the buffer.

To distinguish between the error and end-of-file condition, the caller should first use SetIoErr(0),
call this function and then test IoErr() in case FGets() returned NULL.

In AmigaDOS versions prior to version 39, this function would copy one byte too much if no terminator
such as a newline or an end of file is found, and it thus overflowed the input buffer by the NUL termination
of the string. This was fixed in version 39. To work around this defect, the len parameter should be set to
the size of the buffer minus 1.

5.6.11 Revert a Single Byte Read
The UnGetC() function reverts a single byte read from a stream and makes this byte available for reading
again.

value = UnGetC(fh, ch) /* since V36 */
D0 D1 D2

LONG UnGetC(BPTR, LONG)

The character ch is pushed back into the file handle fh such that the next attempt to read a character from
fh returns ch. If ch is −1, the last character read will be pushed back. If the last read operation indicated
an error or end of file condition, UnGetC(fh,-1) pushes an end-of-file condition back.

This function returns non-zero on success or 0 if the character could not be pushed back. At most a single
character can be pushed back after each read operation, an attempt to push back more characters can fail.

Under AmigaDOS version 36, it was not possible to push back an end of file condition. This was fixed
in version 37.

5.6.12 Macros for Buffered I/O
The include file dos/stdio.h also defines a couple of additional macros for buffered I/O on the stan-
dard input and output streams that are slightly inefficient by requiring an additional call to Input() or
Output(). If used in a tight loop, the target file handle should be obtained first and the functions should be
called manually rather than through the following macros:

#define ReadChar() FGetC(Input())
#define WriteChar(c) FPutC(Output(),(c))

Buffered Input and Output 43

#define UnReadChar(c) UnGetC(Input(),(c))
#define ReadChars(buf,num) FRead(Input(),(buf),1,(num))
#define ReadLn(buf,len) FGets(Input(),(buf),(len))
#define WriteStr(s) FPuts(Output(),(s))
#define VWritef(format,argv) VFWritef(Output(),(format),(argv))

The added value of these macros is quite small, and there is rarely an advantage in using them.

5.7 Working with File Handles
So far, the file handle has been used as an opaque value bare any meaning. However, the BPTR, once
converted to a regular pointer, is a pointer to FileHandle structure:

BPTR file = Open("S:Startup-Sequence",MODE_OLDFILE);
struct FileHandle *fh = BADDR(file);

In the following sections, this structure and its elements are discussed.

5.7.1 The FileHandle Structure
A file is represented by a FileHandle structure. For example, the Open() function returns a BPTR to
such a structure. It is allocated by dos.library through AllocDosObject(), and then forwarded to the
file system or handler for second-level initialization. It is defined by the include file dos/dosextens.h
as replicated here:

struct FileHandle {
struct Message *fh_Link;
struct MsgPort *fh_Port;
struct MsgPort *fh_Type;
BPTR fh_Buf;
LONG fh_Pos;
LONG fh_End;
LONG fh_Funcs;

#define fh_Func1 fh_Funcs
LONG fh_Func2;
LONG fh_Func3;
LONG fh_Args;

#define fh_Arg1 fh_Args
LONG fh_Arg2;

};

fh_Link is actually not a pointer, but an AmigaDOS internal value that shall not be interpreted or touched,
and of which one cannot make productive use.

fh_Port is similarly not a pointer, but a LONG. If it is non-zero, the file is interactive, otherwise it is
non-interactive and probably representing a file on a file system. IsInteractive() makes use of this
element. The file system or handler will initialize this value when opening a file according to the nature of
the handler.

fh_Type points to the MsgPort of the handler or file system that implements input and output op-
erations through this handle. Chapter 13 provides additional information on how handlers and file systems
work. If this pointer is NULL, no handler is associated to the file handle. AmigaDOS will deposit NULL here
when opening a file to the NIL (pseudo-)device. Attempting to Read() from such a handle results in an
end-of-file situation, and calling Write() on such a handle does nothing, ignoring any data written.

44 Rom Kernel Reference Manual: DOS

fh_Buf is a BPTR to the file handle internal buffer all buffered I/O function documented in section 5.6
make use of.

fh_Pos is the byte offset within fh_Buf from which the next byte will be read, or the buffer position
into which the next byte will be written.

fh_End is the size of the buffer in bytes.
fh_Func1 is a pointer to a function that is called whenever the buffer is to be filled through the handler.

Users shall not call this function itself, and the function prototype is intentionally not documented.
fh_Func2 is a pointer to a second function that is called whenever the buffer is full and is to be written

out by the handler. Users shall not call this function itself, and the function prototype is neither documented
on purpose.

fh_Func3 is a pointer to a function which is called whenever the file handle is closed. This function
potentially writes the buffer content out when dirty, releases the buffer if it is allocated by dos.library and
finally forwards the close request to the handler.

fh_Arg1 is a file-system specific value the handler or file system may use to identify the file. The
interpretation of this value is up to the file system or handler, and dos.library does not attempt to interpret
it. The handler deposits the file identification here when opening a file, and dos.library forwards it to the
handler on Read(), Write() and many other requests. See chapters 13 and 14 for details.

fh_Arg2 is currently unused but reserved for future use through dos.library.
Additional elements have been added at the end of the FileHandle structure in AmigaDOS version

39. They are not publicly documented. For this reason, this structure shall never be allocated manually, but
shall be obtained by either opening a file, or through AllocDosObject(), see section 16.1.1.

5.7.2 String Streams
It is sometimes useful to provide programs with (temporary) input not coming from a file system or handler
directly, even though the program uses a file interface to retrieve data. One solution to this problem is to
deposit the input data in a temporary file of the RAM disk, then opening this file and providing it as input to
such a program. The drawback of this approach is that additional tests are necessary to ensure that the file
name is unique, and to avoid that any other than the intended program accesses or modifies it.

A better alternative is to place the data to be read in a file handle and thus hide them from other programs.
AmigaDOS uses a similar technique internally, for example to provide a shell script to be executed to the
Run command, which then installs a string stream as command stream of the shell; AmigaDOS also uses
string streams feed command line arguments to shell commands.

The following program demonstrates this technique: It creates a dummy file handle from a NIL: stream
and replaces its input buffer with a pointer to the string providing the data to be read. Since the buffer must be
representable as BPTR, it is in the example program below allocated through AllocVec() which ensures
proper alignment. This step is not necessary if alignment can be guaranteed by other means and the buffer
remains available as long as the file handle is in use.

#include <exec/memory.h>
#include <dos/dos.h>
#include <dos/stdio.h>
#include <string.h>

int main(int argc,char **argv)
{

UBYTE *buf = NULL;
const char *test = "Hello World!\n";
const int len = strlen(test);

Working with File Handles 45

struct FileHandle *fh;
BPTR file;

buf = AllocVec(len,MEMF_PUBLIC);
if (buf) {

memcpy(buf,test,len);

file = Open("NIL:",MODE_OLDFILE);
if (file) {

fh = BADDR(file);
fh->fh_Buf = MKBADDR(buf);
fh->fh_Pos = 0;
fh->fh_End = len;
/* Now read the buffer as a file */
{

BPTR out = Output();
LONG ch;
while((ch = FGetC(file)) >= 0) {

FPutC(out,ch);
}

}
Close(file);

}
FreeVec(buf);

}
return 0;

}

5.7.3 Cloning File Handles
Unlike locks (see chapter 6 and section 6.1.2), file handles cannot be duplicated in general. However, if the
file is interactive (see section 5.5.1), or a NIL: handle, a copy can be made. Thus, for example, files of the
CON-Handler and the Port-Handler can be duplicated and then access the same console, or the same port,
with identical parameters.

The following function creates a copy of a file handle. It returns ZERO if no copy can be made. The
idea is here to temporarily install the handler serving the file handle as console of the calling process, and
then open a file to the console through the “*” file name. See section 10.2.11 for the SetConsoleTask()
function which modifies the console handler of the calling process:

BPTR CloneHandle(BPTR handle)
{

struct MsgPort *ctask;
struct MsgPort *fport;
BPTR newhandle = 0;

if (handle) {
fport = ((struct FileHandle *)BADDR(handle))->fh_Type;
if (IsInteractive(handle)) {

ctask = SetConsoleTask(fport);
newhandle = Open("*",MODE_OLDFILE);
SetConsoleTask(ctask);

46 Rom Kernel Reference Manual: DOS

} else if (fport == NULL) {
newhandle = Open("NIL:",MODE_OLDFILE);

}
}
return newhandle;

}

The above function returns ZERO for files opened to a file system, they cannot be duplicated easily.

5.7.4 An FSkip() Implementation
Even though Seek() can be safely mixed with buffered input and output functions, it is then not very ef-
ficient as it always performs a full synchronization of the buffer with Flush(), losing any buffer content.
The algorithm provided in this section avoids this overhead, but can only skip forwards over bytes by ma-
nipulating the file handle buffer pointer. Buffer manipulation has the advantage that small amounts of bytes
can be skipped over without requiring interaction with the file system; skipping over larger distances still
requires going through Seek() to interact with the file system.

The following function implements an FSkip() function that selects the most viable strategy for skip-
ping over bytes and is more efficient that Seek() on buffered streams.

LONG FSkip(BPTR file,LONG skip)
{

LONG res;
struct FileHandle *fh = BADDR(file);

if (fh->fh_Pos >= 0 && fh->fh_End > 0) {
LONG newpos = fh->fh_Pos + skip;
if (newpos >= 0 && newpos < fh->fh_End) {

fh->fh_Pos = newpos;
return DOSTRUE;

}
}

skip += fh->fh_Pos - fh->fh_End;
fh->fh_Pos = -1;
fh->fh_End = -1;
if (Seek(file,skip,OFFSET_CURRENT) != -1)
return DOSTRUE;

return DOSFALSE;
}

The first if-condition checks whether the buffer is actually present. Then, the new buffer position is
computed. If it is within the buffer, the new buffer position is installed and the work is done. Otherwise, the
skip distance is adjusted by the buffer position. Initializing the buffer size and position to−1 ensures that the
following Seek() does not attempt to call Flush() internally.

There is one particular catch, namely that the file needs to be initialized for buffered reading immedi-
ately after opening the file; instead of UnGetC(), any buffered read function is also sufficient.

BPTR file = Open(filename,MODE_OLDFILE);
/* Initialize the buffer */

UnGetC(file,-1);

Working with File Handles 47

5.7.5 An FGet() Implementation

While the FRead() function already provides a buffered read function, it is not very efficient prior to version
47 of AmigaDOS. The following simple function provides in such cases a faster implementation that even
allows inlining:

LONG FGet(BPTR f,void *buf,LONG size)
{

struct FileHandle *cis = BADDR(f);

if (cis->fh_Pos > 0) {
LONG end = cis->fh_Pos + size;
if (end < cis->fh_End) {

memcpy(buf,(UBYTE *)BADDR(cis->fh_Buf) +
cis->fh_Pos,(size_t)(size));

cis->fh_Pos = end;
return size;

}
}
return FRead(f,buf,1,size);

}

This code reads size bytes from the file fh into the buffer buf and returns the number of bytes read.
Similar to all functions in section 5.6, IoErr() is only updated if the handler is required to supply data.

As seen from this implementation, the function attempts to satisfy the read if a partially filled buffer is
available. If not, the above code runs into the operating system function FRead() which also refills the
buffer of the file handle. As for the FSkip() implementation presented in section 5.7.4, the file handle
requires preparation by a dummy UnGetC(), see there.

5.8 Formatted Output

The functions in this section print elementary data types formatted to a file, using a string that defines the
types and provides formatting instructions. All functions in this section use the internal buffer of the file
handle and are thus buffered.

5.8.1 Print Formatted using C-Syntax to a File

The VFPrintf() function prints elementary datatypes using a format string that closely reassembles the
syntax of the C language. FPrintf() is based on the same entry point of dos.library, though the prototype
is different and thus arguments are expected directly as function arguments instead of requiring them to be
collected in an array upfront.

count = VFPrintf(fh, fmt, argv) /* since V36 */
D0 D1 D2 D3

LONG VFPrintf(BPTR, STRPTR, LONG *)

count = FPrintf(fh, fmt, ...)

LONG FPrintf(BPTR, STRPTR, ...)

48 Rom Kernel Reference Manual: DOS

This function uses the fmt string to format an array of arguments pointed to by argv and outputs the
result to the file fh. The syntax of the format string is identical to that of the exec function RawDoFmt()
and shares its problems, see also section 2.6.2. In particular, format strings indicating integer arguments
such as %d and %u assume 16-bit integers, independent of the integer model of the compiler. On compilers
working with 32-bit integer models, the format modifier l must be used, e.g. %ld for signed and %lu for
unsigned integers, and %lc for writing a single character provided as argument.

As RawDoFmt() is also patched by locale.library, syntax elements from the FormatString() func-
tion of this library become available for VFPrintf() and FPrintf(), too.

The result count delivers the number of characters written to the file, or −1 for an error. In the latter
case, IoErr() provides an error code.

5.8.2 Print Formatted using C-Syntax to the Output Stream
The VPrintf() function prints elementary datatypes using a format string to the Output() stream of the
calling process. Printf() is based on the same entry point of dos.library, though the prototype is different
and arguments are expected directly as function arguments.

count = VPrintf(fmt, argv) /* since V36 */
D0 D1 D2

LONG VPrintf(STRPTR, LONG *)

count = Printf(fmt, ...)

LONG Printf(STRPTR, ...)

The Printf() function is the closest analog of the ANSI-C library function printf() within Amiga-
DOS, but cannot be directly substituted for it as the formatting directives in fmt are subtly different. They are
interpreted according to a 16-bit integer model, see also sections 2.6.2 and 5.8.1, and require the l modifier
when printing integers and characters for compilers using a 32-bit integer model. Similar to FPrintf(),
this function can be localized and then accepts additional formatting directives from FormatString()
function of locale.library.

The result count delivers the number of characters written to the file, or returns −1 for an error. In the
latter case, IoErr() provides an error code.

5.8.3 BCPL Style Formatted Print to a File
The VFWritef() function formats its arguments according to a format string based on the syntax defined
by the BCPL language. The main purpose of this function is to offer formatted output for legacy BCPL
programs to which this function appears as an entry in the BCPL Global Vector. New code should not use
this function but rather depend on VFPrintf() which also gets enhanced by locale.library.

The FWritef() uses the same entry point of dos.library, though the compiler prototype imposes a
different calling syntax where the objects to be formatted are directly delivered as function arguments.

count = VFWritef(fh, fmt, argv) /* since V36 */
D0 D1 D2 D3

LONG VFWritef(BPTR, STRPTR, LONG *)

count = FWritef(fh, fmt, ...)

LONG FWritef(BPTR, STRPTR, ...)

Formatted Output 49

This function formats the arguments from the array pointed to by argv according to the format string in
fmt and writes the output to the file fh. The format string follows the conventions of the BCPL language.
The following format identifiers are supported:

%S Writes a NUL terminated string from the array to the output.

%Tx Writes a NUL terminated string left justified into a field whose width is given by the character x. The
length indicator is always a single character; a digit from 0 to 9 indicates the field widths from 0 to 9
directly. Characters A to Z indicate field widths from 10 onward. Strings that are too long to fit into
the field width are not truncated.

%C Writes a single character whose ISO-Latin-1 code is given as a 32-bit integer on the argv array.

%Ox Writes an integer in octal to the output where x indicates the maximal field width. The field width is a
single character that is encoded similarly to the %T format string. If padding is required on the left, the
number is padded with 0 digits, if the number is too long to fit into the field, it is truncated.

%Xx Writes an integer in hexadecimal to the output in a field that is at most x characters long. x is a single
character and encodes the width similar to the %T format string. If padding is required, the number is
0-padded on the left. If the number is too long, it is truncated.

%Ix Writes a (signed) integer in decimal to the output in a field that is at most x characters long. The field
length is again indicated by a single character. If the number is shorter than the field width, it is padded
with spaces on the left. It is not truncated if the number is longer than the field width.

%N Writes a (signed) integer in decimal to the output without any length limitation.

%Ux Writes an unsigned integer in decimal to the output, limiting the field length to at most x characters,
where x is encoded in a single character. If padding is required, the number is padded with spaces on
the left. If the number is too long, it is not truncated.

%$ Ignores the next argument, i.e. skips over it.

%% Prints a literal percent sign.

This function is not patched by locale.library and therefore is not localized nor enhanced.

While the same function can also be found in the BCPL Global Vector, it there takes BSTRs instead of
regular C strings for the format string and the arguments of the %S and %T formats.

5.9 Record Locking

While locks as described in chapter 6 control access to file systems objects in total, record locks provide
access control on contiguous regions of a file. Unlike locks, however, the file system does not block read or
write access to the locked region and does not attempt to enforce record locks during read or write operations.
Instead, a record lock on a file region only prevents another conflicting record lock on a region that overlaps
with the locked region. Record locks therefore require all participating processes to use the record locking
functions of this section.

Record locks are a relatively modern concept not all file systems implement. The RAM-Handler and the
Fast File System support it.

50 Rom Kernel Reference Manual: DOS

5.9.1 Locking a Region of a File
The LockRecord() function locks a single region of a file, potentially waiting a limited time for the region
to become available.

success = LockRecord(fh,offset,length,mode,timeout) /* since V36 */
D0 D1 D2 D3 D4 D5

BOOL LockRecord(BPTR,ULONG,ULONG,ULONG,ULONG)

This function attempts to lock the region of the file identified by fh starting from the byte offset offset
and having the byte size length. The mode shall be taken from the constants defined in dos/record.h:

Table 5.5: Record Locking Modes

Record Locking Mode Description
REC_EXCLUSIVE Exclusive access to a region, honoring the timeout
REC_EXCLUSIVE_IMMED Exclusive access to a region, ignoring the timeout
REC_SHARED Shared access to a region, honoring the timeout
REC_SHARED_IMMED Shared access to a region, ignoring the timeout

While the same byte within a file can be included in multiple regions locked through a shared record lock,
only a single exclusive lock can be held on each byte of a file. Or put differently, shared regions can overlap
with each other without blocking or failure, exclusively locked regions cannot overlap with shared locked
regions or with each other.

For the REC_EXCLUSIVE and REC_SHARED modes, the timeout arguments provides a time limit in
ticks, i.e. 1/50th of a second, after which an attempt to obtain a record lock times out. This time limit may
also be 0 in which case an attempt to lock a conflicting region fails immediately.

The REC_EXCLUSIVE_IMMED and REC_SHARED_IMMED modes ignore the timeout, i.e. they act as
if the timeout is 0 and fail as soon as they can determine that the requested record cannot be locked.

This function returns 0 in case of failure and then returns a non-zero error code through IoErr(). In
case the record lock cannot be obtained because the region overlaps with another locked region, the error will
be ERROR_LOCK_COLLISION. If the region can be locked, the call returns a non-zero result code. Even
though IoErr() is altered in case of success, its value cannot be relied upon.

5.9.2 Locking Multiple Regions of a File
The LockRecords() function locks multiple records at once, potentially within multiple files.

success = LockRecords(record_array,timeout) /* since V36 */
D0 D1 D2

BOOL LockRecords(struct RecordLock *,ULONG)

This function attempts to lock multiple records at once that are included in the RecordLock structure.
This structure is defined in dos/record.h and looks as follows:

struct RecordLock {
BPTR rec_FH; /* filehandle */
ULONG rec_Offset; /* offset in file */
ULONG rec_Length; /* length of file to be locked */
ULONG rec_Mode; /* Type of lock */

};

Record Locking 51

The record_array is a pointer to an array of the above structure that is terminated by a RecordLock
structure with rec_FH equal to NULL. The elements of this structure correspond to the arguments of the
LockRecord() function:

rec_FH is the file handle to the file within which a record is to be locked. It shall be NULL for the last
element in the array.

rec_Offset and rec_Length specify the region in the file to be locked as start position within the
file and the number of bytes in the region.

rec_Mode specifies the type of the lock that is to be obtained. It shall be one of the modes listed in
table 5.5; the modes are all defined in dos/record.h.

The timeout argument specifies how long each of the attempts to obtain a non-immediate lock is
supposed to wait for a record to become available; it is measured in ticks. It is ignored for records to
be locked immediately. The LockRecords() works through the elements of the RecordLock array
sequentially until either all records could be locked, or until locking one of the records failed. In the latter
case, the function unlocks all locks obtained so far and then returns with failure. That is, the maximal time
LockRecords() blocks is the sum of all timeouts.

On failure, i.e. if one of the records could not be locked, the function returns 0 and sets IoErr() to an
error code. On success, the function returns a non-zero result. Even though IoErr() is altered in case of
success, its value cannot be relied upon.

Unlike what the function prototype suggests, this function is not atomic. It attempts to lock the records
sequentially one after another, applying the same timeout for each call, unless rec_Mode indicates that no
timeout shall be applied to a particular record. Thus, it can happen that another task attempts for a lock of a
conflicting region while the first caller is executing this function. It is therefore recommended to establish an
order in which records within a file are locked, e.g. from smallest to largest start offset.

5.9.3 Unlocking a Region of a File
The UnLockRecord() function unlocks a region of a file, making it available for other record locks. The
provided region shall match one of the regions locked before, i.e. it is not possible to partially unlock a region
and leave the remaining bytes of the region locked.

success = UnLockRecord(fh,offset,length) /* since V36 */
D0 D1 D2 D3

BOOL UnLockRecord(BPTR,ULONG,ULONG)

This function unlocks a region of a file locked before by LockRecord() or LockRecords(). The
region starts offset bytes within the file identified by fh and is length bytes large.

This function returns 0 on failure and sets an error code that can be obtained by IoErr(). A possible
error code is ERROR_RECORD_NOT_LOCKED if an attempt is made to unlock a record that has not been not
locked before, or to partially unlock a record. On success, the function returns a non-zero result code. Even
though IoErr() is altered in case of success, its value cannot be relied upon then.

5.9.4 Unlocking Multiple Records of a File
The UnLockRecords() function unlocks multiple records provided in an array of RecordLock struc-
tures at once, sequentially releasing one record after another.

success = UnLockRecords(record_array) /* since V36 */
D0 D1

BOOL UnLockRecords(struct RecordLock *)

52 Rom Kernel Reference Manual: DOS

This function releases multiple records provided in an array of RecordLock structures. The last element
of the structure is indicated by its rec_FH element set to NULL. This structure is defined in section 5.9.2.

The function calls UnLockRecord() in a loop, and is therefore not atomic. In case unlocking any of
the records fails, the function returns 0 but continues to attempt to unlock all remaining records in the array.
If unlocking all regions succeeds, it returns a non-zero result code. If unlocking one of the regions fails, it
returns with DOSFALSE, but unfortunately does not set IoErr() consistently as the error code is not saved
on a failed unlock.

Record Locking 53

54 Rom Kernel Reference Manual: DOS

Chapter 6

Locks

Locks are access rights to file system objects, such as files or directories. Once an object has been locked, it
can no longer be deleted. Locked files cannot be replaced or deleted, and depending on the type of the lock,
can neither be opened for reading or writing.

Locks come in two types: exclusive locks and shared locks. Only a single exclusive lock can exist on a
file system object at a time, and no other lock can exist on an exclusively locked object simultaneously. An
attempt to lock an exclusively locked object results in the error ERROR_OBJECT_IN_USE, and attempting
to exclusively lock an object that is already locked by a shared lock will also fail likewise. Unlike exclusive
locks, multiple shared locks can be kept on the same object simultaneously.

Locks can also be used to identify files or directories on file systems. They help to work around the
255 character limit discussed in chapter 4 most dos.library functions taking path names as arguments suffer
from. Long paths should be substituted by a pair of a lock on the containing directory, and a short file or
directory name identifying the object within the locked directory. Even though paths are length limited, there
is no restriction on the nesting depth of the directory structure within a hierarchical file system.

The ZERO lock, i.e. the lock of the value ZERO, is a special case and identifies the root directory of the
boot volume. It therefore corresponds to the path name SYS:, see also section 4.3.31.

Locks are related to file handles: From a lock, a file can be opened through by OpenFromLock(),
see 6.2.3, and a lock associated to an open file can be obtained from DupLockFromFH(), see section 6.2.1.
A typical file system design is to associate each file handle with an internal (hidden) lock on the file. A
file opened for exclusive access with MODE_NEWFILE implies an exclusive lock, while all other modes
correspond to shared locks, compare with table 6.4 in section 6.2.

As long as at least a single lock is held on an object, the file system will keep the volume containing the
locked object within the device list of dos.library, which is discussed in chapter 8. This has, for example, the
consequence that the Workbench will continue to show its volume icon.

Locks cannot be held on links (see chapter 7.4) because links — regardless of whether they are soft or
hard links — are resolved as soon as a lock is acquired, and thus only link targets and not the links themselves
can be locked.

6.1 Obtaining and Releasing Locks
Locks can be obtained either explicitly from a path, or can be derived from another lock or file handle. As
locks block exclusive access to an object in a file system, locks should be released as early as possible to
allow other processes to gain access to the same object.

1Or, at least, it should. The ZERO lock actually corresponds to the root directory of the file system in pr_FileSystemTask, and
SYS: is an assign independent of it, though typically the two are identical, see chapter 10.

Obtaining and Releasing Locks 55

6.1.1 Obtaining a Lock from a Path

The Lock() function obtains a lock on an object given a path to the object. The path can be either absolute,
or relative to the current directory of the calling process, see chapter 4 for these concepts.

lock = Lock(name, accessMode)
D0 D1 D2

BPTR Lock(STRPTR, LONG)

This function locks the object identified by name, the path of the object to lock. The type of the lock is
identified by accessMode. This mode shall be one of the two following modes, defined in dos/dos.h:

Table 6.1: Lock Access Modes
Access Mode Description
SHARED_LOCK Lock allowing shared access from multiple sources
ACCESS_READ Synonym of the above, identical to SHARED_LOCK
EXCLUSIVE_LOCK Exclusive lock, only allowing a single lock on the object
ACCESS_WRITE Synonym of the above, identical to EXCLUSIVE_LOCK

The access mode SHARED_LOCK or ACCESS_READ allows multiple shared locks on the same object.
This type of lock should be preferred. The access mode EXCLUSIVE_LOCK or ACCESS_WRITE only
allows a single, exclusive lock on a given object at a time.

The return code lock identifies the lock as a BPTR to a FileLock structure, see section 6.4. It is
non-ZERO (see 2.4) on success, or ZERO on failure. In either case, IoErr() is set, to an undefined value
on success or an error code on failure. See section 10.2.9 for a list of error codes.

6.1.2 Duplicating a Lock

The DupLock() function replicates a given lock, returning a copy of the lock on the same object. This
requires that the original lock is a shared lock, and the function returns a shared lock on success.

copy = DupLock(lock)
D0 D1

BPTR DupLock(BPTR)

This function copies the (shared) lock passed in as lock and returns a copy of it in copy. It is not
possible to copy a lock by copying the FileLock structure; this does not work and attempting to do so can
crash the system.

In case of error, DupLock() returns ZERO, and then IoErr() returns an error code identifying the
problem. On success, IoErr() is set to an undefined value. It is not possible to copy an exclusive lock, in
such a case the error ERROR_OBJECT_IN_USE is generated.

Attempting to duplicate the ZERO lock has its pitfalls. While AmigaDOS up to its most recent version
returns ZERO as the result of DupLock(ZERO), it leaves IoErr() untouched, making it hard to distin-
guish this result from the error case. If an application program requires to cover this situation, a possible
workaround is to call SetIoErr(0) upfront to reset the secondary return code, then call DupLock() and
test IoErr() if the result was ZERO. If IoErr() is still 0, the ZERO lock was duplicated and the ZERO
result of DupLock() does not indicate an error.

56 Rom Kernel Reference Manual: DOS

6.1.3 Obtaining the Parent of an Object
The ParentDir() function obtains a shared lock on the directory containing the object that is described by
the lock passed in. For locks on directories, this is the parent directory, for locks on files, this is the directory
containing the file.

newlock = ParentDir(lock)
D0 D1

BPTR ParentDir(BPTR)

The lock argument identifies the object whose parent is to be determined; this lock is not released by
this function. The function returns a shared lock on the directory containing this object, regardless of the
type of the lock passed in. If such parent does not exist, or an error occurs, the function returns ZERO. The
former case applies to the topmost directory of a file system, i.e. the root directory, or the ZERO lock itself.

To distinguish the two cases, the caller should use the IoErr() function; if this function returns 0, then
no error occurred and the passed in object is the topmost directory and does not have a parent directory. If
IoErr() returns a non-zero error code, then the file system failed to lock the parent directory. Possible
reasons are lack of memory, or an exclusive lock on the the parent that prevents to obtain a shared lock on it.

6.1.4 Creating a Directory
The CreateDir() object creates a new empty directory whose name is given by the last component of the
path passed in. It does not create any intermediate directories between the first component of the path and its
last component, such directories need to be created iteratively by multiple calls to this function.

lock = CreateDir(name)
D0 D1

BPTR CreateDir(STRPTR)

The name argument is the path to the new directory to be created; that is, a directory whose name is
given by the last component of the path (see chapter 4) will be created. If a file or directory of the same
name already exists, this function will fail with the error code ERROR_OBJECT_EXISTS2. If successful,
the function returns an exclusive lock to the created directory, otherwise it returns ZERO.

In either case, IoErr() is set to an error code, or to an undefined value in case the function succeeds.
Note that file systems do not need to support directories, i.e. flat file systems (see section 4.5) do not.

6.1.5 Releasing a Lock
Once a lock is no longer required, it should be released as soon as possible to allow other functions or
processes to access, overwrite or delete the previously locked object. Note that setting the CurrentDir()
to a particular lock implies usage of the lock, i.e. the lock installed as CurrentDir() shall not be unlocked.

UnLock(lock)
D1

void UnLock(BPTR)

This function releases the lock passed in as lock argument. Passing ZERO as a lock is fine and performs
no action. This function does not return an error code, and neither alters IoErr().

2The information in [7] that in such a case a conflicting file or directory is deleted is not correct.

Obtaining and Releasing Locks 57

6.1.6 Changing the Type of a Lock or File Handle
Once a lock has been granted, it is possible to change the nature of the lock, either from EXCLUSIVE_LOCK
to SHARED_LOCK, or — if this is the only lock on the locked file system object — vice versa. This function
is also able to change the access mode of a file handle.

success = ChangeMode(type, object, newmode) /* since V36 */
D0 D1 D2 D3

BOOL ChangeMode(ULONG, BPTR, ULONG)

This function changes the access mode of object whose type is identified by type to the access mode
newmode. The relation between type and the nature of the object is as in table 6.2, where the types are
defined in dos/dos.h:

Table 6.2: Object Types for ChangeMode()

type object Type
CHANGE_LOCK object shall be a lock
CHANGE_FH object shall be a file handle

The argument newmode shall be one of the modes indicated in Table 6.1, i.e. SHARED_LOCK to make
either the file handle or the lock accessible for shared access, and EXCLUSIVE_LOCK for exclusive access.

On success, the function returns a non-zero result code, and IoErr() is set an undefined value. Other-
wise, the function returns 0 and sets IoErr() to an appropriate error code.

Unfortunately, this function does not work reliable for file handles under all versions of AmigaDOS. In
particular, the RAM-Handler does not interpret newmode correctly for CHANGE_FH.

6.1.7 Comparing two Locks
The SameLock() function compares two locks and returns information whether they refer to the same file
system object, or are at least locks to objects on the same volume.

value = SameLock(lock1, lock2) /* since V36 */
D0 D1 D2

LONG SameLock(BPTR, BPTR)

This function compares lock1 with lock2. The return code can be one of the following values, all
defined in dos/dos.h:

Table 6.3: Lock Comparison Return Code

Return Code Description
LOCK_SAME The locks represent the same object
LOCK_SAME_VOLUME Locks are on different objects, but on the same volume
LOCK_DIFFERENT Locks are on objects on different volumes

This function does not set IoErr() consistently, and callers cannot depend on its value. Furthermore,
the function does not identify the ZERO lock as identical with a lock on the root directory of the boot volume,
i.e. SYS:. It is recommended not to pass in the ZERO lock for either lock1 or lock2.

Under AmigaDOS versions 34 and below, this function is not available. The following code may be used
as a (limited) workaround:

58 Rom Kernel Reference Manual: DOS

#include <dos/dos.h>
#include <dos/dosextens.h>

LONG SameLockV34(BPTR lock1,BPTR lock2)
{

struct FileLock *fl1 = BADDR(lock1);
struct FileLock *fl2 = BADDR(lock2);

/* This implies two ZERO locks */
if (fl1 == fl2)

return LOCK_SAME;

/* Does not indicate SYS: == NULL */
if (fl1 && fl2) {

if (fl1->fl_Volume != fl2->fl_Volume)
return LOCK_DIFFERENT;

if (fl1->fl_Task != fl2->fl_Task)
return LOCK_DIFFERENT;

if (fl1->fl_Key != fl2->fl_Key)
return LOCK_SAME_VOLUME;

return LOCK_SAME;
}
/* Not fully correct */
return LOCK_DIFFERENT;

}

The above function will work correctly for the AmigaDOS ROM file system, the FFS and the RAM-Handler
versions 34 and below only. For other file systems, and newer variants of the above file systems, proper results
cannot be expected as the above algorithm depends on fl_Key uniquely identifying the locked object. This
is, however, not necessarily true as fl_Key is, actually, a file system internal value that cannot be safely
interpreted, see also section 6.4. AmigaDOS version 36 introduced a new interface to request comparing two
locks from the file system, see section 14.2.7. However, even the current dos.library falls back to the above
algorithm in case this interface is not implemented by the target file system.

6.1.8 Compare two Locks for their Device
The SameDevice() function checks whether two locks refer to file system objects that reside on the same
physical device, even if on potentially different partitions on the same medium.

same = SameDevice(lock1, lock2) /* since V36 */
D0 D1 D2

BOOL SameDevice(BPTR, BPTR)

The SameDevice() function takes two locks lock1 and lock2 and checks whether they were cre-
ated by file systems that operate on the same physical device, even if the two locks refer to different file
systems or different partitions. Only the exec device and the corresponding unit is compared, that is, this
function is not able to determine whether the locks refer to file systems on the same or different physical
volumes.

This function returns a non-zero result if the file systems handling the locks operate on the same unit of
the same exec device, and it returns 0 otherwise. If the function is not able to identify the file systems, or
cannot identify the lower level exec device on which the file systems operate, the function also returns 0.

Obtaining and Releasing Locks 59

Unfortunately, this function is not necessarily fully reliable as locks can be transferred from one medium
to another, e.g. if a disk is removed from the first floppy drive and re-inserted into the second, and thus, the
physical device the locked object is located on can change even after this function has been called.

A possible use case of this function is to determine whether the involved file systems can operate in
parallel without imposing speed penalties due to conflicting medium accesses. Thus, copy functions may be
optimized depending on the result as no intermediate buffering need to be used if source and destination are
on different physical devices.

This function does not set IoErr(), even if it cannot determine the device a file system operates on.

6.2 Locks and Files
While it is not a necessary implementation strategy for file systems, each file handle can be considered to be
associated to a lock on the file that has been opened. The functions in this section allow to copy a lock from
a file handle, and to open a file handle from a lock. The type of the lock corresponds to the access mode a
file has been opened with, table 6.4 shows this relation:

Table 6.4: Lock and File Access Modes
Access Mode Lock Type
MODE_OLDFILE SHARED_LOCK
MODE_READWRITE SHARED_LOCK
MODE_NEWFILE EXCLUSIVE_LOCK

The association of MODE_READWRITE to SHARED_LOCK is unfortunate, and due to a defect in the
RAM-Handler implementation in AmigaDOS version 36 which was then later copied by the Fast File System
implementation. In AmigaDOS versions 34 and below, this mode was associated to an EXCLUSIVE_LOCK.
For versions 36 and above, exclusive access to a file without deleting its contents can, however, be established
through the OpenFromLock() function by providing an exclusive lock to the file to be opened as argument.

6.2.1 Duplicate the Implicit Lock of a File
The DupLockFromFH() function creates a lock from a file handle of an opened file. For this function
to succeed, the file must have been opened in the modes MODE_OLDFILE or MODE_READWRITE. Files
opened with MODE_NEWFILE are based on an implicit exclusive lock that cannot be duplicated.

lock = DupLockFromFH(fh) /* since V36 */
D0 D1

BPTR DupLockFromFH(BPTR)

This function creates a lock from the file handle fh and returns it in lock; that is, the returned lock is a
lock on the file which is accessed through the handle fh. This file handle remains valid and usable after this
call. In case of failure, ZERO is returned. IoErr() is set to an undefined value in case of success, or to an
error code on failure.

6.2.2 Obtaining the Directory a File is Located in
The ParentOfFH() function obtains a shared lock on the parent directory of the file associated to the file
handle passed in. That is, this function it is roughly equivalent to first obtaining a lock on the file through
DupLockFromFH(), and then calling ParentDir() on it, except that it is also able to process files
opened in the MODE_NEWFILE mode.

60 Rom Kernel Reference Manual: DOS

lock = ParentOfFH(fh) /* since V36 */
D0 D1

BPTR ParentOfFH(BPTR)

This function returns a shared lock on the directory containing the file opened through the fh file handle.
The file handle remains valid and usable after this call. This function returns ZERO in case of failure.
IoErr() is set to an error code from dos/dos.h in case of failure, or to an undefined value in case
of success.

6.2.3 Opening a File from a Lock

The OpenFromLock() function uses a lock to a file and opens the locked file, returning a file handle. If the
lock is associated to a directory, the function fails. The lock passed in is then absorbed into the file handle and
shall not be unlocked anymore. It will be released by the file system upon closing the returned file handle.

fh = OpenFromLock(lock) /* since V36 */
D0 D1

BPTR OpenFromLock(BPTR)

This function attempts to open the object locked by lock as file, and creates the file handle fh from it.
It fails in case the lock argument belongs to a directory and not a file.

In case of success, the lock becomes an implicit part of the file handle and shall not be unlocked by the
caller anymore. In case of failure, the function returns ZERO and the lock remains available to the caller.
This function always sets IoErr(), to an error code in case of failure, or to an undefined value in case of
success.

This function allows to open files in exclusive mode without deleting its contents. For that, obtain an
exclusive lock on the file to be opened, and then call OpenFromLock() in a second step.

While this function is not available in AmigaDOS versions 34 and below, the following workaround may
be used, which, however, only operates on shared locks and cannot open files from exclusive locks:

BPTR OpenFromLockV34(BPTR lock)
{

/* Yes, really, change the directory to a file! */
BPTR dir = CurrentDir(lock);
BPTR fh = Open("",MODE_OLDFILE);

if (fh)
UnLock(lock);

CurrentDir(dir);

return fh;
}

This function depends on the empty string describing the object locked by the current directory of the
calling process, even if this locked object turns out to be a file. This is a feature every AmigaDOS file system
supports, see also section 14.1.1.

Locks and Files 61

6.3 Retrieve Information on the State of the Medium
The Info() function returns information on the file system on which the locked object is located, and fills
an InfoData structure with the status of the file system. If it is instead intended to retrieve information on
the currently inserted volume, i.e. without requiring a lock, direct communication with the file system on the
packet level is required by sending a packet type of ACTION_DISK_INFO, see section 14.7.3. Since this
packet fills also fills an InfoData structure, some information in this section applies to it as well.

success = Info(lock, parameterBlock)
D0 D1 D2

BOOL Info(BPTR, struct InfoData *)

The lock is a lock to an arbitrary object on the volume to be queried; its only purpose is to identify
it. The function fills an InfoData structure that shall be aligned to long-word boundaries. It is defined in
dos/dos.h and reads as follows:

struct InfoData {
LONG id_NumSoftErrors;
LONG id_UnitNumber;
LONG id_DiskState;
LONG id_NumBlocks;
LONG id_NumBlocksUsed;
LONG id_BytesPerBlock;
LONG id_DiskType;
BPTR id_VolumeNode;
LONG id_InUse;

};

The elements of this structure are interpreted as follows:
id_NumSoftErrors counts the number of read or write errors the file system detected during its

life-time. It is not particularly bound to the currently inserted medium.
id_UnitNumber is the unit number of the exec device on which the file system operates, and hence

into which the volume identified by the lock is inserted.
id_DiskState identifies the status of the file system, whether the volume is writable and whether it is

consistent. Disk states are defined in dos/dos.h and set according to the following table:

Table 6.5: Disk States
Disk State Description
ID_WRITE_PROTECTED The volume is write protected
ID_VALIDATING The volume is currently validating
ID_VALIDATED The volume is consistent and read- and writable

A volume in the state ID_WRITE_PROTECTED has been identified as consistent, but does not accept
modifications, either because the medium is physically write-protected, or because it has been locked by
software, see section 14.7.7.

A volume is in the state ID_VALIDATING if its file system detected inconsistencies; some file systems,
including the Fast File System, then trigger a consistency check of the volume. The Fast File System rebuilds
the bitmap of the volume that describes which blocks are allocated and which are free. It cannot fix more se-
vere errors; if some are detected, it presents a requester to the user indicating the problem. During validation,
file systems typically refuse to accept write requests. If validation cannot bring the volume into a consistent
state, the disk state remains ID_VALIDATING.

62 Rom Kernel Reference Manual: DOS

A volume in state ID_VALIDATED is consistent and read- and writable.

id_NumBlocks is the total number of blocks into which the medium is divided. This includes both
free and occupied blocks, and thus indicates the total capacity of the volume. This number is not necessarily
constant. The RAM-Handler adjusts this value according to the available memory; RAM-Handler versions
prior to 45 set this to 0. This means, in particular, that care needs to be taken when the disk fill state in percent
is computed by a dividing the number of used blocks by this number.

id_NumBlocksUsed is the number of blocks occupied by the file system on the disk. As it is depen-
dent on the file system how many blocks are needed in addition to the actual payload data, no conclusion can
be derived from this number whether a particular file fits on the volume. RAM-Handlers prior to release 45
did not even fill this with a useful value. This element does not contain a useful number for file systems that
are currently in the state ID_VALIDATING.

id_BytesPerBlock is the number of bytes available for payload data in a physical block of the
medium, and not necessarily the physical block size into which the storage medium is divided. Some file
systems require additional bytes of the physical block for administration. Even the RAM-Handler segments
data into blocks and provides in this element the number of data bytes stored there.

id_DiskType identifies whether the file system can identify the disk structure and claims responsibility
for it. If the Info() function succeeds, then this is always the case; if the medium is not available or
its structure is unknown, Info() returns DOSFALSE and indicates an error in IoErr(). However, if
instead direct packet communication and ACTION_DISK_OBJECT is used to query the state of the currently
inserted volume and thus no lock is provided, then all other entries of table 6.6 can be supplied as well, see
also section 14.7.3 and chapter 12 how to use this alternative mechanism to fill an InfoData structure.

Unlike what the name suggests, id_DiskType is not a general identifier of the file system type and
shall not be used to identify a particular file system. For legacy reasons, the various flavors of the Fast
File System also leave their identifier here, though this principle should not be carried over to new designs.
Instead, a file system should rather return the generic ID_DOS_DISK if it finds a medium for which it claims
responsibility. Even if the file system recognizes the disk structure as one of its own, it is possible that the
structure is considered inconsistent by setting id_DiskState to ID_VALIDATING.

AmigaDOS currently defines the following disk types in dos/dos.h:

Table 6.6: Disk Types
Disk Type Description
ID_NO_DISK_PRESENT No disk is inserted
ID_UNREADABLE_DISK Reading disk data failed at exec device level
ID_DOS_DISK The disk is in a format the file system is able to interpret
ID_NOT_REALLY_DOS While physically accessible, the disk structure is invalid
ID_KICKSTART_DISK A disk containing an A1000 Kickstart
’BUSY’ The file system is currently inhibited
’CON\0’ Not a file system, but returned by the CON-Handler, see 14.8.3
’RAW\0’ Not a file system, but returned by the CON-Handler, see 14.8.3
All others The first long word of boot block of the medium or partition

Not the DosType While mountlists include a DOSTYPE field that identifies the file system uniquely,
the id_DiskType element does not represent this DOSTYPE. That it coincides with the DOSTYPE
for variants of the FFS is a historical error that shall not be mirrored by new file system designs. It is
therefore advisable to check the first 3 bytes of the id_DiskType for the characters DOS, and if so,
assume that the disk is valid and can be interpreted by the file system. Unfortunately, some third-party
designs do not follow this convention.

As mentioned above, ID_DOS_DISK is the id_DiskType file systems should return in case they rec-

Retrieve Information on the State of the Medium 63

ognize the structure and attempt to interpret them. Despite this fact, the Fast File System returns erroneously
the DOSTYPE of its mountlist entry as reported in table 8.3 of section 8.1.3.

ID_NOT_REALLY_DOS and ID_UNREADABLE_DISK both indicate disks the file system cannot make
use of. The first value indicates that the logical structure of the disk content cannot be interpreted, and the
second that the underlying exec device cannot gain access to the contents of the blocks, i.e. the physical layer
of the disk is not readable. The Info() function cannot return either of these disk types as the corresponding
file system interface fails then with the error code ERROR_NOT_A_DOS_DISK. However, the packet type
ACTION_DISK_INFO not requiring a lock but analyzing the inserted volume directly can return them, see
section 14.7.3.

ID_NO_DISK_PRESENT indicates that the drive currently does not contain any disk. Similar to the
above, Info() cannot return this disk type as the file system interface fails early with ERROR_NO_DISK,
but the packet type ACTION_DISK_INFO of the packet level interface filling the same InfoData structure
can. See again section 14.7.3.

’BUSY’ is a four-character constant that is not documented in dos/dos.h, but returned whenever a file
system has been inhibited, i.e. its access to the physical layer has been blocked. Thus, any3 attempt to access
this file system is currently suspended, probably because some program attempts to modify the medium on
the device level. Disk editors or disk salvage programs will typically block file systems from touching the
medium while they work on it. The Inhibit() function of section 8.7.4 performs this, and thus leaves
’BUSY’ as disk type.

’CON\0’ and ’RAW\0’ are indicators left by the CON-Handler (or console-type handlers) which use
the InfoData structure for other purposes, see section 14.8.3. As such handlers do not (in general) hand
out locks, the Info() function cannot return these two types, but only direct handler communication with
a packet type of ACTION_DISK_INFO can.

All other types are returned in case the file system cannot interpret the disk structure; the Fast File System
copies them from the first 4 bytes of the boot block, see 13.6.2, into id_DiskType. In case these bytes are
all 0, the disk type ID_NOT_REALLY_DOS is returned instead. One special case is ID_KICKSTART_DISK
which identifies a disk containing the A1000 Kickstart. This is, however, just a side effect of the first four
bytes of the floppy containing the characters ’KICK’. As above, the Info() function cannot return such
disk types, but instead aborts with the error code ERROR_NOT_A_DOS_DISK, but the similar packet level
interface based on ACTION_DISK_INFO can.

id_VolumeNode in the InfoData structure is a BPTR to the DosList structure corresponding to
the volume on which the object identified by the lock is located. The DosList structure is discussed in
great detail in chapter 8. For ACTION_DISK_INFO, this identifies the currently inserted volume, if any. It
is ZERO if the file system does not claim any volume at this moment.

id_InUse counts the number of locks and files currently open on the medium identified by lock, or
on the currently identified medium if filled by ACTION_DISK_INFO.

The Info() function returns a non-zero result code on success and sets then IoErr() to an undefined
value. On failure, it returns 0 and sets IoErr() to an error code.

6.4 The FileLock structure
Locks have been discussed so far as being opaque identifiers. They are, however, BPTRs to FileLock
structures as defined in dos/dosextens.h, as obtained by the following code fragment:

BPTR lock = Lock("S:Startup-Sequence",SHARED_LOCK);
struct FileLock *fl = BADDR(lock);

3Almost any, actually. Low-level initialization and serialization the disk still works and even requires this state, see sections 14.7.5
and 14.7.6.

64 Rom Kernel Reference Manual: DOS

The definition of the structure is as follows:

struct FileLock {
BPTR fl_Link;
LONG fl_Key;
LONG fl_Access;
struct MsgPort * fl_Task;
BPTR fl_Volume;

};

Locks are not allocated nor released by dos.library but by file systems when locking or unlocking files
or directories. A file system may therefore allocate objects that are somewhat larger than the officially
documented structure and that may carry additional elements that are not shown here.

The structure elements are described in the following; the first two elements are file system internal and
should not be used by application programs.

The fl_Link element has no practical value for users; file systems use it to keep locks on objects
located on the same volume in a singly linked list. Such lists does not exist permanently, but are created
once a volume is ejected; all links on an ejected volume are queued up in the dol_LockList element of
the DosList structure describing the volume. Another file system responsible for the same medium, but
potentially managing a different drive will pick the locks up from there once the volume is reinserted, see
also chapter 8, and then claims responsibility for them by updating their fl_Task elements, see below.
This mechanism of transferring file system access rights from one medium to another is rather unique to
AmigaDOS.

The fl_Key element can be used by the file system to identify the object that has been locked. It may
not necessarily be an integer, but can be any data type, potentially a pointer to some internal management
object. It shall not be interpreted in any particular way as its meaning is file system dependent. The Fast
File System stores here the block number (the “key”) of the file header block or directory block that has been
locked, see sections 13.6.4, 13.6.5 and 13.6.6 for the structure of these blocks.

The fl_Access element keeps the access type of the lock and reflects the accessMode parameter of
the Lock() function. It is either SHARED_LOCK or EXCLUSIVE_LOCK.

The fl_Task element points to the message port of the file system to be contacted for processing
requests on the lock. Any activity on the lock goes through this port, see also section 12.1. In case the
medium containing the locked object has been ejected and the lock has not yet been reclaimed by any other
file system, this is the pointer to the port of the most recent file system responsible for the lock.

The fl_Volume is a BPTR to the DosList structure on the device list identifying the volume the
locked object is located on. Chapter 8 provides further information on this list and its entries.

The FileLock structure 65

66 Rom Kernel Reference Manual: DOS

Chapter 7

Working with Directories

Hierarchical file systems organize their contents in directories where each directory contains files, and pos-
sibly directories which can contain further directories and files, and so on. The structure of the data on a file
system is thus organized as a tree where the directories are nodes, and the files form the leaves of tree. The
root of this tree is the root directory of the medium or partition. In contrast, a flat file system contains only a
single directory that can only contain files, see also section 4.5.

AmigaDOS also supports links, that is, entries in the file system that point to some other object in the
same, or some other file system. Therefore, links circumvent the hierarchy otherwise imposed by the tree
structure of the file system1.

AmigaDOS provides functions to list the directory contents, to move objects in the file system hierarchy
or change their name, and to access or adjust their metadata, such as comments, protection bits, or creation
dates.

7.1 Examining Objects on File Systems
Given a lock on a file or a directory, information on the locked object can be requested by the Examine()
function of dos.library. ExNext() iterates through the contents of a directory entry by entry, starting from
a lock on a directory. The ExAll() function is an advanced interface that allows to read multiple directory
entries at once, potentially filter them, and thus minimize the call overhead.

May go away while you look! As AmigaDOS is a multitasking operating system, directory contents
may change anytime while scanning. In particular, entries received through the above functions may
not be up to date, may have been deleted already when the above functions return, or new entries may
have been added the current scan will not reach. While a lock on a directory prevents that the locked
directory goes away, it does not prevent other processes from adding or removing objects, so beware.

While ExAll() seems to provide an advantage by reading multiple directory entries in one go, the
AmigaOs ROM file system — the FFS — does usually not profit from this feature, at least not unless a
variant of the FFS is used that utilizes a directory cache. The latter has, however, other drawbacks and should
be avoided as it creates overhead when creating or deleting objects, see section 13.6. Actually, ExAll()
is (even more) complex to implement, and it is probably not surprising that its implementation in multiple
file systems have issues. The dos.library provides an ExAll() fall-back implementation for those
file systems that do not implement it, but even this (ROM-based) implementation had (and still has) issues.
Therefore, ExAll() has probably less to offer than it seems.

1This turns, strictly speaking, the tree structure into a graph.

Examining Objects on File Systems 67

Examine() and ExNext() fill a FileInfoBlock structure that provides all information on an
examined object in a directory. It is defined in dos/dos.h and reads as follows:

struct FileInfoBlock {
LONG fib_DiskKey;
LONG fib_DirEntryType;
char fib_FileName[108];
LONG fib_Protection;
LONG fib_EntryType;
LONG fib_Size;
LONG fib_NumBlocks;
struct DateStamp fib_Date;
char fib_Comment[80];
UWORD fib_OwnerUID;
UWORD fib_OwnerGID;
char fib_Reserved[32];

};

The semantics of the elements of this structure are as follows:

fib_DiskKey is a file system internal identifier of the object. It shall not be used, and programs
shall not make any assumptions on its meaning. The Fast File System stores here the disk key, see sec-
tion 13.6.3, administrating the object. Note that this key need not to be identical to the fl_Key element of
the FileLock structure, for example if the directory entry is a link as it will be transparently resolved by
Lock(). The RAM-Handler stores here a pointer to a structure administrating the object. Some file systems
do not even fill this element at all, and thus, it cannot be used to uniquely identify a file system object.

fib_DirEntryType identifies the type of an object. The types are defined in dos/dosextens.h,
replicated the following table:

Table 7.1: Directory Entry Types

Value of fib_DirEntryType Description
ST_SOFTLINK Object is a soft link to another object
ST_LINKDIR Object is a hard link to a directory
ST_LINKFILE Object is a hard link to a file
> 0 A regular directory
< 0 A regular file

Note that Lock() resolves soft and hard links transparently, and thus, Examine() will never identify such
types, only ExNext() specified in section 7.1.3 and ExAll() of section 7.1.4 can when iterating over
the contents of a directory. While the FFS implements hard links through separate types, other file systems
cannot identify them at all as hard links are implemented as duplicate directory entries pointing to the same
file system object; hard links then only appear as regular directory entries. This applies for example to all
variants of the Linux ext file system. Thus, one cannot depend on hard links being easily identifiable. The
external links implemented by the RAM-Handler can neither be identified by the fib_DirEntryType
and they also appear as regular files or directories.

All other values larger than zero indicate directories, and all other values smaller than zero indicate files.
Section 7.4 provides more details on all types of links.

fib_FileName is the name of the object as NUL terminated string. For the FFS, this name can be at
most 30, 56 or 106 characters long, depending on the flavor of the FFS, see table 8.3 in section 8.1.3.

fib_Protection are the protection bits of the object. It defines which operations can be performed
on it. The following protection bits are defined in dos/dos.h:

68 Rom Kernel Reference Manual: DOS

Table 7.2: Protection Bits
Protection Bits Description
FIBB_DELETE If this bit is 0, the object can be deleted.
FIBB_EXECUTE If this bit is 0, the file is an executable binary.
FIBB_WRITE If this bit is 0, the file can be written to.
FIBB_READ If this bit is 0, the file content can be read.
FIBB_ARCHIVE This bit is set to 0 on every write access.
FIBB_PURE If 1, the executable is reentrant and can be made resident.
FIBB_SCRIPT If 1, the file is a script.
FIBB_HOLD If 1, the file is made resident on first execution.

The flags FIBB_DELETE to FIBB_READ are shown inverted in the output of most tools, i.e. they are shown
active if the corresponding flag is 0, i.e. if a particular protection function is not active.

If the FIBB_DELETE is set, then the file or directory is delete protected. This not only prevents erasing
a file completely through DeleteFile(), but also erasing it by creating a new file on top through the
Open() mode MODE_NEWFILE. Attempting to delete a protected file system object creates the error code
ERROR_DELETE_PROTECTED.

The FIBB_EXECUTE flag is only interpreted by the Shell (see chapter 15). If the bit is set, the Shell
refuses to load the file as a command. This bit is respected by Shell versions 34 and up. It is ignored for
directories and by the Workbench.

If the FIBB_WRITE bit is set, then the file system refuses to modify the file, including to overwrite
it by opening it with the mode MODE_NEWFILE. An attempt to modify or overwrite the file will instead
return the error code ERROR_WRITE_PROTECTED. Deleting the file is, however, still permitted. This flag
was ignored by the ROM file system of AmigaDOS versions 34 and below, i.e. by the OFS, and the flag is
meaningless for directories.

If the FIBB_READ bit is set, then opening the file for reading fails with ERROR_READ_PROTECTED.
This flag is also unsupported by the AmigaDOS ROM file system versions 34 and below, i.e. the OFS, and it
is meaningless for directories.

The FIBB_ARCHIVE flag is typically used by archival software. Such software will set this flag when
archiving a file, whereas the file system will reset the flag when writing to or modifying a file, or when
creating new files. The archiving software is thus able to learn which files had been altered since the last
backup. While this flag is also cleared for directories whenever one of the files contained in is modified,
modifications in any of its sub-directories are not reflected in the parent directory. In other words, this
bit is not updated recursively. As a result, archival software still needs to work through directories whose
FIBB_ARCHIVE is set because some of its (indirect) children could have been modified.

The FIBB_PURE flag indicates reentrant executable binaries; if the flag is set, the binaries do not alter
their segments and their code can be loaded in RAM and stay there to be executed from multiple processes
in parallel; in other words, such code is reentrant. This implies, in particular, that the binary must allocate
all its modifiable objects from the stack or the heap. As most C compilers will, however, place objects with
external linkage in DATA or BSS sections and will thus cause the compiled executable to modify its own
segments, such code is typically not pure. Some compilers provide, however, options where such objects are
manually allocated through the compiler startup code, and thus the generated code will be pure.

The Shell command Resident loads pure binaries into RAM for future usage and thus reduces loading
times, see sections 15.1.9 and 15.6. Unfortunately, nothing in the Shell actually checks whether a binary is
actually pure, or whether its segments have been modified. Thus, the AmigaDOS Shell depends on the user
setting this flag properly. This flag is supported and recognized from version 34 of the AmigaDOS Shell and
up.

The FIBB_SCRIPT flag indicates whether a file is a Shell, ARexx or any other kind of script. If this
flag is set, and the script is used as command, the Shell will forward this file to a suitable script interpreter,

Examining Objects on File Systems 69

such as ARexx or Execute. AmigaDOS versions 45 and up also allow additional script interpreters, to be
indicated in the first line of a script, see section 15.1.9 for the details.

The FIBB_HOLD flag indicates whether a command is made resident upon loading it the first time. If the
flag is set, the Shell loads the file as executable binary, and the FIBB_PURE bit is also set, the file is kept in
RAM and stays there for future execution. This bit was introduced in version 36 of AmigaDOS, but stripped
again from the sources in release 40 due to ROM space limitations. It was reintroduced in AmigaDOS
version 45.

Protection bits of links are not necessarily synchronized with the bits of the corresponding link target.
The FFS and the RAM-Handler, however, keep the protection of the link and the link target identical for hard
links. For soft links, the situation is more complicated as the FFS does not allow to set protection bits of the
link and rather updates the bits of the link target, whereas the RAM-Handler keeps separate protection bits
for the link itself. Separate protection bits for links have only a questionable value as they cannot be easily
checked without iterating through a directory — this is because links are resolved automatically if an object
is locked for inspection. For external links as provided by the RAM-Handler, linked objects are equipped
with their own set of protection bits as the handler creates a copy of the linked object on an attempt to lock
or open it, see also section 7.4.

The fib_EntryType element shall not be used; it can be identical to the fib_DirEntryType, but
its use is not documented and it therefore should be left alone.

The fib_Size element indicates the size of the file in bytes. It should have probably been defined as
an unsigned type, and it is unclear how files larger than 2GB (or 4GB) could be represented. Its value is
undefined for directories, hard links to directories or soft links.

The fib_NumBlocks element is supposed to indicate how many blocks a file occupies on the storage
medium, if such a concept applies at all. Disks and hard disk organize their storage in blocks of equal size, and
the file system manages these blocks to store data on the medium. The number of blocks can be meaningless
for directories or file systems that organizes their contents differently, e.g. network file systems. The original
BPCL implementation of the Amiga ROM file system included in the block count not only payload data,
but also the file extension blocks, see section 13.6.8. Unfortunately, not much can be concluded from the
block count as it need not to be consistent across different file systems, or even different flavors of the same
file system. For some file systems, it need not to be consistent even for identical file contents. While the
original BCPL implementation of the Amiga ROM file system spend a lot of time iterating over file system
structures to determine the block count, the assembler re-implementation of the FFS that appeared with
Kickstart 1.3 only approximates the block count from the file size, plus one file header block; for the OFS
variants in table 8.3, the block count is even underestimated when accounting only for the payload. Thus,
fib_NumBlocks should be left alone as it is not reliable even for the Amiga ROM file systems.

The fib_Date element indicates when the file was changed last; it is a DateStamp structure as
specified in section 3.1.1. Depending on the file system, the date may also indicate when the last modification
was made for a directory, such as creating or deleting files or directories within. For the Fast File System
modifications of file or directory metadata, such as file comments or protection bits are not reflected here.
Which operations exactly trigger an update of the modification date of a directory is file system dependent.

As for protection bits, the AmigaDOS ROM file systems (FFS and RAM) synchronize the date of hard
links and their link targets, but keep separate creation dates for soft links. The FFS will, however, update the
date of the soft link target upon attempting to modify the date of the link. This is not necessarily true for
other file systems but rather an implementation choice.

The fib_Comment element contains a NUL terminated string to a comment on the object. Not all
file systems support comments. The comment has no particular meaning, it is only shown by some Shell
commands or utilities and can be set by the user. Hard- and Soft Links on the FFS and the RAM-Handler are
equipped with file comments of their own and do not mirror the file comment of their link target. However,
this is an implementation detail of the file system and not necessarily true for other file systems.

70 Rom Kernel Reference Manual: DOS

The fib_OwnerUID and fib_OwnerGID elements are used by some peer to peer network systems
such as “Envoy” to check whether remote users from over the network are permitted to access a local file
system object. They are opaque values representing the owner and group ID owning the file or directory.
While the FFS stores such information, no provision is made to moderate access to a particular file according
to its owner or its group at its level; the two concepts are alien to AmigaDOS itself. These elements were
introduced in AmigaDOS version 43.

The fib_Reserved element is currently unused and shall not be accessed.

7.1.1 Retrieving Information on an Directory Entry

The Examine() function fills information on an object identified by a lock into a FileInfoBlock.

success = Examine(lock, FileInfoBlock)
D0 D1 D2

BOOL Examine(BPTR,struct FileInfoBlock *)

This function fills out the FileInfoBlock providing information on the object identified by lock.
The structure is discussed in section 7.1 in more detail. As the Lock() function always resolves links, this
function will not return a fib_DirEntryType that corresponds to a link.

If the lock is ZERO, this function will examine the root directory of the default file system of the calling
process, i.e. typically SYS:.

The function returns non-zero in case of success, and 0 for failure. In either case, IoErr() is set, to an
undefined value on success, or to an error code on failure.

Keep it Aligned! As with most BCPL structures, the FileInfoBlock shall be aligned to a long-
word boundary. For that reason, it should be allocated from the heap. Section 2.4 provides some
additional hints on how to allocate such structures.

7.1.2 Retrieving Information from a File Handle

While Examine() retrieves information a locked object, ExamineFH() retrieves the same information
from a file handle.

success = ExamineFH(fh, fib) /* since V36 */
D0 D1 D2

BOOL ExamineFH(BPTR, struct FileInfoBlock *)

This function examines the object accessed through the file handle fh, and returns the information in the
FileInfoBlock. Note that the file content can be changed any time, and thus the information returned by
this function may not be fully up-to-date, see also the general information in section 7.1.

Currently, throughout all versions, dos.library is not able to handle an attempt to examine a NIL file
handle gracefully; it will just crash. Callers should therefore check the fh_Type element of the file handle
upfront and fail if it is NULL.

This function returns non-zero in case of success, or 0 on error. In either case, IoErr() is set, namely
to an undefined value on success or to an error code otherwise.

As for Examine(), the FileInfoBlock shall be aligned to a 4-byte boundary.

Examining Objects on File Systems 71

7.1.3 Scanning through a Directory Step by Step
The ExNext() function iterates through the entries of a directory, retrieving information on one object after
another contained in this directory. For scanning through a directory, first Lock() the directory itself. Then
use Examine() on the lock. This provides information on the directory itself.

To learn about the objects in the directory, iteratively call ExNext() on the same lock and on the same
FileInfoBlock until the function returns DOSFALSE. Each iteration provides then information on the
subsequent element in the directory represented by the lock.

success = ExNext(lock, FileInfoBlock)
D0 D1 D2

BOOL ExNext(BPTR, struct FileInfoBlock *)

This call returns information on the subsequent entry of a directory identified by lock and deposits this
information in the FileInfoBlock described in 7.1. The lock shall be a lock on a directory, in particular,
and shall have been prepared for a directory scan by calling Examine() before. The ZERO lock to identify
the root directory of a volume is typically not sufficient here.

Unlike Examine() and ExamineFH(), this function can be able, depending on the file system, to
identify soft- and hard links and does not attempt to resolve them. Whether file systems are actually able to
distinguish between a link and its target is another matter, see also section 7.1 for more information.

On success, ExNext() returns non-zero. If there is no further element in the scanned directory, or on
an error, it returns DOSFALSE. In either event, IoErr() is set, namely to an undefined value in case of
success, or to an error code otherwise.

At the end of the directory, ExNext() returns DOSFALSE, and error code returned by IoErr() will
be ERROR_NO_MORE_ENTRIES.

Same Lock, Same FIB To iterate through a directory, a lock to the same directory as passed into
Examine() shall be used. Actually, the same lock should be used, and the same FileInfoBlock
should be used. As important state information is associated to the lock and FileInfoBlock,
UnLock()ing the original lock and obtaining a new lock on the same directory looses this infor-
mation; using a different FileInfoBlock also looses this state information, requiring the file
system to rebuild it, which is not only complex, but also slows scanning the directory down. In
particular, you shall not use the same FileInfoBlock you used for scanning one directory for
scanning a second, different directory as this can confuse the file system. Also, as for Examine(),
the FileInfoBlock shall be aligned to a long-word boundary. Similarly, the same lock should not
be used by more than one directory scan at the same time. This is particularly important for locks
GetDeviceProc() returns for assigns. As the same lock will be provided to each caller, the re-
turned lock shall be duplicated first by DupLock() before initiating a directory scan on the assign
target.

The following example code lists the contents of the directory on the console, where the directory to list
is represented by a lock. It uses the D_S macro of section 2.4 to allocate a temporary FileInfoBlock
structure on the stack, and returns a Boolean success indicator.

LONG ScanDirectory(BPTR lock)
{

D_S(struct FileInfoBlock,fib);

if (Examine(lock,fib)) {
while(ExNext(lock,fib)) {

Printf("%s\n",fib->fib_FileName);

72 Rom Kernel Reference Manual: DOS

}
if (IoErr() == ERROR_NO_MORE_ENTRIES)

return DOSTRUE;
}
return DOSFALSE;

}

7.1.4 Examine Multiple Entries at once
While scanning a directory with ExNext() requires one interaction with the file system for each entry and
is therefore potentially slow, ExAll() retrieves as many entries as possible through a single call.

continue = ExAll(lock, buffer, size, type, control) /* since V36 */
D0 D1 D2 D3 D4 D5

BOOL ExAll(BPTR,STRPTR,LONG,LONG,struct ExAllControl *)

This function examines as many directory entries belonging to the directory identified by lock as fit
into the buffer buffer of size bytes. The buffer shall be aligned to a word boundary. It is filled by a
linked list of ExAllData structures, see below for their elements. The type argument determines which
elements of the ExAllData is filled, and size is the byte size of the buffer into which such structures will
be filled. It should be large enough to hold at least one such structure, a file name and a comment.

The lock shall be a lock on the directory to be examined. It shall not be ZERO.
To start a directory scan, first allocate a ExAllControl structure through AllocDosObject(),

see 16.1.1 and the example below. This structure looks as follows:

struct ExAllControl {
ULONG eac_Entries;
ULONG eac_LastKey;
UBYTE *eac_MatchString;
struct Hook *eac_MatchFunc;

};

eac_Entries is provided by the file system upon returning from ExAll() and then contains the
number of entries that were fit into the buffer. Note that this number may well be 0, which does not
need to indicate termination of the scan. Callers shall instead check the return code of ExAll() to learn on
whether scanning may continue or not.

eac_LastKey is a file system internal identifier of the current state of the directory scanner. This
element shall not be interpreted nor modified in any way. This element shall be set to zero upfront a scan. As
it is already initialized by AllocDosObject(), re-initialization is only necessary if the ExAllControl
structure is re-used for another scan.

eac_MatchString filters the directory entry names, and fills only those into buffer that match the
wildcard pointed to by this element. This entry shall be either NULL, or a pre-parsed pattern as generated by
ParsePatternNoCase(), see section 9.2.2 for more details on this function.

eac_MatchFunc is a even more flexible option to filter directory entries. It shall be either NULL or
point to a Hook structure as defined in utility/hooks.h. If set, then for each directory entry the hook
function h_Entry is called as follows:

match = (hook->h_Entry)(struct Hook *hook, LONG *datap,
d0 a0 a2

struct ExAllData *buf)
a1

Examining Objects on File Systems 73

that is, register a0 points to the hook structure being used for the call, register a1 to the data buffer that
is part of the buffer supplied by the caller of ExAll() and which is already filled in with a candidate
ExAllData structure to be checked for acceptance. Register a2 points to a LONG, which is a copy of the
type argument supplied to ExAll(). If the hook function returns non-zero, a match is assumed and the
directory entry remains in the output buffer. Otherwise, the provisionally filled data is discarded.

eac_MatchFunc and eac_MatchString shall not be filled in simultaneously, only one of the two
shall be non-NULL. If both elements are NULL, all directory entries match.

The buffer supplied to ExAll() is filled by a singly linked list of ExAllData structures that look
as follows:

struct ExAllData {
struct ExAllData *ed_Next;
UBYTE *ed_Name;
LONG ed_Type;
ULONG ed_Size;
ULONG ed_Prot;
ULONG ed_Days;
ULONG ed_Mins;
ULONG ed_Ticks;
UBYTE *ed_Comment;
UWORD ed_OwnerUID;
UWORD ed_OwnerGID;

};

The elements of this structure are as follows:

ed_Next points to the next ExAllData structure within buffer, or is NULL for the last structure
filled in.

ed_Name points to the file or directory name of a directory entry, and supplies the same name as
fib_FileName in the FileInfoBlock.

ed_Type identifies the type of the entry. It identifies directory entries according to table 7.1 in sec-
tion 7.1 and corresponds to fib_DirEntryType.

ed_Size is the size of the directory element for files. It is undefined for directories. It corresponds to
fib_Size.

ed_Prot collects the protection bits of the directory entry according to table 7.2 in section 7.1 and by
that corresponds to fib_Protection.

ed_Days, ed_Mins and ed_Ticks identifies the date of the last change to the directory element. It
corresponds to fib_Date. Section 7.2.5 defines these elements more rigorously.

ed_Comment points to a potential comment of the file system element and therefore corresponds to
fib_Comment.

ed_OwnerUID and ed_OwnerGID contain potential user and group IDs if the file system is able to
provide such information. The FFS stores such information on disk, but does not check it or makes any other
use of it.

Which elements of the ExAllData structure are filled in is selected by the type argument. It shall be
selected according to table 7.3. The values are defined in dos/exall.h:

74 Rom Kernel Reference Manual: DOS

Table 7.3: Type Values

Type Filled Members
ED_NAME Fill only ed_Next and ed_Name
ED_TYPE Fill all elements up to ed_Type
ED_SIZE Fill all elements up to ed_Size
ED_PROTECTION Fill all elements up to ed_Prot
ED_DATE Fill all elements up to ed_Ticks, i.e. up to the date
ED_COMMENT Fill all elements up to ed_Comment
ED_OWNER Fill all elements up to ed_OwnerGID

The return code continue of ExAll() is non-zero in case the directory contents was too large to fit
into the supplied buffer completely. In such a case, either ExAll() shall be called again to read additional
entries, or ExAllEnd() shall be called to terminate the call and release all internal state information.

If ExAll() is called again, the lock shall be identical to the lock passed into the first call, and not
only a new lock on the same directory.

The return code continue is DOSFALSE in case the scan result fit entirely into buffer or in case an
error occurred. The IoErr() function then provides an error code identifying the reason for the termination.
If this error code is ERROR_NO_MORE_ENTRIES, then ExAll() terminated because all entries have been
read and scanning the directory completed. The error code ERROR_BAD_NUMBER is generated in case the
type argument passed in is not supported by the file system. Additional errors can be generated if the file
system is corrupt or the medium is not accessible. If ExAll() terminates either because the end of the
directory has been reached, or an error had been detected, ExAllEnd() shall not be called.

Not all file systems support ED_OWNER; while the FFS supports it, it does not interpret its value. If
continue is DOSFALSE and IoErr() is ERROR_BAD_NUMBER, try to reduce type and call ExAll()
again.

Some file systems do not implement ExAll() themselves; in such a case, dos.library provides a fall-
back implementation keeping ExAll() workable regardless of the target file system.

The following example code lists the directory contents through ExAll(); for the purpose of demon-
strating filtering, the matcher here removes all soft links from the listing.

ULONG __asm Matcher(register __a0 struct Hook *h,
register __a2 LONG *type,
register __a1 struct ExAllData *ead)

{
if (ead->ed_Type != ST_SOFTLINK)

return DOSTRUE;
return DOSFALSE;

}

LONG ExamineDirectory(BPTR lock)
{

struct ExAllControl *eac;
struct ExAllData *ead;
static const LONG buffersize = 2048;
struct Hook hk;
LONG result = ERROR_NO_FREE_STORE;

hk.h_Entry = (ULONG (*)())&Matcher;

if ((ead = AllocVec(buffersize,MEMF_PUBLIC))) {

Examining Objects on File Systems 75

if ((eac = AllocDosObject(DOS_EXALLCONTROL,NULL))) {
BOOL cont;
eac->eac_LastKey = 0;
eac->eac_MatchFunc = &hk;
do {
struct ExAllData *ed = ead;
cont = ExAll(lock,ead,buffersize,ED_NAME,eac);
result = IoErr();
while(eac->eac_Entries) {

Printf("%s\n",ed->ed_Name);
ed = ed->ed_Next;
eac->eac_Entries--;

}
} while(cont);
if (result == ERROR_NO_MORE_ENTRIES)

result = 0;
FreeDosObject(DOS_EXALLCONTROL,eac);

}
FreeVec(ead);

}

return result;
}

Unfortunately, the ExAll() implementation had defects. In AmigaDOS version 36 where this func-
tion was introduced, eac_MatchString was used incorrectly by the RAM-Handler which also failed
to initialize ed_Next properly. Similar issues existed in the fall-back implementation of version 36 of
dos.library. The FFS did not fill in ed_Comment correctly prior to version 39, and the FFS flavors support-
ing directory caches broke ExAll() up to release 40 where the defect of older FFS versions is addressed
by SetPatch. AmigaDOS versions up to version 37 cannot handle ED_OWNER and then fail with the error
code ERROR_BAD_NUMBER. As a workaround, a smaller value should be passed as type if this error is
detected. The fallback implementation within dos.library up to version 45 did not provide useful arguments
to the error requester in case a failure was detected. SetPatch also provides here a workaround for earlier
versions.

There was no possibility to abort a running directory scan prior to version 39 of AmigaDOS which
introduced ExAllEnd() (see section 7.1.5). Unfortunately, the fallback implementation of this function
in dos.library in case the file system does not support abortion is corrupt in currently all known AmigaDOS
versions, including the patch included in SetPatch.

Of all the AmigaDOS file systems, only the directory-cache enabled flavors of the FFS, see table 8.3 in
section 8.1.3, and the RAM-Handler profit noticeably from this function. Thus, despite the well-motivated
attempt to provide a better design for a directory scanner, ExAll() should probably be better left alone.

7.1.5 Aborting a Directory Scan
To abort an ExAll() scan through a directory, ExAllEnd() shall be called to explicitly release all state
information associated to the scan. This is unlike an item-by-item scan through ExNext() which does not
require explicit termination.

ExAllEnd(lock, buffer, size, type, control) /* since V39 */
D1 D2 D3 D4 D5

void ExAllEnd(BPTR,STRPTR,LONG,LONG,struct ExAllControl *)

76 Rom Kernel Reference Manual: DOS

This function aborts an ExAll() driven directory scan before it terminated due to an error or due to
reaching the end of the directory. That is, ExAllEnd() shall be called whenever a scan is to be aborted
even though ExAll() returned a non-zero result code.

ExAllEnd() is also be the fastest way to terminate a running directory scan, for example of a network
file systems where the scan can proceed offline on a separate server. The arguments to ExAllEnd() shall
be exactly those supplied to the ExAll() call which it is supposed to terminate. Note in particular that the
lock shall be identical to the lock passed into ExAll(), and not just a lock to the same object.

This function first attempts to terminate a directory scan through the file system; however, if the file
system performing a scan does not support abortion directly, dos.library provides a fall-back implementation.
Unfortunately, even the most recent implementation of this fall-back function is corrupt and not reliable in
all situations.

This function will modify IoErr() and sets it to an undefined value.

7.2 Modifying Directory Entries
While the functions in section 7.1 read directory entries, the functions listed in this section modify the direc-
tory and its entries, that is, they delete entries, or adjust metadata of file system objects.

7.2.1 Delete Objects on the File System
The DeleteFile() function removes — despite its name — not only files, but also directories and links
from a directory. For this to succeed, the object needs to allow deletion through its protection bits (see
section 7.1), and the object must not be locked (see section 6) or accessed through a file handle2. To be able
to delete a directory, the directory also needs to be empty.

success = DeleteFile(name)
D0 D1

BOOL DeleteFile(STRPTR)

This function deletes the object given by the last component of the path passed in as name. It returns
non-zero in case of success, or 0 in case of error. In either case, IoErr() is set, namely to an error code on
failure and an undefined value on success.

7.2.2 Rename or Relocate an Object
The Rename() function changes the name of an object, or relocates it from one directory to another pro-
vided both directories are on the same volume.

success = Rename(oldName, newName)
D0 D1 D2

BOOL Rename(STRPTR, STRPTR)

This function renames and optionally relocates an object between directories. The oldName is the
current path to the object, and its last component is the current name of the object to relocate and rename;
newName is the target path and its last component the target name of the object. The target directory may be
different from the directory the object is currently located in, and the target name may be different from the
current name. However, current path and target path shall be on the same volume, and the target directory

2This typically implies that a file system internal lock is held on the object, thus is equivalent to the first condition.

Modifying Directory Entries 77

shall not already contain an object of the target name; otherwise, current and target path may be either relative
or absolute paths. A third condition is that if the object to relocate is a directory, then the target path shall not
be a location within the object to relocate, i.e. you cannot move a directory into itself.

This function returns a Boolean success indicator. It is non-zero on success, or 0 on error. In either case,
IoErr() is set, to an error code on failure or to an undefined value otherwise.

Versions 34 and below of the OFS allowed to rename directories into itself, and thus made them vanish
completely without, actually, deleting them. This was fixed in version 36.

All versions of AmigaDOS up to version 47 cannot handle soft links in the old or new path and instead
fail with ERROR_IS_SOFT_LINK if one is detected.

7.2.3 Set the File Comment
The SetComment() function sets the comment of a file system object, i.e. a file or directory, provided the
file system supports comments.

success = SetComment(name, comment)
D0 D1 D2

BOOL SetComment(STRPTR, STRPTR)

This function sets or replaces the comment of the file system object whose path is given by name to
comment. It depends on the file system whether or how long comments can grow. The maximum comment
length AmigaDOS supports is 79 characters, due to the available space in the FileInfoBlock structure.

Whether or to which degree soft or hard links support comments is up to the file system. For the FFS
and the RAM-Handler, links can carry their own comments that are separate from the comment on the
corresponding link target.

This function returns non-zero on success and 0 on error. In either case, the function sets IoErr() to
an undefined value on success or to an error code otherwise.

7.2.4 Setting Protection Bits
The SetProtection() function modifies the protection bits of a file system object, i.e. either a file or a
directory.

success = SetProtection(name, mask)
D0 D1 D2

BOOL SetProtection(STRPTR, LONG)

This function sets the protection bits of the file system object identified by the path name to the combina-
tion given by mask. The protection bits are defined in dos/dos.h and their function is listed in table 7.2 of
section 7.1. The mask value corresponds to what Examine() returns in the FileInfoBlock structure
in fib_Protection, see also section 7.1. In particular, remember that the four least significant bits are
shown inverted by Shell commands and the Workbench.

The current versions of the AmigaDOS file systems allow changes of the protection bits of locked or
open files.

It is file system dependent whether links carry protection bits, even though they are there not very useful
as upon locking an object through a link resolves the link and thus allows only to retrieve the protection bits
of the link target. The FFS and the RAM-Handler mirror any protection bits of a hard link target in the link.
For soft links, the RAM-Handler supports a separate set of protection bits.

This function returns a non-zero result code on success, or zero on error. In either case, IoErr() is
altered, either to an undefined value on success or to an error code otherwise.

78 Rom Kernel Reference Manual: DOS

7.2.5 Set the Modification Date
The SetFileDate() function sets the modification date of an object on a file system. Despite its name,
the function can also set the modification date of directories if the file system supports them.

success = SetFileDate(name, date) /* since V36 */
D0 D1 D2

BOOL SetFileDate(STRPTR, struct DateStamp *)

This function adjusts the modification date of the file system object identified by the path as given by
name to date. The DateStamp structure in which the date is encoded is specified in section 3.1.1.

For links, it is file system dependent whether a link carries a modification date different from the mod-
ification date of the link target. The Amiga DOS Fast File System and the RAM-Handler synchronize the
modification date of a hard link with that of the link target. For soft links, the FFS updates the link target if
the modification date of link is updated, whereas the RAM-Handler keeps a separate date for the link. The
modification date of a link is, however, of limited use as the Lock() function implicitly resolves links and
thus cannot gain access to the link itself.

This function returns 0 on error or non-zero on success. In either case, IoErr() is set, either to an
undefined value on success or to an error code otherwise.

Note that not all file systems may be able to set the date precisely to ticks, e.g. FAT has only a precision
of 2 seconds. Some file systems refuse to set the modification date if an object is exclusively locked, this is
unfortunately not handled consistently.

Even though AmigaDOS releases 34 and earlier supported setting the modification date of file system
objects through the packet interface, see section 14.5.5, a convenient interface on the level of dos.library did
not exist.

7.2.6 Set User and Group ID
The SetOwner() function sets the user and group ID of an object within a file system. Both are con-
catenated to a 32-bit ID value. While this function seems to imply that the file system or AmigaDOS offer
some multi-user capability, this is not the case. User and group ID are pure metadata that are returned by the
functions discussed in section 7.1. AmigaDOS has no concept of the current user of a file system and thus
cannot decide whether a user is privileged to access an object on a file system. While versions 43 and later
of the FFS support this function, the RAM-Handler does not.

success = SetOwner(name, owner_info) /* since V39 */
D0 D1 D2

BOOL SetOwner(STRPTR, LONG)

This function sets the user and group ID of the file system object identified by the path in name to the
value owner_info. How exactly the owner_info is encoded is file system specific. Typically, the owner
is encoded in the topmost 16 bits, and the group in the least significant 16 bits.

This function returns a Boolean success indicator which is non-zero on success and 0 on error. This
function always sets IoErr(), either to an undefined value on success or to an error code otherwise.

7.3 Working with Paths
dos.library contains a couple of support functions that help working with paths, see also chapter 4. What
is different from many other functions in the library is that the paths are not interpreted by the file system,

Working with Paths 79

but rather by dos.library itself. This has several consequences: First, there is no 255 character limit (see
section 4.2) as the path is never communicated to a file system and thus never converted to a BSTR. Second,
as the paths are constructed or interpreted by the library and not the file system, the syntax of the path is also
that imposed by the library.

That is, for these functions to work, the separator between component must be the forwards slash (’/’)
and the parent directory must be indicated by an isolated single forward slash without a component upfront.
This implies, in particular, that the involved file systems need to follow these conventions.

7.3.1 Find the Path From a Lock
The NameFromLock() function constructs a path from a locked object, i.e. if the constructed path is used
to create a lock, it will refer to the locked object.

success = NameFromLock(lock, buffer, len) /* since V36 */
D0 D1 D2 D3

BOOL NameFromLock(BPTR, STRPTR, LONG)

This function constructs in buffer an absolute path that identifies the object locked by lock. This lock
remains usable after the call. At most len bytes will be filled into buffer, including NUL termination of
the string. The created string is always NUL-terminated, even if the buffer is too short. However, in such a
case the function returns 0, and IoErr() is set to ERROR_LINE_TOO_LONG.

The returned path is not necessarily identical to the path through which lock has been obtained; first,
the created path is always absolute, and second, if links were involved in the original path, the created path
refers to the link target(s) and not the link itself.

If the path cannot be constructed due to an error, success is also set to 0 and IoErr() is set to an error
code. In such a case, the buffer content is not useful. In case of success, IoErr() is not set consistently
and cannot be depended upon. Possible cases of failure are that the volume the locked object is located on
is currently not inserted. The ZERO lock is resolved into the string SYS:, which is not necessarily correct if
the SYS assign or the default file system of the calling process had been modified.

7.3.2 Find the Path from a File Handle
The NameFromFH() function constructs a path name from a file handle, i.e. it finds a path that is suitable
to open the file corresponding to the passed in file handle.

success = NameFromFH(fh, buffer, len) /* since V36 */
D0 D1 D2 D3

BOOL NameFromFH(BPTR, STRPTR, LONG)

This function takes a file handle in fh and from that constructs an absolute path of the file corresponding
to fh in the supplied buffer capable of storing len bytes, including a terminating NUL byte. This function
is also able to construct a path if the file is opened for exclusive access.

The constructed path is not necessarily identical to the path through which the file was opened; first, the
created path is always absolute, and second, if links were involved in the original path, the created path refers
to the link target(s) and not the link itself.

On success, the function returns a non-zero return code and sets IoErr() to 0. On error, it returns 0
and sets IoErr() to an error code. In particular, if the supplied buffer is not large enough, it is set to
ERROR_LINE_TOO_LONG. Even in the latter case, the created path is NUL terminated, though is not useful.

80 Rom Kernel Reference Manual: DOS

7.3.3 Append a Component to a Path
The AddPart() adds an absolute or relative path to an existing path; the resulting path is constructed as if
the input path is a directory, and the attached (second) path identifies an object relative to this given directory.
The function handles special cases such as the colon (“:”) and one or multiple leading slashes (“/”) correctly
and interprets them according to the rules explained in chapter 4; the colon identifies the root of the volume,
and a leading slash the parent directory which removes the trailing component of the directory path.

success = AddPart(dirname, filename, size) /* since V36 */
D0 D1 D2 D3

BOOL AddPart(STRPTR, STRPTR, ULONG)

This function attaches to the directory path in dirname another path in filename. The constructed
path will overwrite the buffer in dirname, which is able to hold size bytes, including a terminating NUL
byte.

If the required buffer for the constructed path, including termination, is larger than size bytes, then the
function returns 0 and IoErr() is set to ERROR_LINE_TOO_LONG, and the input buffers are not altered.
Otherwise, the function returns non-zero, and IoErr() is not altered.

This function does not interact with file systems and does not check whether the paths passed in cor-
respond to accessible objects. The output path is constructed purely based on the AmigaDOS path syntax.
Version 36 of AmigaDOS did not handle leading slashes and absolute paths in filename correctly, this
was fixed in release 37.

7.3.4 Find the Last Component of a Path
The FilePart() function finds the last component of a path; the function name is a bit misleading since
the last component does not necessarily correspond to a file, but could also correspond to a directory (or link)
once identified by a file system. If there is only a single component in the path passed in, this component is
returned. If the path passed in terminates with at least two slashes (“/”) indicating that the last component is
at least one level above, a pointer to the terminating slash is returned.

fileptr = FilePart(path) /* since V36 */
D0 D1

STRPTR FilePart(STRPTR)

This function returns in fileptr a pointer to the last component of the path passed in as path, or a
pointer to “/” in case the input path terminates with at least two slashes.

This function cannot fail, and does not touch IoErr().

7.3.5 Find End of Next-to-Last Component in a Path
The PathPart() identifies the end of the next-to-last component in a path. That is, if a NUL is injected at
the pointer returned by this function, the resulting string starting at the passed in forms a path that corresponds
to the directory containing the last component of the original path. If the passed in path consists only of a
single component, the returned pointer is identical to the pointer passed in.

fileptr = PathPart(path) /* since V36 */
D0 D1

STRPTR PathPart(STRPTR)

Working with Paths 81

This function returns in fileptr a pointer to the end of the next-to-last component of the path passed
in. This function cannot fail and does not alter IoErr().

The only difference between this function and FilePath() is that the latter advanced over a trail-
ing slash if it present. That is, if the last character of the input path of PathPart() is a slash, then
PathPart() would return a pointer to this slash, but FilePart() would advance beyond this slash.
Therefore, the “file part” of a path that explicitly indicates a directory is empty, though the “path part” is the
same path without the trailing slash.

7.3.6 Extract a Component From a Path
The SplitName() function extracts a component starting at a given offset from a path and delivers the
component in a buffer. It also returns a new position at which to continue parsing the path for the next
component. By iteratively calling SplitName(), a path can be resolved directory by directory, walking
the file system tree from the root to the leaves. Section 4.6.1 provides an example how to use it for iterating
through a path.

newpos = SplitName(name, separator, buf, oldpos, size) /* since V36 */
D0 D1 D2 D3 D4 D5

WORD SplitName(STRPTR, UBYTE, STRPTR, WORD, LONG)

This function scans a path as given by name starting from position oldpos. It copies all characters
starting from this position into the buffer buf which is size bytes large, terminating either at the end of the
path, or at separator, or when buf runs full. The component string constructed in buf is NUL-terminated
in either case. If the provided separator is found, the separator is not copied into buf.

If no separator is found, the function returns −1 as newpos indicating that the entire path has been
scanned. Otherwise, it returns the offset into name at which the next component starts, i.e. the offset behind
the found separator. The return value is also valid in case the found component was too large to fit into buf
and had to be truncated.

This function does not set IoErr(), even in case buf was too small.
The intended purpose of this function is to walk a path component by component, extracting the compo-

nents as scanning proceeds. That is, if result code newpos is not negative, it should be passed back into this
function as oldpos for a follow-up scan which then extracts the next component of the path. Typical users
of this function are file systems that locate objects in the file system tree. For most (if not all) AmigaDOS file
systems the separator is therefore the forwards slash (“/”). Another use case is to identify the device name
of an absolute path by splitting it at the colon (“:”).

In AmigaDOS version 37 and below, components larger or equal than size characters terminated by a
separator are truncated one character too early, causing the last character to be lost. The returned index then
points at the separator rather than behind it. This was fixed in release 39.

7.4 Links
Links escape the tree-like hierarchy of directories, sub-directories and files. A link mirrors an object of a file
system to another location such that if the object is modified through the path of one location, the changes
are reflected in another location. Put differently, creating a link is like copying an object except that copy
and original remain always identical. The storage for the file (or directory) content is only required once, the
link just points to the same data as the original directory entry. The same goes for links between directories:
Whenever a new entry is made in the link target, the change also appears in the link and vice versa.

AmigaDOS supports two (or, actually, three) types of links: Hard links and Soft links. The RAM-Handler
supports a third type that will be discussed below. Hard links establish the relation between two objects on

82 Rom Kernel Reference Manual: DOS

the level of the file system, and thus the two objects must be located on the same volume. That is, whenever
a link is accessed, the file system resolves the link, transparent to its user and transparent to dos.library.
While for the Amiga Fast File System and the RAM-Handler a hard link is a distinct directory entry type,
some other file systems do not distinguish between the original object and a hard link to it. For such file
systems, the same file content is just referenced by two directory entries. If the target of a link is deleted on
the Fast File System or the RAM-Handler, and (at least one) link to the object still exists, then (one of) the
link(s) takes over and becomes the object itself. For other file systems, only an internal reference counter is
decreased, and the file content or directory is removed only if this counter indicates that no further references
exist.

Soft links work differently and can also be established between file systems, or between different vol-
umes. Here, the soft link is a type of its own that contains the path of the referenced object. Unlike hard links,
soft links are resolved through an interaction of the file system and dos.library. Due to defects in the Fast
File System, soft links did not work correctly prior to AmigaDOS version 45, and soft links containing two
components of which the first (directory) component is a soft link do not work correctly in the RAM-Handler
even in its latest version. Unfortunately, soft links accessed through a multi assign also fail to work correctly
due a defect even in the latest version of dos.library.

dos.library supports soft links through the functions listed in Table 7.4:

Table 7.4: Soft link aware functions
Function Purpose
CreateDir() Create a directory
DeleteFile() Delete an object on a file system
MakeLink() Create a link to an object
Lock() Obtain access rights to an object
Open() Open a file
SetComment() Modify object comment
SetFileDate() Set the modification date of a file
SetOwner() Set User and Group ID
SetProtection() Modify protection bits
DeleteVar() Delete an environment variable
Execute() Execute a shell script (legacy)
GetVar() Read an environment variable
LoadSeg() Load an executable
MatchFirst() Resolve a lock to a path3

NewLoadSeg() Load an executable with parameters
SetVar() Set an environment variable
System() Execute a shell script

All of the above functions take a path as one of their arguments. If the path consists of multiple com-
ponents, i.e. identifies an object in a nested directory tree, and one of the intermediate components is a soft
link, dos.library will automatically resolve such an intermediate link and constructs a resolved path to the
link destination. Whether a soft link as the last component of a path is resolved is file system and function
dependent. For example, Open() and Lock() will always resolve soft links, but SetProtection()
may not and may instead affect the link, not the target object. Here, the Fast File System resolves soft links,
whereas the RAM-Handler does not. DeleteFile() will never resolve a link at the final component of
the path, and will therefore delete the link and not the link target.

Note that Rename() is currently not on the list of functions supporting soft links as part of the path to the
object to be renamed, or as part of the target path. Thus, if the source or destination argument of Rename()

3This function works only partially with soft links - it fails if the pattern is not a wildcard and the soft link cannot be resolved.

Links 83

contain a soft link, the function will fail. Section 7.4.2 provides source code for a (partial) workaround.
If the target of a soft link is deleted, soft links pointing to it become invalid, even though they remain in

the file system. Any attempt to resolve such a link fails, and AmigaDOS does not attempt to identify invalid
links upon deletion of the link target. The same issue does not exist for hard links as in such a case one of
the links will take the role of the link target.

Soft link resolution works as follows: Functions of dos.library create a packet of a type that corresponds
to the called function, and send a packet to the handler responsible for the target volume; the packet mech-
anism is explained in more detail in chapter 12, and packet types are listed in chapter 14. If the handler
addressed by the packet determines that the path provided by the user contains a soft link, it will respond
with failure and the error ERROR_IS_SOFT_LINK.

dos.library requests the handler to resolve the soft link via the ReadLink() function, which is explained
in more detail in section 7.4.2. It sends a packet of type ACTION_READ_LINK back to the handler to resolve
the link, see section 14.4.2. The handler then creates from the original path and the link target stored in the
soft link an updated path. When the packet is returned, the updated path is received by dos.library, which
attempts again to perform the requested function. Details on how a file system merges a path and a soft link is
provided in section 14.4.2. The additional round-trip is unfortunately necessary as the file system addressed
by the link target can be a different from the file system on which the soft link is stored.

The process of link resolution continues until either the requested action could be performed, or a max-
imum number of attempts failed. Currently, dos.library will try at most 15 times to resolve a soft link until
it finally fails. The reason for introducing such a limit is that nothing in the system prevents the user from
creating a circular graph of soft links that point to each other, and the process of link resolution would never
terminate.

Finally, the RAM-Handler supports a special type of hard link that goes across volumes called external
link. Such a link copies the link target on read-access into the link, i.e. the RAM-Handler implements a copy
on access. This feature is used for the ENV assign containing all active system settings. The assign points
to a directory in the RAM disk which itself is externally linked to ENVARC:. Thus, whenever a program
attempts to access its settings — such as the preferences programs — the RAM-Handler automatically copies
the data from ENVARC: to ENV:, avoiding a manual copy and also saving RAM space for settings that are
currently not accessed and thus unused. This process is completely transparent to dos.library. External links
were added to AmigaDOS in version 47.

The FileInfoBlock introduced in section 7.1 identifies links through the fib_DirEntryType
element. As seen from table 7.1, hard links to files are indicated by ST_LINKFILE and hard links to
directories by ST_LINKDIR. Note, however, that not all file systems are able to distinguish hard links from
regular directory entries, so the above directory entry types cannot be depended upon. In particular, external
links of the RAM-Handler cannot be identified by any particular value of the fib_DirEntryType.

Table 7.1 also provides the fib_DirEntryType for soft links, namely ST_SOFTLINK. As the target
of a soft link may not be under control of the file system containing the link, it cannot know whether the link
target is a file or a directory (or maybe another link), and therefore a single type is sufficient to identify them.

7.4.1 Creating Links
The MakeLink() function creates a hard link, soft link or external link to another file system object.

success = MakeLink(name, dest, soft) /* since V36 */
D0 D1 D2 D3

BOOL MakeLink(STRPTR, LONG, LONG)

This function creates a new link at the path name of the type given by soft. The destination the link
points to, i.e. the link target, is given by dest.

84 Rom Kernel Reference Manual: DOS

The third argument, soft, identifies the type of the link to be created. It shall be taken from table 7.5,
defined in dos/dos.h:

Table 7.5: Link Types

Link Types Description
LINK_HARD Hard link, or external link
LINK_SOFT Soft link

If soft is LINK_HARD, dest is a BPTR to a FileLock, i.e. a lock. For most file systems, dest
shall be on the same volume as the one identified by the path in name. The only exception is currently the
RAM-Handler for which the destination lock may be on a different volume. In such a case, an external link is
created. While the file system object representing the external link will be created immediately, it may look
initially like an empty file or an empty directory, depending on the type of the link destination. Its contents
is copied, potentially creating intermediate directories, on attempts to access the link contents. Thus, the link
becomes a mirror of the link target whenever an object within the link or the link itself is accessed. From that
point on, the copied object is detached from its original, and may be overwritten without affecting the link
target. External links were added to AmigaDOS in version 47.

If soft is LINK_SOFT, dest is a const UBYTE * that shall be casted to a LONG. Then, this function
creates a soft link that is relative to the path of the link, i.e. name. For details on soft link resolution, see
section 7.4.2. In case of soft links, the target does not even need to exist. Soft links did not work reliable
prior to version 45 of AmigaDOS.

The MakeLink() function returns non-zero in success if creation of the lock succeeded, or 0 in case
of failure. In either case, IoErr() is set to an error code on failure, or to an undefined value on success.

7.4.2 Resolving Soft Links
The ReadLink() function locates the target of a soft link and constructs from the path and directory
containing the link a new path that resolves the link within the original path. In most cases, namely for the
functions listed in table 7.4, dos.library calls this function itself internally and their users do not need to
worry about soft links.

If, however, a dos.library function or a packet in direct communication with a handler (see chapter 13)
returns the error ERROR_IS_SOFT_LINK, then this function helps to resolve a soft link within the path.
The access is then typically retried with an updated path constructed by this function. Note well that the
updated path can contain yet another soft link, requiring recursive resolution of the link. To avoid endless
recursion, resolving links should be aborted after a maximum number of attempts, and should then generate
the error ERROR_TOO_MANY_LEVELS. A suggested maximum level of nested soft links, also used by
dos.library, is 15 links.

success = ReadLink(port, lock, path, buffer, size) /* since V36 */
D0 D1 D2 D3 D4 D5

LONG ReadLink(struct MsgPort *, BPTR, STRPTR, STRPTR, ULONG)

This function creates an updated path in buffer from an input path whose resolution failed due to
a soft link as one of its components. The input path is relative to the directory represented by lock. The
output path constructed in buffer, which is size bytes large, is again relative to lock, but can also be an
absolute path.

The port is the message port of the file system containing the soft link and which is requested to
resolve this link. In typical cases, this port and lock are obtained from dvp_Port and dvp_Link of the
DevProc structure returned by GetDeviceProc() called on path, see section 8.2.1 for this structure
and the function.

Links 85

Due to various inconsistencies in file system implementations, the return code is hard to interpret. If
the return code is positive, the function completed with success and its value is then the string length of the
updated path in buffer, not including the terminating NUL. On success, IoErr() is always set, but to an
undefined value.

If size is too small to hold the adjusted path, the function should4 return−2 and the IoErr() function
indicates ERROR_LINE_TOO_LONG. Unfortunately, some file system implementations set the return code
erroneously to 0 or −1 in this case instead. The FFS returns 0 for versions 46 and below, and −1 for
version 47 to indicate a buffer overflow.

If some other error was detected, then the function should return −1 and IoErr() is set to an error
code identifying the source of the error; error codes are listed in section 10.2.9. Again, some file systems
erroneously return 0 to indicate an error, for example FFS versions 46 and below.

Due to these problems, it is recommended to interpret all positive values as success, and 0 and negative
values as failure. To identify the cause of the failure in the latter case, the error code from IoErr() should be
checked, and if it is ERROR_LINE_TOO_LONG, then the buffer size needs to be increased and the function
should be called again with the enlarged buffer.

Section 14.4.2 provides further details on the file system side of the implementation of this function, in
particular how to combine the path with the link target stored in the soft link.

The following source demonstrates how to use ReadLink() to implement a Rename() function that
accepts source paths that contain soft links. Unlike the implementation in dos.library, this code also works
correctly in case the soft link is accessed through a multi-assign:

#define BUFSIZE 256
#define MAX_LINKS 15

LONG RenameWithLinks(UBYTE *srcpath,UBYTE *dstpath)
{

UBYTE *buf = NULL;
UBYTE *newbuf = NULL;
ULONG bufsize = BUFSIZE;
struct DevProc *dp = NULL;
LONG levels = MAX_LINKS;
LONG error = 0;
LONG success;

while (!(success = Rename(srcpath,dstpath)) &&
IoErr() == ERROR_IS_SOFT_LINK) {

/* If too many levels passed, fail */
if (--levels < 0) {

SetIoErr(ERROR_TOO_MANY_LEVELS);
break;

}
/* Allocate a target buffer for the new name */
if (!(newbuf = AllocVec(bufsize,MEMF_PUBLIC)))

break;
/* Find the device and lock */
do {

if ((dp = GetDeviceProc(srcpath,dp))) {
/* Ok, attempt to resolve the link */
if ((success = ReadLink(dp->dvp_Port,dp->dvp_Lock,

4The information in [1] and [7] that the result code is a Boolean success indicator is incorrect.

86 Rom Kernel Reference Manual: DOS

srcpath,newbuf,bufsize)) > 0) {
/* rotate buffers */
srcpath = newbuf;
newbuf = buf;
buf = srcpath;
error = 0;
break;

} else {
error = IoErr(); /* get the error */
/*
** Check whether the supplied buffer was too short.

** Redo with larger buffer next round.

*/
if (error == ERROR_LINE_TOO_LONG) {

bufsize <<= 1;
success = 1;
break;

}
/* If the error was ERROR_OBJECT_WRONG_TYPE or

** ERROR_OBJECT_NOT_FOUND, then the source is no link,

** or the source was a multi-assign and the source was

** not contained in the assign, so re-iterate potentially.

** Unfortunately, RAM does not return the correct error.

*/
if (error != ERROR_OBJECT_WRONG_TYPE &&

error != ERROR_OBJECT_NOT_FOUND)
break;

/* Make this a more sensible error */
error = ERROR_IS_SOFT_LINK;

}
} else {

/* Get the error why GetDeviceProc() failed */
error = IoErr();
break;

}
/* Retry if the path is a multi-assign */

} while(dp && (dp->dvp_Flags & DVPF_ASSIGN));
/* Release the DeviceProc, NULL is fine */
FreeDeviceProc(dp);
dp = NULL;
/* Release the old or the new buffer */
if (newbuf)

FreeVec(newbuf);
/* Fixup or reset the error */
SetIoErr(error);
/* Abort if link resolution failed */
if (success <= 0)

break;
}

/* Release the temporary/last buffer */

Links 87

if (buf)
FreeVec(buf);

return success;
}

The above code does not check whether the target goes into a soft linked directory — this would need to be
added.

7.5 Notification Requests
Notification requests allow programs to monitor file or directory changes. If a change is detected, either a
signal or a message can be send to a specific task or port. Notification requests were added in version 36
of AmigaDOS, and while the RAM-Handler supported it right from the start, the Fast File System included
support for it from version 37 onward. However, be aware that not all file systems implement this mechanism;
network file systems, for example, need to operate on the basis of existing protocols that do not provide a
mechanism to monitor file or directory changes on the server side.

If issued on a file, the notification request is only triggered after the modified file is closed to avoid
sending too many requests at once for each single change made.

If issued on a directory, attempts to add or remove files or links will trigger the request. Renaming files
within the monitored directory are also recognized and can therefore be monitored. Whether changes of
metadata such as protection bits or comments are considered modifications is not clearly defined and not
all versions of all AmigaDOS file systems handle such cases. The most recent version of AmigaDOS will
consider them sufficient to trigger a notification.

A typical user of notification requests is the IPrefs program which uses them to monitor changes of the
preferences files. If it detects a changed preferences definition, it reloads the contents of the affected settings
file and re-installs the preferences into the components it serves, most importantly intuition.library.

7.5.1 Request Notification on File or Directory Changes
The StartNotify() function starts monitoring a file or directory for changes, and if such modifications
are found, a signal is send to a task or a message is put into a port.

success = StartNotify(notifystructure) /* since V36 */
D0 D1

BOOL StartNotify(struct NotifyRequest *)

This function starts a notification request as described by the notifystructure argument. This
structure shall be initialized by the caller, and is then enqueued in the file system until the notification request
is canceled by EndNotify(). Once issued, the structure shall not be touched anymore as the file system
can access it any time. As some elements require zero-initialization, it is advisable to allocate it from the
exec memory pool with the MEMF_CLEAR flag set.

The NotifyRequest structure is defined in dos/notify.h and reads as follows:

struct NotifyRequest {
UBYTE *nr_Name;
UBYTE *nr_FullName;
ULONG nr_UserData;
ULONG nr_Flags;
union {

88 Rom Kernel Reference Manual: DOS

struct {
struct MsgPort *nr_Port;

} nr_Msg;

struct {
struct Task *nr_Task;
UBYTE nr_SignalNum;
UBYTE nr_pad[3];

} nr_Signal;
} nr_stuff;
ULONG nr_Reserved[4];
/* internal use by handlers */
ULONG nr_MsgCount;
struct MsgPort *nr_Handler;

};

The elements of this structure shall be initialized as follows:
nr_Name: The path to the object to be monitored, relative to the current directory. While it seems

plausible to issue a notification request on an object that does not yet exist to get notified once it is created,
this feature is currently not supported by AmigaDOS.

The file system will neither inform notification requests when an assign is created to a monitored di-
rectory, nor if the volume containing the object is removed, reinserted or access to it is inhibited (see sec-
tion 8.7.4).

nr_FullName is initialized by dos.library for the file system and shall be left alone by the caller. It
stores the full path of the object to monitor. This element is supposed to be used by the file system only, see
section 14.6.1.

nr_UserData is free for the calling application. It may be used to distinguish multiple notification
requests that have been issued in parallel. This is most useful for NRF_SEND_MESSAGE requests as the
NotifyMessage structure contains a pointer back to the request.

nr_Flags defines how and when the issuer of a notification request shall be be informed by the moni-
toring file system. Currently, the following flags are defined in dos/notify.h:

Table 7.6: Notification Flags

Flag Purpose
NRF_SEND_MESSAGE Send a message on a file system change
NRF_SEND_SIGNAL Set a signal on a change
NRF_WAIT_REPLY Wait for a reply before notifying again
NRF_NOTIFY_INITIAL Notify immediately when queuing the request

All other bits are currently reserved. In specific, bits 16 upwards are free for the file system to use and
shall not be set by the caller.

The flags NRF_SEND_MESSAGE and NRF_SEND_SIGNAL are mutually exclusive. Exactly one of the
two shall be included in the request to identify the activity that is performed when the monitored object
changes. As the names suggest, in the first case a message is send to nr_Port, and in the second case a
signal bit is set in the task nr_Task.

NRF_WAIT_REPLY indicates to the file system that it should not continue to send a notification message
until the last one send has been replied. Thus, setting this flag prevents notification requests to pile up at the
recipient. However, if one or multiple changes were detected while the first request was triggered but not yet
responded, replying to this first notification message will immediately trigger a single subsequent request for
the file system object monitored.

Notification Requests 89

NRF_NOTIFY_INITIAL instructs the file system to trigger a notification message or signal immedi-
ately after the request has been issued. This allows applications to roll both the initial action and the response
of the notification into a single function — for example, for reading an initial version of a file or update from
a modified version of it.

nr_Port is only used if the NRF_SEND_MESSAGE flag is set in nr_Flags. It points to a MsgPort
structure to which a NotifyMessage is send when a change has been detected. This structure is specified
at the end of this section.

nr_Task and nr_SignalNum are only used if the NRF_SEND_SIGNAL flag is set in nr_Flags.
nr_Task is a pointer to the Task that will be signaled, and nr_SignalNum the bit number of the signal
that is set. It is not a bit mask. Clearly, NRF_WAIT_REPLY does not work in combination with signal bits.

nr_Pad is only present for alignment and shall be left alone.

nr_Reserved shall be zero-initialized; it is reserved for future extensions.

nr_MsgCount shall not be touched by the caller and is reserved purely for the purpose of the file
system, see section 14.6.1. It is there used to count the number of messages that have been send out to the
client, but have not yet been replied. The client, i.e. the caller, shall not interpret or modify this element.

nr_Handler shall neither be touched by the caller; it is used by AmigaDOS to store the MsgPort of
the file system responsible for this notification request, and in particular, the file system to contact for ending
a notification request.

If NRF_SEND_MESSAGE is set, then the file system sends a NotifyMessage to nr_Port upon
detection of a change of the monitored object; this structure is also defined in dos/notify.h and looks as
follows:

struct NotifyMessage {
struct Message nm_ExecMessage;
ULONG nm_Class;
UWORD nm_Code;
struct NotifyRequest *nm_NReq;
ULONG nm_DoNotTouch;
ULONG nm_DoNotTouch2;

};

nm_ExecMessage is a standard exec message as documented in exec/ports.h.

nm_Class is always set to NOTIFY_CLASS, also defined in dos/notify.h, to identify this message
as a notification message.

nm_Code is always set to NOTIFY_CODE, again defined in dos/notify.h. It may also be used to
identify a notification message.

nm_NReq is a pointer to the NotifyRequest through which this message was triggered. This allows
clients to identify the source of the request and by that the object that has been changed.

nm_DoNotTouch and nm_DoNotTouch2 are strictly for use by the file system and shall not be
touched nor interpreted by the issuer of the request.

By design, the NotifyMessage reassembles the layout of an IntuiMessage and thus allows reusing
an IDCMP port (see [4]) of an intuition window for receiving messages — as long as it can be ensured that
the port remains available as least as long as notification request remains active.

StartNotify() returns a Boolean success indicator. It returns a non-zero result code on success and
then sets IoErr() to an undefined value. On error, the function returns 0 and sets IoErr() to a non-zero
error code.

90 Rom Kernel Reference Manual: DOS

7.5.2 Canceling a Notification Request
The EndNotify() function cancels an issued notification request.

EndNotify(notifystructure) /* since V36 */
D1

void EndNotify(struct NotifyRequest *)

This function cancels the notification request identified by notifystructure. This function shall
only be called on notification requests that have been successfully issued by StartNotify()5. If the
issuer of a request did not yet reply all NotifyMessage messages and some are still piled up in the
nr_Port, the file system will manually dequeue them from nr_Port. However, callers should make
sure that they have replied all NotifyMessages they already dequeued from their port themselves before
terminating the request.

Afterwards, the notifystructure is again available for the caller, for example to either release its
memory, or to start another notification request.

5The information in [1] on this is incorrect, EndNotify() is not safe to call on requests that failed to start.

Notification Requests 91

92 Rom Kernel Reference Manual: DOS

Chapter 8

Administration of Volumes, Devices and
Assigns

To dos.library, a handler or a file system is represented by an exec MsgPort (or short “port”) to which it
sends requests to the handler, e.g. to read bytes from a file or to iterate through a directory (see also chapter 12
and section 12.2.1). The library, however, also needs to obtain these ports for a given path somehow; this is
the responsibility of the GetDeviceProc() function discussed in section 8.2.1.

For relative paths, the lock representing the current directory, or the default file system of the process if
this lock is ZERO, is used as source for such a port, see section 6.4, and chapter 10 for details. For absolute
paths, the source is the device, volume or assign name upfront the colon in the path. For example, if the file
“S:Startup-Sequence” is to be opened, GetDeviceProc() needs to determine from the name “S”
of the assign the port of the handler that is responsible for the target directory of the assign.

To this end, each volume, assign, handler or file system is represented by a DosList structure which
provides both the name as used in an absolute path, e.g. S, and the MsgPort responsible for it. All DosList
structures are queued in a global list within dos.library (see also section 17.3) named the device list. The
GetDeviceProc() function, when called with an absolute path, searches this list for a matching name
and provides a suitable port for the caller. Thus, the relation between a name and a port is established through
this function and the Device List.

Entries on the device list are created in multiple ways: The Mount command adds entries representing
handlers and file systems from a mountlist stored typically in DEVS:DosDrivers, see section 8.1. Any
non-ROM resident handler, such as for example CD0 for the ISO Rock Ridge file system is announced to
AmigaDOS in this way. Some devices, such as DF0 for the first floppy drive are created by the ROM itself
through the System-Startup process as explained in section 17.4.1, or — in AmigaDOS versions 45 and
before — through the Initial CLI and dos.library.

The Assign command creates assigns, i.e. logical volume names bound to one or multiple directories,
which utilizes the functions listed in section 8.6 and by that also creates a DosList structure representing
the assign. Some assigns, namely those listed in table 4.3 of section 4.3.3, are also already created by the
System-Startup process when booting.

File systems itself also announce their volumes, i.e. the media, data carriers and partitions they handle,
through entries in the device list. DosList structures representing volumes are added and removed by file
systems as media are inserted or removed.

Auto-booting hardware expansions also mount their boot partitions here through expansion.library and
its MakeDosNode() and AddBootNode() functions. The System-Startup process picks them up from
expansion.library and adds them to dos.library when booting the system. This mechanism is explained in
more detail in [5], and AmigaDOS specific details on the boot process are found in section 17.4.

CHAPTER 8. ADMINISTRATION OF VOLUMES, DEVICES AND ASSIGNS 93

Some special names such as NIL or * from table 4.2 in 4.3.1 are hard-coded into GetDeviceProc()
and are not represented by a DosList structure. They form an exception because the relation between
handler and device name is dependent on the calling process, or the target device is not representable as a
handler at all.

Thus, in short, the DosList structure is central to dos.library and establishes the link between the
assign, volume or device name as it appears on an absolute path upfront the colon (“:”) and the MsgPort
of the handler or file system implementing AmigaDOS functions on such a path. This structure, defined in
dos/dosextens.h, reads as follows:

struct DosList {
BPTR dol_Next;
LONG dol_Type;
struct MsgPort *dol_Task;
BPTR dol_Lock;
union {

struct {
BSTR dol_Handler;
LONG dol_StackSize;
LONG dol_Priority;
ULONG dol_Startup;
BPTR dol_SegList;
BPTR dol_GlobVec;

} dol_handler;

struct {
struct DateStamp dol_VolumeDate;
BPTR dol_LockList;
LONG dol_DiskType;

} dol_volume;

struct {
UBYTE *dol_AssignName;
struct AssignList *dol_List;

} dol_assign;

} dol_misc;

BSTR dol_Name;
};

Confusingly, the same data is also accessible through the DeviceList structure, which is nothing than
a DosList in disguise, but only represents volumes, with elements at the same byte offsets under different
names. Thus, for example dl_VolumeDate in the DeviceList structure accesses the same elements as
dol_volume.dol_VolumeDate and the two may be used interchangeably for volumes.

The DevInfo structure is another incarnation of a DosList that is only able to represent handlers;
e.g dvi_Handler and dol_handler.dol_Handler access the same element. The DevInfo and the
DeviceList structures are defined in dos/dosextens.h.

Finally, dos/filehandler.h contains a third structure, named DeviceNode, which is a fourth
representation of a DosList, and only to be used for file systems, and thus equivalent to a DevInfo
structure as well. For example, dn_Handler and dvi_Handler are equivalent elements, just available
under different names.

94 Rom Kernel Reference Manual: DOS

In the following, these alternative structures will not be discussed as they offer no new functionality and
just add confusion. It is suggested to just leave them alone and access entries of the device list consistently
through the DosList structure. If necessary, pointers to these structures can be casted to each other without
loss of information1.

The elements of a DosList have the following interpretation:

dol_Next is a BPTR to the next entry in the singly linked list of DosList structures forming the
device list, or ZERO for the last entry on the list. The order of the entries has no particular meaning. The
head of this list is in the DosInfo structure specified in section 17.3. However, this list should not be walked
manually, but instead FindDosEntry() (see 8.3.5) should be used for iterating through this list.

dol_Type identifies the type of the entry, and by that also the layout of the structure, i.e. which elements
of the unions are used. The following types are defined in dos/dosextens.h:

Table 8.1: DosList Entry Types

dol_Type Description
DLT_DEVICE A file system or handler, see 4.3.1
DLT_DIRECTORY A regular or multi-assign, see 4.3.3
DLT_VOLUME A volume, see 4.3.2
DLT_LATE A late binding assign, see 4.3.3
DLT_NONBINDING A non-binding assign, see 4.3.3
DLT_PRIVATE Used internally for resolving late binding assigns

dol_Task is the MsgPort of the handler to contact for the particular device, assign or volume name.
If the DosList represents a handler or file system, this element can be NULL if the handler is not running.
A new handler process will be started if a port is needed, and it depends on the handler whether this element
will ever be populated. The CON-Handler leaves this element at NULL as it requires a new process for each
window it manages, but file systems such as the FFS deposit here its MsgPort as all activities on the same
medium or partition go through the same single process.

Volumes keep here the MsgPort of the file system that operates the volume, but set it to NULL in case
the medium goes away, e.g. is ejected, but locks or file handles on the volume are still active and thus the
volume itself remains known to AmigaDOS. As a result, the Workbench keeps showing the icon representing
such volumes on the desktop.

For regular assigns, dol_Task is also the pointer to the port of the file system the assign binds to; in case
the assign is a multi-assign, this is the port of the first target directory. All additional ports can be reached
through the locks that are are part of the dol_List discussed below. For late binding assigns this element
is initially NULL, but will be filled in as soon as the assign is bound to a particular directory; it then becomes
the pointer to the port of the handler managing the volume the assign is located on. Finally, for non-binding
assigns this element always stays NULL.

dol_Lock is only used for assigns, and only if it is bound to a particular directory. It is then the lock
(see chapter 6) to the directory forming the assign, or for multi-assigns, the first directory within the assign.
This element remains ZERO for non-binding assigns and is initially ZERO for late binding assigns. For all
other types, this element stays ZERO.

dol_Name is a BPTR to a BSTR of the name under which the handler, volume or assign is accessed.
That is, this string corresponds to the path component upfront the colon. In particular, it does not include
the colon. As a courtesy to C and assembler functions, AmigaDOS ensures that this string is also NUL
terminated, i.e. dol_Name+1 is a regular C string whose length is available in dol_Name[0].

1The reason for this confusion lies likely again in the history of AmigaDOS actually being a port of Tripos, written in BCPL. This
language represent structures through long word offsets relative to a base index in manifests, and thus does not offer structures as known
from C.

CHAPTER 8. ADMINISTRATION OF VOLUMES, DEVICES AND ASSIGNS 95

The elements within dol_handler are used by handlers and file systems, that is if dol_Type equals
DLT_DEVICE:

dol_Handler is a BPTR to a BSTR containing the file name from which the handler or file system is
loaded if dol_SegList is ZERO. As the file name is interpreted by the first process attempting to access
an unloaded handler, and this path is thus relative to the current directory of this process, it should be an
absolute path. Typically, handlers reside in the L assign. Clearly, the path should not be on a file system
described by its own DosList structure. This element corresponds to the HANDLER, FILESYSTEM and
EHANDLER entries of the mountlist, see section 8.1.1.

dol_StackSize specifies the size of the stack for creating the handler or file system process. The
unit of the stack size depends on the dol_GlobVec entry. If dol_GlobVec indicates a C or assembler
handler, dol_StackSize is in bytes. Otherwise, that is, for BCPL handlers, it is in long words2. Table 8.2
indicates the type of the handler. This element corresponds to the STACKSIZE entry of the mountlist.

dol_Priority is priority of the handler process. Even though it is a LONG, it shall be a number
between −128 and 127 because priorities of the exec task scheduler are BYTEs. For all practical purposes,
the priority should be a value between 0 and 19. It corresponds to the PRIORITY entry of the mountlist.

dol_Startup is a handler-specific startup value that is used to communicate a configuration to the
handler. For example, the CON-Handler uses this element to distinguish whether it is used as CON or RAW
device (see section 13.2.3 for details). The Fast File System and most other file systems expect here a BPTR
to a FileSysStartupMsg structure. While this value may be whatever the handler requires, the Mount
command either deposits here a BPTR to the FileSysStartupMsg structure, a BPTR to a BSTR, or a
small integer. Section 13.1.2 provides more details on mounting handlers and how the startup mechanism
works. Unfortunately, it is hard to interpret dol_Startup correctly as its interpretation is dependent on the
specific handler, though section 8.3.6 provides additional hints and a recommended algorithm for guessing
the type of this element. One way to set it is through the STARTUP keyword in the mountlist, see 8.1.2 for
details.

dol_SegList is a BPTR to the chained segment list of the handler if it is loaded, see chapter 11 for
additional details how binaries are represented in memory. For disk-based handlers, this element is initially
ZERO. When a program attempts to access an object identified by an absolute path starting with the device
name dol_Name, dos.library first checks whether this element is ZERO, and if so, attempts to load a binary
from the path stored in dol_Handler. Upon success, its segment is stored here. If the FORCELOAD entry
of the mountlist is non-zero, the Mount command already attempts to load the handler or file system from
disk and thus populates this element; otherwise, that is, without FORCELOAD, Mount attempts to reuse
an existing file system by first scanning the FileSystem.resource for an entry whose DOSTYPE matches. If
nothing is found there, loading the handler remains to the first process requiring it. Additional details depend
on nature of the handler or file system and are discussed in section 13.1.2.

dol_GlobVec identifies the nature of the handler as AmigaDOS (still) supports BCPL and C/assembler
handlers. BCPL handlers use a somewhat more complex loading and linking mechanism as their BCPL-
specific Global Vector needs to be populated. This is not required for C or assembler handlers where a simpler
mechanism is sufficient, more on this in sections 13.1.2 and 11.5.4. While at this point the Port-Handler and
the FFS as only exceptions still support the legacy BCPL binding despite not being implemented in BCPL
anymore, it is likely that support for BCPL handlers will be phased out in the future.

The dol_GlobVec element also defines how access to the device list is secured during handler loading
and startup. Two types of access protection are possible: Exclusive access to the list, or shared access to the
list. Exclusive access protects the device list from any type of access while the handler is loaded and until
handler startup completed. This prevents any other modification to the list, but also read access through any
other process of the list. Shared access allows read accesses to the list while preventing modifications.

The value in dol_GlobVec corresponds to the GLOBVEC entry in the mountlist. It shall be one of the
values in table 8.2:

2The information in [7] is not accurate, the stack size is dependent on the GLOBVEC.

96 Rom Kernel Reference Manual: DOS

Table 8.2: GlobVec Values
dol_Type Description
-1 C/assembler handler, exclusive access to the device list
-2 C/assembler handler, shared access to the device list
0 BCPL handler using system GV, exclusive access to the device list
-3 BCPL handler using system GV, shared access to the device list
>0 BCPL handler with custom GV, exclusive access to the device list

The values 0,−3 and> 0 all setup a BCPL handler, but differ in the access type to the device list and how
the BCPL Global Vector is populated. The values 0 and −3 fill this vector with the system functions first,
and then use the BCPL binding mechanism to extend or override entries in this vector with the values found
in the loaded code, see section 11.5.4 for further details. Any values > 0 require a BPTR to a custom vector
which is used instead for initializing the handler. This startup mechanism is only used for creating device list
entries within the Kickstart and it is not quite practical otherwise as this vector needs to be communicated
into dos.library somehow. For new code, BCPL linkage and binding should not be used anymore.

Elements of the dol_volume structure are used if dol_Type is DLT_VOLUME, identifying this entry
as belonging to a known specific medium or partition.

dol_VolumeDate is the creation date of the volume. It is a DateStamp structure that is specified
in section 3.1.1. It is used to uniquely identify the volume, and to distinguish this volume from any other
volume of the same name.

dol_LockList is a pointer to a singly-linked list of locks. This list is created by the file system
when the volume is ejected, and contains all still active locks on this volume. It is stored here to allow a
similar file system to pick up the locks once the volume is re-inserted, even if it is re-inserted into another
device. The linkage is performed with BPTRs and the fl_Link element of the FileLock structure, see
also section 6.4. For inserted volumes, this element remains ZERO, and the information whether a volume is
inserted or not comes from the dol_Task element being NULL or a valid pointer, see there.

dol_DiskType is intended to be an identifier of the file system type that operates (or operated, for
ejected media) the volume. The value is placed here such that an alternative process of the same file system
operating on a different exec device is able to pick up or refuse the locks stored in dol_LockList if a
medium is re-inserted into a different physical device. Unfortunately, even the latest version of the Fast File
System does not fill this element such that it remains 0, though other file systems leave their traces here to
identify their own volumes. Note that the value placed here is not the identifier found in id_DiskType
of the InfoData structure as the latter rather identifies the availability of a file system but not its type, see
section 6.3.

Elements of the dol_assign structure are used for all types of assigns:

dol_AssignName is pointer (and not a BPTR) to a NUL-terminated target path of non-binding and late
binding assigns. It remains NULL otherwise. dos.library uses this string to locate the target directory of the
assign. For late binding assigns, this element is used only on the first attempt to access the assign at which
dol_Lock is populated, then this element is released with FreeVec() and set to NULL.

dol_List contains additional locks for multi-assigns and is thus only used if dol_Type equals
DLT_DIRECTORY. A regular assign is a multi-assign whose dol_List element is NULL and thus consists
of only a single directory. For multi-assigns, dol_Lock is the lock to the first directory of the multi-assign,
while dol_List is a regular C pointer to a singly-linked list of the locks of all subsequent directories,
represented as an AssignList structures, defined in dos/dosextens.h:

struct AssignList {
struct AssignList *al_Next;
BPTR al_Lock;

};

CHAPTER 8. ADMINISTRATION OF VOLUMES, DEVICES AND ASSIGNS 97

al_Next points to the next lock that is part of the multi-assign. This is not a BPTR. It is NULL for the
last directory in a multi-assign.

al_Lock is the lock to (another) directory participating in the multi-directory assign.

The AssignList structures shall not be allocated or released directly; rather, they shall be created
through AssignAdd() and removed through RemAssignList(), see sections 8.6.4 and 8.6.5.

8.1 The Device List and the Mountlist

One way to create entries of the type DLT_DEVICE on the device list is through a mountlist and the Mount
command. Many keywords in the mountlist map directly to entries in the DosList structure, others to
entries in the FileSysStartupMsg and the DosEnvec structure pointed to from there. The latter two
structures will be introduced in sections 8.1.2 and 8.1.3.

8.1.1 Keywords defining the DosList structure

The HANDLER, EHANDLER and FILESYSTEM keywords in the mountlist all define the dol_Handler
element and thus the path from which the handler will be loaded. This is by convention a file within the L
assign containing all handlers and file systems3. Which keyword is used impacts, however, other elements of
the DosList structure, most notably the dol_Startup entry.

The STACKSIZE keyword sets dol_StackSize element. This is in bytes for C and assembler han-
dlers, and in long words for BCPL handlers. The type of the handler is determined by GLOBVEC.

The PRIORITY keyword sets dol_Priority and with that the priority of the process running the
handler or file system. Useful values are between 0 and 19.

The GLOBVEC keyword sets dol_GlobVec element, and by that also the type of the handler. Table 8.2
in chapter 8 lists the possible values and their interpretation. Positive values, even though a meaning is
assigned to them, are not useful as an absolute RAM location for the BCPL global vector would then be
needed.

If the HANDLER keyword is present, the STARTUP entry in the mountlist sets dol_Startup. It can be
either an integer value, or a string, optionally enclosed in double quotes. In the latter case, dol_Startup
is set to a BPTR to a BSTR which is, to ease handler implementation, also NUL terminated. If present,
the quotes become part of the string, and the handler has to remove them when interpreting it. The NUL
terminator is, even though always present, not included in the size of the BSTR. It is up to the user to ensure
that the arguments in the mountlist are what the handler expects.

8.1.2 Keywords controlling the FileSysStartupMsg

If the EHANDLER or FILESYSTEM keyword is present, the dol_Startup element is instead a BPTR to a
FileSysStartupMsg structure, defined in the include file dos/filehandler.h:

struct FileSysStartupMsg {
ULONG fssm_Unit;
BSTR fssm_Device;
BPTR fssm_Environ;
ULONG fssm_Flags;

};

3This L is probably short for “libraries”, not to be confused with the exec type of shared libraries, and of course this convention goes
back to Tripos.

98 Rom Kernel Reference Manual: DOS

It is again up to the user to ensure that the handler is really expecting such a structure and create the mountlist
appropriately.

The elements of the above structure identify an exec type device on top of which the handler or file system
is supposed to operate, thus for example trackdisk.device to mount a file system on the floppy. Some extended
handlers, i.e. those that accept the EHANDLER keyword, also use this structure; the V43 Port-Handler can be
setup this way to operate on top of a third-party serial device driver, see section 13.3.2 for details.

The DEVICE keyword of the mountlist sets fssm_Device entry. This element is initialized to a
BSTR containing the device name (without quotes). To avoid conversion to a C string when passing it to
OpenDevice(), this BSTR is also always NUL-terminated.

The UNIT keyword sets fssm_Unit and therefore the unit number of the exec device on top of which
the file system or handler should operate. The unit number enumerates several hardware units handled by the
same device. For example, SCSI device drivers map it to the SCSI ID of the drive they address.

The FLAGS keyword sets fssm_Flags element, and thus the flags for opening an exec device. Its
purpose and meaning is specific to the device identified by fssm_Device. It is typically 0.

The fssm_Environ element is a BPTR to another structure explained in section 8.1.3.

8.1.3 Keywords controlling the Environment Vector
The fssm_Environ element of the FileSysStartupMsg is a BPTR to another structure that describes,
among other things, the layout (or “geometry”) of a file system, that is, the partition; beyond file systems,
extended handlers mounted by the EHANDLER keyword also make use of it.

This structure is also defined in dos/filehandler.h and looks as follows:

struct DosEnvec {
ULONG de_TableSize;
ULONG de_SizeBlock;
ULONG de_SecOrg;
ULONG de_Surfaces;
ULONG de_SectorPerBlock;
ULONG de_BlocksPerTrack;
ULONG de_Reserved;
ULONG de_PreAlloc;
ULONG de_Interleave;
ULONG de_LowCyl;
ULONG de_HighCyl;
ULONG de_NumBuffers;
ULONG de_BufMemType;
ULONG de_MaxTransfer;
ULONG de_Mask;
LONG de_BootPri;
ULONG de_DosType;
ULONG de_Baud;
ULONG de_Control;
ULONG de_BootBlocks;

};

All elements in this structure, except the first one which is set implicitly, are also represented by keywords in
the mountlist.

de_TableSize defines how many elements in this structure are actually valid and thus are accessible
by a handler or file system. It is not a byte count, but an element count, excluding de_TableSize. In other

The Device List and the Mountlist 99

words, the DosEnvec is a typical BCPL vector whose vector size is indicated in its first element — note that
all elements of the structure are 32-bits wide. For AmigaDOS version 32 and below, at least all elements up to
de_NumBuffers shall be present, and thus de_TableSize is at least 11. AmigaDOS version 33 added
de_BufMemType, and AmigaDOS version 34 de_MaxTransfer and de_Mask. Version 36 added the
remaining elements.

The keywords SECTORSIZE and BLOCKSIZE in the mountlist set both de_SizeBlock. While the
mountlist keywords take a byte count, this byte count is divided by 4 to form a long-word count that is
inserted into de_SizeBlock. As the name suggests, it defines the size of a storage unit on a medium; the
mass storage device accessing it will limit the choice of supported storage unit sizes, such as 512 or 4096
bytes4. Thus, typical values for this element are 128 for 512 byte sectors, or 1024 for 4096 byte sectors.
However, not all file systems support all sector sizes, most of them restrict them to powers of 2, and some
only support the default value of 128, i.e. 512 byte sectors. This is also what the Mount command fills in by
default.

de_SecOrg is not used and shall be 0; consequently, the Mount command does not provide a keyword
to set it.

The SURFACES keyword sets de_Surfaces. A possible interpretation for this element is the number
of read-write heads of a magnetic disk drive. However, as the exec device trackdisk interface for magnetic
storage media does not access media on such a low level and instead expects byte counts to address sectors,
file systems use this value along with de_BlocksPerTrack and the number of cylinders computed from
de_LowCyl and de_HighCyl to determine the capacity of the medium or partition they operate on.

The SECTORSPERBLOCK keyword sets the de_SectorsPerBlock, and thus the number of physical
sectors on a disk the file system combines to one logical storage block. Not all file systems support values
different from 1 here and most restrict this element to powers of 2, including the FFS. File systems read
and write data in units of de_SectorsPerBlock times de_SizeBlock long words. For the exec
trackdisk interface, only this product matters; however, the “direct SCSI” transfer the FFS version 45
and above offer addressing the disk in terms of physical sectors, and then de_SizeBlock defines the size
of a sector in long words as accessed by SCSI commands, whereas de_SectorsPerBlock is the number
of physical sectors the FFS reads per logical block. Internally, the FFS administrates partitions and mediums
in terms of so-called keys where each key addresses one logical block, see section 13.6.3 for the details. Both
the sector size as defined by de_SizeBlock and the block size in sectors defined by this keyword are
required to compute from the key the byte or sector offset the exec device layer requires.

The SECTORSPERTRACK and BLOCKSPERTRACK keywords set both the de_BlocksPerTrack
element of the DosEnvec structure. The first name is actually more appropriate as this element defines the
number of physical sectors — and not the number of logical blocks — a track of a disk contains. Thus, the
naming is a historic accident. As for the SURFACES keyword, the number of sectors per track is only in so
far relevant as it defines along with the first and last cylinder the storage capacity of the medium or partition;
for FFS partitions, it also defines location of the root block, see section 13.6.4. This block represents the root
directory of a medium or partition. Otherwise, the track size as defined by this values never enter the exec
device layer directly.

The RESERVED keyword sets the de_Reserved element of DosEnvec and defines the number of
(logical) blocks not used by the file system at the start of the disk or partition. For floppies, these reserved
blocks hold a (minimal) boot procedure that initializes dos.library; the boot block is described in more detail
in section 13.6.2. As the FFS reserves the block number 0 — or rather the key 0 (see 13.6.3) — to indicate an
unused or non-existing linkage, the very first block of a partition cannot be made use of anyhow; all occupied
blocks are identified by a positive key. The default is to reserve 2 blocks, which is also the number of boot
blocks on a floppy.

4Unfortunately, this is unit is sometimes also denoted as “block”, though this word means something different in the context
of AmigaDOS, namely the unit by which a file system organizes data. Multiple sectors can be combined into one block, see also
SECTORSPERBLOCK below.

100 Rom Kernel Reference Manual: DOS

The PREALLOC keyword installs the de_PreAlloc element, which is supposed to be the number of
logical blocks set aside at the end of the partition5. However, current FFS versions completely ignore it and
no traces of its use are found in the current source. Historically, the BCPL implementation of the OFS shipped
with AmigaDOS 34 and before used this value instead to compute the number of blocks the file system could
pre-read from the disk and store in its internal buffers without imposing a penalty for repositioning the drive
head. Thus, this value was 11 for the (ROM-created) mountlist of the floppy as a track there consists of 11
(physical) sectors and these 11 sectors are in the internal buffer of trackdisk.device anyhow. At present, one
can only recommend to leave this element alone as its interpretation seem to have changed over time; it could
be assigned a different meaning in the future, or could be used by other (non-native) file systems for unknown
purposes.

The INTERLEAVE keyword defines the lower 16 bits of the de_Interleave element. Tripos and
AmigaDOS versions prior version 45 reserved the entire long word to define the interleave factor of the
disk, which is the difference between two sector numbers the file system is supposed to allocate for storing
contiguous data. This interleave factor historically helped to speed up data rates of slow hard disk interfaces;
as data is transferred, the following sectors on the rotating disk passed under read head and the hard disk
controller would have to wait for almost an entire disk rotation for the numerically next sector to become
accessible again. Setting an interleave factor larger than 1 would have helped in such cases. However,
neither the original BCPL implementation of the OFS nor the latest FFS make use of this mechanism and
allocate sectors contiguously, i.e. with an interleave of 1, regardless of what is set here. The upper 16
bits of de_Interleave suit now a different purpose and are controlled by a separate set of keywords in
the mountlist Thus, for all practical purposes, this keyword serves no purpose, and even the legacy BCPL
implementation ignored it.

The LOWCYL keyword initializes the de_LowCyl element of the DosEnvec structure. It sets the lower
end of the partition on the storage medium, i.e. de_LowCyl× de_Surfaces× de_BlocksPerTrack
+ de_Reserved × de_SectorsPerBlock is the first physical sector number on a disk that can carry
payload data of the file system. Again, while this element seems to imply that a disk consists of equally sized
cylinders, each containing de_Surfaces tracks, this does not need to be the case and the underlying exec
device addresses media through a byte or sector offset instead.

The HIGHCYL keyword sets the de_HighCyl element; it defines the (inclusive) upper end of the par-
tition in units of cylinders. That is, (de_HighCyl + 1) × de_Surfaces × de_BlocksPerTrack −1
is the last sector of the partition or medium the file system can allocate for storing data.

The BUFFERS keyword sets the de_NumBuffers element; it defines the (initial) number of file system
buffers allocated for caching metadata and storing data not directly accessible through the exec device driver.
The number of buffers may be changed later with AddBuffers(), see section 8.7.1. Each buffer holds
data of one (logical) block, though a small administrative overhead is required on top. Initially, 5 buffers are
reserved for the floppies, and while a larger number of buffers generally help, especially when seeking in
large files, the overhead of administrating the cache has a negative impact from a certain amount of buffers
onward. For the FFS, larger blocks (rather than a larger number of buffers) are recommended as more payload
and administration data can be stored per block. That is, the block size even enters inversely quadratic into
the FFS overhead.

The BUFMEMTYPE defines the de_BufMemType element. It defines the memory type, i.e. the second
argument of AllocMem(), for allocating memory keeping the file system buffers. It cannot, of course,
control the memory type into which users require the file system to read data or from which data is to
be written. While exec device drivers should be able read from and write data to any memory type, several
legacy drivers are not able reach all memory areas; this is often due to limitations of the hardware, for example
Zorro-II hardware cannot reach 32-bit memory on CPU expansion boards by means of DMA. Depending
on limitations of the fssm_Device, it is unfortunately up to the user to provide a suitable BUFMEMTYPE.
While it seems plausible to provide here a memory type of the RAM that sits “closer” to the physical interface
in order to improve transfer speed, this is not necessarily the case as the CPU still has to access this data

5This is what is also documented in [7], though the purpose of this entry changed over time.

The Device List and the Mountlist 101

anyhow, in worst case over the slow Zorro-II bus. Thus, only insignificant performance improvements can
be expected from playing with this value. Historically, trackdisk.device could only access buffers in chip
memory and required a value of 3 (= MEMF_CHIP|MEMF_PUBLIC) here, though this defect was fixed in
AmigaOs 36. This is also the default installed by Mount, unless a better value is provided by the user. Fully
operational device drivers will accept a value of 1 (= MEMF_PUBLIC) here.

Make Mask and Buffer Match It makes little sense to provide a very restrictive BUFMEMTYPE
without also adjusting the MASK and vice versa. The MASK (see next paragraph) defines under which
conditions a file system performs single-block I/O, and the BUFMEMTYPE the memory type from
which such buffers are taken. If the latter does not fit the former, the file system would attempt
to perform single block I/O into memory it cannot reach, or restrict I/O into single-block I/O for
memory it would be able to reach — thus, the two should match. A mask of 0x001fffff fits to a
MEMF_CHIP buffer, i.e. a value of 3 for the BUFMEMTYPE, and a mask of 0x00ffffff to Zorro-II
memory, namely a value of 513 of the BUFMEMTYPE. FFS 47 onward aligns buffers it allocates to
multiples of 16 bytes, suitable for a mask whose last digit is 0. Requiring even more least significant
bits to 0 thus makes no sense. FFS versions 45 and below could only ensure that the least significant
two bits of its own buffer memory were 0.

The MASK keyword defines the de_Mask element of the DosEnvec structure. It is a workaround for
defect device drivers that cannot read from or write to all memory types. If the address of the host memory
buffer has bits set in positions where the mask contains 0 bits, the file system assumes that the device cannot
reach memory of such an address. Instead, it performs input or output indirectly through its buffers, allocated
from BUFMEMTYPE memory, and copies the data manually (i.e. by the CPU) to or from the target memory
address. Historically, trackdisk.device required here a mask value restricting access to chip memory, though
this requirement has been removed in AmigaOs 36. The Mount command enforces that bit 0 is always 0,
i.e. that direct transfers are only possible to word-aligned buffers; the default value is 0xfffffffe, which
unfortunately does not fit to the default buffer memory type. Thus, users should probably provide more useful
values and override such defaults.

Masking Defects The purpose of the mask is to hide defects in device drivers and provide a work-
ing system in the absence of a fully functional device driver. If a mask is set, BUFMEMTYPE shall
be set as well as it determines which (alternative) memory will be allocated for buffers in case
the intended target memory is not suitable. A rather typical value for the mask is 0x00ffffff,
indicating that the device cannot reach 32-bit memory. A suitable memory type would then be
MEMF_24BITDMA|MEMF_PUBLIC, i.e. 513 as decimal value. This requests 24-bit memory for
the buffers.

The MAXTRANSFER keyword sets the de_MaxTransfer element of the DosList. This value sets
the maximum number of bytes the file system shall read or write in a single transfer. Similar to MASK, it is a
workaround required to support defect device driver implementations that corrupt data if too many bytes are
read or written in one go. The Mount command installs here 0x7fffffff as default value, scsi.device of
AmigaDOS 45 and below required here due to multiple defects a value of 0x0001fe00. This value limits
the number of 512-byte sectors to be transferred in one I/O operation to 255, which can help to keep hard
disks from the 1980s operational.

MaxTransfer is not a rate The MaxTransfer keyword or element defines a byte count that, when
exceeded, requests the file system to break up transfers into smaller blocks. While that implicitly
limits the throughput of the device, it does not define a rate (i.e. in units of bytes per second). It is the
amount of bytes to read or write and not the number of bytes transferred per second that imposes a
problem.

The BOOTPRI keyword sets the de_BootPri element which defines the order in which the system
attempts to boot from a partition or medium. Clearly, it makes little sense to set this keyword in a mountlist

102 Rom Kernel Reference Manual: DOS

that is interpreted after the system had already booted. However, auto-booting devices may install an appro-
priate value in the DosList they create through expansion.library from the DosEnvec structure installed
in the RDB. The file system itself does not make use of this value anyhow, but the auto-booting device. The
default value Mount leaves here is 0.

The DOSTYPE keyword sets the de_DosType element, identifying the type and flavor of the file system
to use for the medium or partition. If the FILESYSTEM keyword is present, but the FORCELOAD is either
not present or set to 0, then the Mount command first attempts to find a suitable file system in FileSys-
tem.resource whose fse_DosType matches de_DosType, avoiding to load the same file system again.
If a match is found, the FileSysEntry of the resource is used to initialize the DosEnvec, in particular
dol_SegList is filled from fse_SegList. The Format command uses the value deposited here to
initialize a partition for a mounted file system, whereas the FFS determines its type from the boot block, i.e.
the first block of a partition, see section 13.6.2. Table 8.3 lists some AmigaDOS file systems:

Table 8.3: File System Types
File System Type Description
ID_DOS_DISK Original file system (OFS)
ID_FFS_DISK First version of FFS
ID_INTER_DOS_DISK International variant of OFS
ID_INTER_FFS_DISK International variant of FFS
ID_FASTDIR_DOS_DISK OFS variant with directory cache
ID_FASTDIR_FFS_DISK FFS variant with directory cache
ID_LONG_DOS_DISK OFS variant with 106 character file name size
ID_LONG_FFS_DISK FFS variant with 106 character file name size
ID_COMPLONG_FFS_DISK FFS with 54 character file names
’MSD\0’ FAT on a disk without partition table
’MDD\0’ identical to the above, FAT on a floppy
’MSH\0’ FAT on a partition
’FAT\0’ FAT, used on a partition or a SuperFloppy
’CD0\0’ Original CD File system
’CD0\1’ CD File System with Joliet support
’UNI\0’ AT&T System-V file system
’UNI\1’ Dummy boot “file system” for UNIX boot
’UNI\2’ Berkeley file system for System-V
’resv’ reserved partition, e.g. swap

The first part of the table indicates various variants of the ROM file system; the original version from
Tripos is here denoted as OFS, though this name mostly distinguishes it from its later re-implementation, the
FFS.

The OFS variants embed additional administration information (see section 13.6.11) into the data blocks
and thus carry less payload data per block. For that, they are are more robust, but slower as the data cannot
be transmitted by DMA into the host memory but require an additional copy. The FFS variant immediately
below addressed this issue; due to its re-implementation in assembler, it also provided significantly faster
disk access. Both first types use, however, a non-suitable algorithm for case-insensitive comparison of file
names and thus do not interpret characters in the extended ISO-Latin-1 set (i.e. printable characters outside
the ASCII range) correctly (see also section 13.6.4 for details on the hashing algorithm). Thus, the first two
types should not be used anymore.

Proper case-insensitive interpretation of file names was added afterwards, leading to the next two flavors
which are, despite the layout of data blocks, otherwise identical. All types from that point on in table 8.3
until its end use a proper (ISO-Latin aware) algorithm to compare file names.

The Device List and the Mountlist 103

The next two versions administrate an additional directory cache; while this cache typically speeds up
listing directories, it also requires additional update steps when adding or renaming files, making such op-
erations slower and more error prone. These variants unfortunately also lack a good algorithm to clean up
the cache if objects are continuously added and removed from directories. These variants are not generally
recommended and should be considered experimental. Sections 13.6.10 and following provide details on the
directory cache.

The LONG variants of OFS and FFS allow file names of up to 106 characters by using a slightly modified
block syntax which overcomes the 30 character file name limit all above variants suffer from. This variant was
introduced in version 45 of AmigaDOS. They also use the ISO-Latin aware file name comparison. In some
rare cases, the administration information is augmented by one additional block keeping a long comment.
This block is specified in section 13.6.9.

The last variant offers longer file names in a way that is backwards compatible to earlier versions of
the FFS, i.e. no reformatting is necessary as all block types, except for those holding longer names, remain
unchanged. The file name length limit is here 54 characters, though older versions of the FFS can still read
the disk correctly, even though they will not be able to locate or list longer file names. This variant is also
experimental. While it was already introduced in AmigaDOS 43, it was never officially announced.

The next group of types indicates various flavors of the MS-DOS FAT file system. The first two types are
identical and correspond to a file system on a single disk without a master boot record (MBR) type partition
table, as found on floppy disks. They are unsuitable for hard disk and thumb-drive partitions as both typically
include a MBR.

The MSH\0 type indicates a FAT system on a Master Boot Record (MBR) partition as used on (legacy)
PC hardware. As AmigaDOS does not natively support the MBR, the file system here (as an architectural
tweak) interprets the partition table. Which partition is used depends on the last character of the device name,
i.e. dol_Name. The C character indicates the first partition, adopting the convention of the operating system
to which FAT is native, the second partition is indicated by the last character of dol_Name being D and so
on.

The FAT\0 type indicates a file system either on a floppy or the first partition of a MBR-formatted disk,
depending on the SUPERFLOPPY keyword, see below.

The next group of file system types indicates various versions of the CD-Rom — actually ISO Rock
Ridge — file system. The first type is the original file system that came with Version 40 of AmigaDOS, the
second the extended version that includes support for Joliet extensions and audio track support. Otherwise,
the types are identical.

The last group indicates various file systems for Amiga Unix installations that are not found in mountlists,
but in the RDB of the booting hard disk. These file systems do not run under AmigaDOS but rather under
Unix variants, and thus do not appear in AmigaDOS installations. A UNI\1 partition appears as an entry in
the boot menu, booting an Amiga Unix installation.

The BAUD keyword fills the de_Baud element; it is not used by file systems but extended handlers
that are mounted by the EHANDLER keyword. For them, it provides the baud rate for an (assumed) serial
connection. This keyword first appeared for serial handlers delivered with the CBM A2232 multi-serial port,
but is also interpreted by the AmigaDOS Port-Handler from version 43 onward and by the AUX-Handler
version 47 onward.

The CONTROL keyword sets the de_Control element of the DosList structure. Even though this
element is here indicated as an ULONG, it can be either an integer or a string, optionally enclosed in double
quotes, similar to dol_Startup. It is encoded either as an integer or as a NUL terminated BSTR. It is up to
the user to learn from the handler documentation what the handler expects here as the Mount command has
no means of checking the correctness of the value. The Port-Handler, see section 13.3.2, and AUX-Handler
(see section 13.2.3) interpret this entry as the definition of the serial connection parameters, both requiring
quoted strings.

104 Rom Kernel Reference Manual: DOS

The BOOTBLOCKS keyword initializes the de_BootBlocks element; it is not interpreted by the file
system itself, but by the boot code of the auto-booting device. As such, this makes only sense if the
DosEnvec structure is loaded from the RDB of an auto-booting disk. If non-zero, the device reads the
indicated number of boot blocks from the booting partition and runs the code within the boot-block, thus
implements boot-block booting similar to booting from trackdisk.device, and by that replaces boot-point
booting performed otherwise on auto-booting devices. For details, see [5]. The implied value for the floppies
is thus 2, and 0 for partitions that follow the boot-point protocol. This value has, in particular, no impact
on the disk layout, though the number of bootblocks shall be smaller or equal than the number of reserved
blocks indicated by de_Reserved as otherwise the file system could overwrite the boot code.

The SUPERFLOPPY keyword takes a Boolean 0 or 1 argument and by that either sets or clears the
ENVF_SUPERFLOPPY flag, defined in dos/filehandler.h. This flag has been cut off (or reserved)
from the otherwise deprecated and thus unused de_Interleave element in version 45 of AmigaDOS. It
is by default cleared.

If this flag in de_Interleave is set, then the file system is informed that the partition extends over
the entire medium and no partition table or RDB is present. Instead, to find the size of the medium, the
file system is authorized to issue a TD_GETGEOMETRY command to the exec level device driver which will
report the layout of the disk. This driver information is then used to adjust de_LowCyl, de_HighCyl,
de_SizeBlock and de_Surfaces within the DosEnvec structure. Thus, a file system mounted with
this flag enabled adjusts the disk geometry directly from the hardware driver. Details on this procedure are
found in section 13.6.1. This is important for drives that allow variably sized media, such as floppy disks
(supporting both DD and HD disks) as well as ZIP drives (supporting 100MB to 250MB drives).

AmigaDOS up to release 40 hardwired this special case to ROM-based devices that supported variably
sized media, namely to the trackdisk.device and carddisk.device, i.e. floppies and memory
cards in the PCMCIA slot. Newer releases allow to enable this mechanism for other device drivers as well.
As of version 45, the FAT and the FFS both support this mechanism.

The FAT system is a special case and only honors SUPERFLOPPY if the dos type is set to ’FAT\0’.
If SUPERFLOPPY is set to 1, a FAT file system mounted with the dos type ’FAT\0’ receives the partition
size from the physical layer and ignores the MBR, whereas if this this keyword is set to 0, the MBR is used
as source of the geometry information. All other dos types of the FAT system ignore this keyword.

The SCSIDIRECT keyword is also a Boolean indicator and controls the ENVF_SCSIDIRECT flag
which is also part of the otherwise deprecated de_Interleave element. Similar to the above flags, it is
also defined in dos/filehandler.h. This flag is cleared by default, indicating that the file system should
use the trackdisk command set to access data. This keyword was also introduced in AmigaDOS version 45.

If this flag is set, the file system is instructed to communicate with the underlying device through the
HD_SCSICMD interface, i.e. by SCSI commands instead of trackdisk commands. This helps some legacy
device drivers that do not speak the 64-bit dialect of the trackdisk commands to access data beyond the 4GB
barrier. Very ancient device drivers may not even support this command set, and it is therefore not enabled
by default.

The ENABLENSD keyword is again a Boolean indicator for the ENVF_DISABLENSD flag cut out off
from the de_Interleave element; it is, however, set in inverse logic, i.e. the ENVF_DISABLENSD is set
if the mount parameter is 0, and reverse. This flag is also defined in dos/filehandler.h.

If this flag is set in de_Interleave, and thus ENABLENSD is set to 0 in the mountlist, the file system
is instructed not to attempt to use NSD-style commands to access data beyond the 4GB barrier. This could be
necessary on some device drivers that ignore the most significant bits of the io_Command element or react
otherwise allergic to commands beyond their supported command range. This flag was also introduced in
AmigaDOS version 45.

Unfortunately, multiple command sets exist to access (moderately) large disks. If DIRECTSCSI is
enabled, SCSI commands will always be used, even for probing the medium size if SUPERFLOPPY is set.
If SCSI commands are not enabled, the FFS first attempts to use regular trackdisk commands if the partition

The Device List and the Mountlist 105

does not cross the 4GB barrier. If it does, it probes the TD64 command set as it is historically the most
popular extension. As last resort, it tries NSD commands. This last step can be disabled by setting the
ENABLENSD in the mountlist to 0 should NSD create problems.

The ACTIVATE keyword in the mountlist is synonym to the MOUNT keyword, and it also takes a Boolean
indicator. If it is set, then the Mount command will already load and initiate the handler corresponding to
the mount entry. Otherwise, the handler or file system will be loaded the first time it is accessed through a
path. This option is most useful for testing device drivers, or load them from a disk that is not necessarily
accessible later on. It does not affect the DosEnvec structure.

The FORCELOAD keyword of the mountlist is also a Boolean flag, that, if set to 1, indicates to the Mount
command not to scan FileSystem.resource for a fitting dos type but rather forcibly load the file system from
the path indicated by the FILESYSTEM keyword. This option is also useful for testing, namely to prevent
that an already resident file system version is reused. This keyword does neither impact the DosEnvec
structure.

8.2 Finding Handler or File System Ports

The following functions find the MsgPort of a handler or file system that is responsible for a given path.
The path can be either a relative path, in which case they deliver the port of the file system handling the
current directory, or an absolute path. In the latter case, they search the device list, check whether the handler
is already loaded or load it if necessary, then check whether the handler is already running, and if not, launch
an instance of it. If multi-assigns are involved, it can become necessary to contact multiple file systems to
resolve the path and thus reiterate the call if a requested file or directory object cannot be found immediately.

8.2.1 Iterate through Devices Matching a Path

The GetDeviceProc() finds a handler, or a subsequent handler responsible for a given path. Once the
handler has been identified, or iteration through matching handlers is to be aborted, FreeDeviceProc()
shall be called to release temporary resources.

devproc = GetDeviceProc(name, devproc) /* since V36 */
D0 D1 D2

struct DevProc *GetDeviceProc(STRPTR, struct DevProc *)

This function takes a path in name and either NULL on the first iteration or a DevProc structure from
a previous iteration and returns a DevProc structure identifying a suitable handler or file system. It returns
NULL if no matching handler could be found or all possible directories of a multi-assign have been visited. It
is not necessary that the path given by name is an absolute path containing a colon (“:”), this function will
also operate properly for relative paths and then identifies the file system and lock responsible for the current
directory.

Give back what you got To release all temporary resources, the DevProc structure returned by
GetDeviceProc() shall be either be released through FreeDeviceProc(), then aborting the
scan, or used as second argument for a subsequent GetDeviceProc() call. In case of failure,
this function will return NULL and then also releases all resources, including the DevProc structure
provided as second argument.

The DevProc structure, defined in dos/dosextens.h looks as follows:

106 Rom Kernel Reference Manual: DOS

struct DevProc {
struct MsgPort *dvp_Port;
BPTR dvp_Lock;
ULONG dvp_Flags;
struct DosList *dvp_DevNode;

};

dvp_Port is a pointer to a candidate MsgPort of a handler or file system. The substring of name be-
hind the colon (“:”), or the entire string if name does not contain a colon, forms a path relative to dvp_Lock
on the file system listening on the found port. If this path does not resolve to an existing file system object,
iteration over possible candidate file systems should continue and GetDeviceProc() called again with
the same name as first, and the return code of the current iteration as second argument. This iteration is
necessary to find files or directories in multi-assigns.

dvp_Lock is a directory represented as a lock relative to which name could be resolved. If this lock is
ZERO, the path is relative to the root directory of the file system that can be contacted through dvp_Port.
Beware! In this case, a ZERO lock does not identify the root directory of the boot volume, but the root
directory of the file system to be contacted through dvp_Port.

The lock, if non-ZERO, is owned by dos.library and shall neither be released, nor used for a directory
scan by Examine() or ExAll(). If this is desired, it shall be copied first through DupLock(), see also
section 7.1.

dvp_Flags identifies properties of the found port and lock, though there is typically no need to test
them. The flags are defined in the include file dos/dosextens.h. The currently defined flags are listed
in table 8.4 for completeness:

Table 8.4: GetDeviceProc Flags

Flags Description
DVPF_ASSIGN Path is part of a multi-assign
DVPF_UNLOCK Internal, do not interpret

If the bit DVPB_ASSIGN is set, i.e dvp_Flags & DVPF_ASSIGN is non-zero, then the found port
and lock are part of a multi-assign. The port/lock pair returned does not necessarily contain the (or an) object
identified by name; if it does not, another iteration through GetDeviceProc() is necessary. From this
one can conclude that an object in a directory scanned earlier will hide an object of the same name in a
directory of a multi-assign scanned later.

The bit DVPB_UNLOCK in the flags is an internal bit and indicates whether the lock in dvp_Lock will
be released by the next iteration or FreeDeviceProc(). This flag shall not be interpreted or altered by
the caller.

The element dvp_DevNode shall not be touched or used. It is actually a pointer to the DosList the
function identified as being responsible for the path — if there is one.

A typical use case for this function is to identify a handler or file system for direct-packet I/O, see
also chapter 13 and in particular section 12.1. The packets listed in chapter 14 typically take a lock/path
combination to identify a file system object, and for them, the lock will be taken from dvp_Lock and the
path from name. The target MsgPort of the packet is taken from dvp_Port. The interface functions
of dos.library, such as Open() and Lock(), call through GetDeviceProc() and therefore perform all
these steps within the library. The following code example demonstrates this on an (albeit limited, because it
does not handle soft links) re-implementation of the Lock() function of dos.library:

BPTR myLock(const UBYTE *path)
{

struct DevProc *dp = 0;

Finding Handler or File System Ports 107

BPTR lock = 0;
LONG error = 0;
size_t len = strlen(path);
struct Buffer {

UBYTE buf[256];
};
D_S(struct Buffer,buf);
/*
** Convert to BSTR on the stack.

** Size check not performed by dos.library.

*/
if (len > 255) {
error = ERROR_INVALID_COMPONENT_NAME;

} else {
buf->buf[0] = len;
memcpy(&buf->buf[1],path,len);
while(dp = GetDeviceProc(path,dp)) {

lock = DoPkt(dp->dvp_Port,ACTION_LOCATE_OBJECT,dp->dvp_Lock,
MKBADDR(buf->buf),SHARED_LOCK,0,0);

if (lock)
break;

error = IoErr();
if (error != ERROR_OBJECT_NOT_FOUND)

break;
}

}

/* Free devproc. NULL is ok */
FreeDeviceProc(dp);

SetIoErr(error);

return lock;
}

It uses the D_Smacro from section 2.4 to create a long word aligned buffer on the stack, here for the converted
name of the object to be locked. Unlike what official documentation has to say, it is not necessary to check
the DVPF_ASSIGN flag. GetDeviceProc() may be called again even with this flag cleared, though it
then always returns NULL.

The GetDeviceProc() function has a couple of side effects: First, if the corresponding handler is not
yet loaded, i.e. dol_SegList in the DosList is ZERO, it will be loaded from the path in dol_Handler
in the context of the calling process. The Mount command uses this side effect to implement the ACTIVATE
keyword in mountlists.

If dol_Task is NULL, then an instance of the file system or handler is also started, with the name
converted to a BSTR in the startup packet, see section 13.1.2. This mostly affects handlers such as the CON-
Handler which leave dol_Task at NULL and use the path in the startup packet to configure itself. The
CON-Handler versions 37 and before already opened the window from this path without ever (or before)
receiving a packet requesting a file (see sections 14.1.1 and following), causing the side effect of creating a
stray window or even an error claiming an invalid window specification. This was fixed in version 39. Still,
without sending any further packet to the handler, its process remains active.

Thus, as a fairly general recommendation, GetDeviceProc() should only be called to find the target

108 Rom Kernel Reference Manual: DOS

MsgPort for a subsequent packet transmission, see also chapter 13. If a handler such as the CON-Handler
detects that no file handle remained open after processing an incoming packet, it will terminate and by that
avoids a useless idle process. Section 13.1.3 provides an example handler in source code form.

If GetDeviceProc() returns NULL, then IoErr() provides additional information on the failure. If
the error code is ERROR_NO_MORE_ENTRIES, then the last directory of a multi-assign has been reached. If
the error code is ERROR_DEVICE_NOT_MOUNTED, then no matching device could be found. Other errors
can be returned, e.g. if the function could not allocate sufficient memory for its operation.

Unfortunately, the function does not set IoErr() consistently if GetDeviceProc() is called again
with an existing DevProc structure as second argument with the DVPB_ASSIGN bit cleared. IoErr()
remains in this case unaltered and it is therefore advisable to clear it upfront.

The function also returns NULL if name corresponds to the NIL pseudo-device and then sets IoErr()
to ERROR_DEVICE_NOT_MOUNTED. This error code is not fully correct, and callers should be aware of
this and filter the NIL: path out beforehand.

If the path starts with CONSOLE:, then this function reports the port of the current console, see 8.2.4,
and a ZERO lock, but sets IoErr() (incorrectly) to an error code even if process is equipped with a console.
IOErr() is also set incorrectly for paths relative to PROGDIR:, the home directory of the calling process.
Thus, IoErr() shall not be interpreted in case of success. If the calling process does not have a home direc-
tory, probably because it is executing a resident command (see 15.6), then GetDeviceProc() erroneously
shows a requester asking the user to insert a volume of the name PROGDIR instead of indicating failure —
unless requesters are disabled of course. This defect persists in even the latest version of AmigaDOS.

Also, GetDeviceProc() does not handle the path “*” at all, even though it corresponds to the current
console and the CON-Handler is responsible for it. This case also needs to be filtered out by the caller upfront,
and the port of the console should be obtained through GetConsoleTask() specified in section 8.2.4.

Does not like all paths The GetDeviceProc() function unfortunately does not handle all paths
correctly, and some special cases need to be filtered out by the caller. Namely “*” indicating the
current console, and NIL: for the NIL pseudo-device are not processed here.

Unfortunately, the GetDeviceProc() handling of assigns includes a race condition, namely that as-
signs can be added or removed under its feed, i.e. while one process received dvp_Lock from an assign, a
second process is able to remove the directory being visited by RemAssignList(), see section 8.6.5. A
use-count identifying how often a lock has been passed out to a client is still missing.

Another defect of this function is that it cannot handle device, volume or assign names longer than 30
characters, even though no limit on the path name in total is imposed, at least not by this function. This is
because this function extracts the device name into a temporary buffer of this size, and truncates it if it is
longer.

GetDeviceProc() and the algorithm by which it loads and starts handlers are also discussed in sec-
tion 13.1.1, see there for further details.

8.2.2 Releasing DevProc Information
The FreeDeviceProc() function releases a DevProc structure acquired by GetDeviceProc() and
releases all temporary resources allocated by the latter function. It shall be called as soon as the DevProc
structure is no longer needed.

FreeDeviceProc(devproc) /* since V36 */
D1

void FreeDeviceProc(struct DevProc *)

Finding Handler or File System Ports 109

This function releases the DevProc structure and all its resources from an iteration through one or
multiple GetDeviceProc() calls. It shall be called only to abort an iteration over devices, not within
each iteration, see section 8.2.1 for an example. In particular, if calling GetDeviceProc() had returned
NULL it released such resources itself already and FreeDeviceProc() shall not be called.

The dvp_Port or dvp_Lock within the DevProc structure shall not be used after releasing it with
FreeDeviceProc(). If the lock is required after releasing a DevProc structure, a copy of dvp_Lock
shall be made with DupLock(). If the port of the handler or file system is needed afterwards, a resource of
this handler shall be obtained, e.g. by opening a file or obtaining a lock on it. Both the FileHandle and the
FileLock structures contain a pointer to the port of the corresponding handler, see sections 5.7.1 and 6.4.

It is safe to call FreeDeviceProc() with a NULL argument; this performs no activity.
This function does not set IoErr() consistently and no particular value may be assumed. It may or

may not alter its value.

8.2.3 Legacy Handler Port Access
The DeviceProc() function is a legacy variant of GetDeviceProc() that should not be used anymore.
It is not able to resolve non-binding assigns and will not work through all directories of a multi-assign.

process = DeviceProc(name)
D0 D1

struct MsgPort *DeviceProc(STRPTR)

This function returns a pointer to a port of the handler (or a handler) responsible for the path name. It
returns NULL on error in which case it sets IoErr().

If the passed in name is a relative path or indicates an assign, the handler port responsible for the current
directory or the directory the assign binds to is returned, and IoErr() is set to the lock of this directory.
Similar to GetDeviceProc(), this lock is owned by dos.library and shall be duplicated before it is used
to iterate over a directory with Examine() or ExAll().

Obsolete and not fully functional The DeviceProc() function does not operate properly on
multi-assigns where it only provides the port and lock to the first directory participating in the assign.
It also returns NULL for non-binding assigns as there is no way to release a temporary lock obtained
on the target of the assign. Similar to GetDeviceProc(), it does not handle the paths NIL: and
“*” properly.

As this function is based on GetDeviceProc(), it suffers from the same race conditions and lim-
itations. It cannot handle device, volume or assign names longer than 30 characters and does not handle
situations gracefully within which an assign is removed after a lock on its target directory has been passed
out.

8.2.4 Obtaining the Current Console Handler
The GetConsoleTask() function returns the MsgPort of the handler responsible for the console of the
calling process, that is, the process that takes care of the file name “*” or paths relative to CONSOLE:.

port = GetConsoleTask() /* since V36 */
D0

struct MsgPort *GetConsoleTask(void)

This function returns a port to the handler of the console of the calling process, or NULL in case there
is no console associated to the calling process. The latter holds for example for programs started from the
Workbench. It does not alter IoErr().

110 Rom Kernel Reference Manual: DOS

8.2.5 Obtaining the Default File System
The GetFileSysTask() function returns the MsgPort of the default file system of the caller. The
default file system is used as fall-back if a file system is required for a path relative to the ZERO lock, and the
path itself does not contain an indication of the responsible handler, i.e. is a relative path.

The default file system is typically the boot file system, or the file system of the SYS assign, though it
can be changed with SetFileSysTask() at any point, see 10.2.12.

port = GetFileSysTask() /* since V36 */
D0

struct MsgPort *GetFileSysTask(void)

This function returns the port of the default file system of this task. It does not alter IoErr(). Note that
SYS itself is an assign and paths starting with SYS: do therefore not require resolution through this function,
though the default file system and the file system handling SYS: are typically identical. However, as the
former is returned by GetFileSysTask() and the latter is part of the device list, they can be different.

8.3 Iterating and Accessing the Device List
While GetDeviceProc() uses the device list to locate a particular MsgPort and lock, all other elements
of the DosList structure remain unavailable. For them, the device list containing these structures need to
be scanned manually. dos.library provides functions to grant access, search and release access to this list.

8.3.1 Gaining Access to the Device List
The LockDosList() function requests shared or exclusive access to a subset of entries of the device list
containing all handlers, volumes and assigns and blocks until access is granted. It requires as input flags that
define access to which parts of the list are requested:

dlist = LockDosList(flags) /* since V36 */
D0 D1

struct DosList *LockDosList(ULONG)

This function grants read (shared) or write (exclusive) access to a subset of entries of the device list
indicated by flags, and returns an opaque handle through which elements of the list can be accessed.
Unlike what the function prototype implies, the returned value is not a pointer to a DosList structure. For
locating a particular entry on the device list, see FindDosEntry() in section 8.3.5.

The flags value shall be combination of the following values, all defined in dos/dosextens.h:

Table 8.5: LockDosList Flags

Flags Description
LDF_DEVICES Access handlers and file system entries, see 4.3.1
LDF_VOLUMES Access volumes, see 4.3.2
LDF_ASSIGNS Access assigns, see 4.3.3
LDF_ALL Combination of all of the above
LDF_ENTRY Access to the device list during handler startup
LDF_DELETE Lock device list for deletion of entries
LDF_READ Shared access to the device list
LDF_WRITE Exclusive access to the device list

Iterating and Accessing the Device List 111

At least LDF_READ or LDF_WRITE shall be included in the flags, they shall not be set both. For
example, GetDeviceProc() performs a read access on the list while looking for a particular device, while
adding assigns through AssignLock() (see section 8.6.1) requires write access with LDF_ASSIGNS. The
three first flags may also be combined to access multiple types, e.g. as LDF_ALL to request all entries.

LDF_ENTRY and LDF_DELETE are additional flags that moderate access to entries of the device list.
LDF_ENTRY locks the list while loading and starting new handlers and file systems. If dol_GlobVec
requires exclusive access, see table 8.2 in chapter 8, then an exclusive lock of this type is requested during
handler startup. If LDF_DELETE is set, then access is granted for removing entries. If shared access is
requested for handler startup, then only a shared lock of this type is requested to prevent that the handler
being started is removed during its startup process. Both flags are only used internally by dos.library and
shall not be set by applications, handlers or file systems.

The result code dlist is not a pointer to a DosList structure, but only a handle that may be passed
into FindDosEntry() or NextDosEntry(). If dlist is NULL, then locking failed because the com-
bination of flags passed in was invalid.

Application programs should not keep the device list locked while sending a packet to a handler or file
system. This is because handlers or file systems need access to the device list themselves under certain
conditions, for example to add or remove a DosList entry representing a volume inserted into or ejected
from the drive maintained by the file system. Unfortunately, dos.library within GetDeviceProc() itself
also locks the list when attempting to load a handler or file system, potentially from the same handler that
requires to modify the list at the same moment. If the handler requests access using LockDosList(), this
can result in a deadlock, as for example dos.library waits for the handler to open the file, and the handler
waits for the lock to become available to add or remove a volume. To avoid this problem, handler and file
system implementations should rather call AttemptLockDosList() specified in section 8.3.2 and defer
modifying the list until after the semaphore becomes available; in the meantime, they should continue to
serve incoming requests without waiting for them, and defer the modification of the device list until after the
list could be successfully locked.

Not for Handlers and File Systems Handlers and File Systems should not request blocking access
to the device list as this can deadlock the system. Instead, AttemptLockDosList() should be
used to request access to the list, while continuing to serve incoming packets until the lock can be
granted.

For backwards compatibility to AmigaDOS versions 34 and earlier, this function also calls Forbid(),
implementing the access protocol of such earlier versions.

This function does not alter IoErr().

8.3.2 Attempting Access to the Device List
The AttemptLockDosList() requests access to the device list or a subset of its entries, and, in case
it cannot gain access, returns NULL. Unlike LockDosList(), it does not block, but fails if the list is not
accessible.

dlist = AttemptLockDosList(flags) /* since V36 */
D0 D1

struct DosList *AttemptLockDosList(ULONG)

The flags argument specifies which elements of the device list are requested for access, and which type
of access is required. The flags are a combination of the flags listed in table 8.5, and the semantics of the
flags are exactly as specified for LockDosList(), see table 8.5 there for details.

112 Rom Kernel Reference Manual: DOS

This function should be used within handlers to check whether access to a (subset) of the device list is
possible as blocking access through LockDosList() may lead to a deadlock, see also section 8.3.1.

On success, the result code is a non-NULL handle that may be passed into the FindDosEntry() func-
tion for finding a handler, file system, volume or assign matching a name, or into the NextDosEntry()
function for iterating the device list manually. On error, the result code is NULL, either because the list is
currently locked and access cannot be granted without blocking, or flags are invalid. These two cases of
failure cannot be distinguished unfortunately.

Up to AmigaDOS versions 39, this function could return either NULL or (struct DosList *)1
on failure6, and thus — if compatibility to such versions is intended — both return codes would need to be
checked. This was fixed in version 40.

This function does not alter IoErr().

8.3.3 Release Access to the Device List

The UnLockDosList() function releases access to the device list obtained by LockDosList() or
AttemptLockDosList().

UnLockDosList(flags) /* since V36 */
D1

void UnLockDosList(ULONG)

This function releases access to the device list. The flags argument shall be identical to the flags
argument provided to LockDosList() or AttemptLockDosList().

As a compatibility kludge to AmigaDOS versions 34 and before, this function also calls Permit(),
implementing the legacy access protocol to the device list.

8.3.4 Iterate through the Device List

The NextDosEntry() iterates to the next entry in the device list given the current entry or the handle
returned by LockDosList() or AttemptLockDosList().

newdlist = NextDosEntry(dlist,flags) /* since V36 */
D0 D1 D2

struct DosList *NextDosEntry(struct DosList *,ULONG)

This function returns the DosList structure following the dlist handle on the device list. The device
list shall be locked either by LockDosList() or AttemptLockDosList(). The dlist argument
shall be either the return value of a previous NextDosEntry() or FindDosEntry() call, or the handle
returned by LockDosEntry() or AttemptLockDosList().

flags shall be a subset of the flags requested from LockDosList() or AttemptLockDosList()
and specifies the type of DosList structures that shall be iterated over. Only the first 3 rows of table 8.5 are
relevant here, all other flags are ignored but may be included.

The newdlist result is either a pointer to a subsequent DosList structure of the requested type, or
NULL if the end of list has been reached. This function does not alter IoErr().

The following example code demonstrates how to iterate over all device list entries:

6That is, the numerical value 1 casted to a DosList pointer.

Iterating and Accessing the Device List 113

void IterateDosList(void)
{

struct DosList *dl;

dl = LockDosList(LDF_ALL|LDF_READ);
while((dl = NextDosEntry(dl,LDF_ALL))) {

const UBYTE *name = ((UBYTE *)BADDR(dl->dol_Name)) + 1;
...

}
UnLockDosList(LDF_ALL|LDF_READ);

}

Note that the name is stored as a BSTR that is, conveniently, always NUL terminated. The name cannot be
safely printed in the loop as printing implies the transfer of a packet to the console while the device list is
locked, see also the notes in section 8.3.1. If the names are required, they shall be copied within the loop and
then printed later.

8.3.5 Find a Device List Entry by Name

The FindDosEntry() function finds a DosList structure of a particular type and name, searching the
list starting at a given entry, or the handle returned by LockDosList() or AttemptLockDosList().

newdlist = FindDosEntry(dlist,name,flags) /* since V36 */
D0 D1 D2 D3

struct DosList *FindDosEntry(struct DosList *,STRPTR,ULONG)

This function scans through the device list starting at the entry dlist, or the handle returned by
LockDosList() or AttemptLockDosList(), and returns the next DosList structure, potentially
including the one pointed to by dlist, that is of the type indicated by flags and has the name name.

flags shall be a subset of the flags requested from LockDosList() or AttemptLockDosList().
Only the first 3 elements of table 8.5 are relevant here, all other flags are ignored but may be included.

The name argument is the (case-insensitive) name of the assign, handler, file system or volume to be
found. The name shall not include the colon (’:’) that separates the name from the remaining components
of a path, see chapter 4. It may be NULL in which case every entry of the requested type matches.

Note that it is possible that more than one entry on the device list matches a given name. Duplicate entries
of the same name on the device list are possible as AmigaDOS does support identically named volumes; they
are distinguished by their creation date. This is not possible for handlers or assigns, their names are unique.

The returned newdlist is a pointer to a DosList structure that matches the name (if provided) and
flags passed in, or NULL in case no match could be found and the entire list has been scanned. Note that
the returned DosList may be identical to the dlist passed in if it already fits the requirements. Thus
potentially, NextDosEntry() may be called upfront to continue the scan from the previous entry found.

Passing NULL as dlist is safe and returns NULL, i.e. the end of the list. Note that the (pseudo-)
devices from table 4.2 in section 4.3.1 and assigns from table 4.4 in section 4.3.3 are not part of the de-
vice list, i.e. NIL, CONSOLE, * and PROGDIR cannot be found and are special cases handled within
GetDeviceProc() and other functions of dos.library.

FindDosEntry() does not alter IoErr().

114 Rom Kernel Reference Manual: DOS

8.3.6 Accessing Mount Parameters
Once a DosList structure has been identified, e.g. by FindDosEntry(), it is tempting to understand
whether the entry belongs to an assign, a volume, a handler or file system, and in the latter two cases, to find
their mount parameters to regenerate a mountlist entry from the mounted partition or volume.

The type of the entry is easily found in the dol_Type element of the DosList structure; table 8.1 in
section 8 lists the possible entry types. The type DLT_DEVICE indicates both file systems and handlers.

The mount information, or to be more precise, the configuration of the handler or file system is found in
the dol_Startup element; it is, however, up to the handler to interpret it, and AmigaDOS does not define
its syntax. The Mount command can place four different types of objects here: An integer value, a BPTR
to a BSTR, or a BPTR to a FileSysStartupMsg, though even other types could be deposited here by
handler-specific tools.

Unfortunately, there is no completely safe way how to distinguish these types, and AmigaDOS does not
provide any further source of information to learn what a handler expects here — thus a heuristics is needed
to tell them apart and access the mount information.

The following algorithm attempts to detect the nature of the information provided in dol_Startup
given a pointer to a DosList, that has been, for example, returned by FindDosEntry():

void AnalyzeDosList(struct DosList *dl)
{
LONG *s;
UBYTE *text;

s = (LONG *)(dl->dol_misc.dol_handler.dol_Startup);
if (((LONG)s & 0xc0000000)==0 && TypeOfMem(BADDR(s))) {

LONG *startupmsg = BADDR(s);
/* Looks like a plausible BPTR */
/* This checks whether fssm_Device

** is meaningful in order to derive

*/
if ((startupmsg[1] & 0xc0000000)==0) {

/* Hopefully, a BPTR to a BSTR,

** namely the device name.

*/
text = ((char *)BADDR(startupmsg[1]))+1;
if (TypeOfMem(text)) {

/* Now check the want-to-be fssm_Envion */
if ((startupmsg[2] & 0xc0000000) == 0 &&

TypeOfMem(BADDR(startupmsg[2]))) {
struct FileSysStartupMsg *fssm;
struct DosEnvec *env;
fssm = (struct FileSysStartupMsg *)startupmsg;
env = (struct DosEnvec *)BADDR(fssm->fssm_Environ);
/*
** Access fssm->fssm_Device,fssm_Unit,fssm_Flags

*/
/* Hopefully an environment */
if (env->de_TableSize >= 11) {

UBYTE *device = (UBYTE *)(BADDR(fssm->fssm_Device)) + 1;
ULONG unit = fssm->fssm_Unit;
/*

Iterating and Accessing the Device List 115

** By convention, fssm_Device is a NUL-terminated

** BSTR, thus no need to convert it to a CSTR.

**
** Thus, likely a file system startup message.

** This is good enough, now use the elements

** of the environment up to the one indicated

** by env->de_TableSize.

*/
...
return;

}
}

}
}
/* This is probably a string.

** "mount" puts NUL-terminated strings in

** here.

*/
text = ((UBYTE *)startupmsg)+1;
...
return;

} else {
/* Likely some sort of handler, and s is

** probably some integer

*/
...
return;

}
}

In the first step, the algorithm above attempts to find out whether dol_Startup is an integer or a
BPTR. It uses TypeOfMem() to test whether a pointer goes into valid memory, and also checks the topmost
two bits of the BPTR. As BPTRs are created by right-shifting a pointer by 2 bits, the two MSBs should be
zero. Even for ROM-mounted devices like the floppies, the DosList structure and all structures and strings
associated to it are located in RAM and thus the above test also works for them.

In the second step, the heuristics attempts to understand whether the BPTR in dol_Startup actually
points to a FileSysStartupMsg or to a BSTR. For that, it attempts to learn whether the fssm_Device
element is a valid BSTR and whether the fssm_Environ element is also a valid BPTR.

If these conditions are not true, but dol_Startup is a valid BPTR, the algorithm assumes that it points
to a BSTR. In all other cases, the value is assumed to be an integer.

Even if this function is able to identify an DosEnvec structure with high probability, the environment
vector found in this way does not need to be complete and does not need to contain all the elements listed in
section 8.1.3; instead, only the first de_TableSize elements are present, and everything beyond this point
shall not be interpreted or modified. AmigaDOS versions 32 and above allocate at least 11 entries here7, for
every additional entry a test of de_TableSize shall be performed.

While the above is just a heuristic and is therefore not guaranteed to work, practical experience of the
author has shown that it has so far been able to extract environment information from all handlers or file
systems that came into his hand.

7...and so does Tripos.

116 Rom Kernel Reference Manual: DOS

Nevertheless, getting hands on the FileSysStartupMsg from an unknown handler is not completely
waterproof at this moment, and to this end the author of [7] proposed to introduce a DosPacket (see ta-
ble 14.64 in section 14.11) by which a handler could be requested to reveal its startup message. Unfortunately,
to date this packet has not found wide adoption, and the above heuristic can be used as an interim solution.

Authors of handlers and file systems have less to worry about. When they document their require-
ments properly, e.g. by including an example mountlist with their product, “only” user errors can gener-
ate startup messages the handler cannot interpret properly. Thus, in general, handlers should be written
in an “optimistic” way (unlike the above heuristic) assuming that dol_Startup is what they do expect.
All AmigaDOS handlers are designed this way, e.g. the FFS expects without verification that the value
in dol_Startup is, indeed, a FileSysStartupMsg, even though it can be fooled by an incorrect
mountlist and by that crash the system.

8.4 Adding or Removing Entries to the Device List
dos.library provides two service functions to add or remove DosList structures from the device list. They
secure dos.library internal state from inconsistencies as other processes may attempt to access the device list
simultaneously, and they also ensure proper linkage of the structures. They cannot prevent, however, that
an entry is removed whose resources, such as locks of an assign, are currently in use by a another process.
Locks recorded in a DosEntry therefore cannot be safely released without causing a race condition.

A second potential race condition exists when launching handlers. At this time, GetDeviceProc()
requires access to the device list and secures it through LockDosList(). The list will be unlocked only
after the handler process has been started and replied the startup packet. Thus, handlers need not (and shall
not) call LockDosList() to secure access to the device list while processing the startup packet, see also
section 13.1.2 for details on handler startup. Attempting to lock the device list with LockDosList()
would result in a deadlock situation as dos.library waits for the handler to reply its startup packet, and the
handler waits for dos.library to get access to the device list.

A similar race condition exists if a file system is used to load another handler. At this point, the device
list is also already locked by dos.library, and an attempt to lock it within the file system would deadlock as
well as the library can only unlock the list after loading completed.

Locking the device list deadlocks the system Handlers shall not attempt to lock the device list
through LockDosList() as this function may block and cause a deadlock if dos.library or an ap-
plication program is accessing the list simultaneously while reaching out for the handler. Instead,
AttemptLockDosList() shall be used, and if getting access to the list fails, the operation re-
quiring the lock, e.g. adding a volume to the device list, shall be delayed until after the list becomes
accessible.

8.4.1 Adding an Entry to the Device List
The AddDosEntry() adds an initialized DosList structure to the device list.

success = AddDosEntry(dlist) /* since V36 */
D0 D1

LONG AddDosEntry(struct DosList *)

This function takes an initialized DosList pointed to by dlist and attempts to add it to the device
list. For this, it requests write access to the list, i.e. locking of the device list through the caller is not
necessary. The DosList may be either created manually, by MakeDosEntry() of dos.library or by

Adding or Removing Entries to the Device List 117

MakeDosNode() of expansion.library. While there the structure is called a DeviceNode, it is still a
particular incarnation of a DosList and may be safely used here.

Assigns shall not be added to the device list through this function, but rather through the functions in
section 8.6. This avoids memory management problems when releasing or changing assigns.

Particular care needs to be taken if this function is called from within a handler or file system, e.g. to
add a volume representing an inserted medium. As the list may be locked by dos.library to secure the list
from modifications within a GetDeviceProc() function, a deadlock may result where file system and
dos.library mutually block access. To prevent this from happening handlers shall check upfront whether the
device list is available for modifications by AttemptLockDosList(), e.g.

if (AttemptLockDosList(LDF_VOLUMES|LDF_WRITE)) {
rc = AddDosEntry(volumenode);
UnLockDosList(LDF_VOLUMES|LDF_WRITE);

}

when adding a DosList entry of type DLT_VOLUME. If attempting to get write access failed, the handler
should check for incoming requests, handle them, and attempt adding the entry later.

The function fails if an attempt is made to add an entry of name to the list that is already present, regardless
whether the types are identical or not. The only exception is that the list may contain two volumes of the
same name, provided provided their creation date dol_VolumeDate differs, see chapter 8.

If successful, the function returns non-zero, and then does not alter IoErr(). In case of success, the
DosList is enqueued in the dos.library database and it and its elements shall no longer be altered or released
by the caller. On failure, the function returns 0 and IoErr() is set to ERROR_OBJECT_EXISTS.

8.4.2 Removing an Entry from the Device List
The RemDosEntry() removes a DosList entry from the device list, making it inaccessible for Amiga-
DOS.

success = RemDosEntry(dlist) /* since V36 */
D0 D1

BOOL RemDosEntry(struct DosList *)

This function attempts to find the DosList structure pointed to by dlist in the device list and, if
present, removes it. The device list shall be locked upfront depending on the type of the entry that is to be
removed, e.g. if the entry is a volume, an LDF_VOLUMES|LDF_WRITE lock on the device list is required,
either through LockDosList() or through AttemptLockDosList(), see also the example below.

The function does not attempt to release the memory allocated for the DosList passed in, or any of its
resources such as locks, it just removes the DosList from the device list. While file systems may know
how they allocated the DosList structures representing their volumes and hence should be aware how
to release the memory taken by them, there is no good solution on how to recycle memory for DosList
structures representing handlers, file systems or assigns. Some manual footwork is currently required, see
also FreeDosEntry() in 8.5.2. In particular, as entries representing handlers and file systems may have
been created in multiple ways, their memory cannot be safely recycled. Assigns shall not be manipulated
through this function, but rather through the functions in section 8.6.

Particular care needs to be taken if this function is called from within a handler or file system, e.g. to
remove a volume representing a removed medium. As the list may be locked by dos.library to secure the list
from modifications within the GetDeviceProc() function, a deadlock can result where file system and
dos.library mutually block access. To prevent this from happening handlers shall check upfront whether the
device list is available for modifications by AttemptLockDosList(), e.g.

118 Rom Kernel Reference Manual: DOS

if (AttemptLockDosList(LDF_VOLUMES|LDF_WRITE)) {
rc = RemDosEntry(volumenode);
UnLockDosList(LDF_VOLUMES|LDF_WRITE);

}

when removing a DosList entry. If attempting to get write access failed, the handler should check for
incoming requests, handle them, and attempt removing the entry later.

This function returns a success indicator; it returns non-zero if the function succeeds, and 0 in case it
fails. The only reason for failure is that dlist is not a element of the device list. This function does not
touch IoErr().

Locking protocol differs While AddDosEntry() locks the device list itself, this is not the case
for RemDosEntry() which requires the caller to obtain a LDF_WRITE lock combined with the
flags corresponding to the type of the entry to be removed, see table 8.5 for the flags corresponding to
volumes, devices or assigns.

8.5 Creating and Deleting Device List Entries
AmigaOs offers multiple functions to create DosList structures. The MakeDosEntry() function is a
low-level function that allocates a DosList but only performs minimal initialization of the structure. For
assigns, the functions in section 8.6 shall be used as they include complete initialization of the DosList,
and for handlers and file systems, the expansion.library function MakeDosNode() is a proper alternative.

Releasing DosLists along with all its resources is unfortunately much harder. For assigns, regardless
of their type, AssignLock() from section 8.6.1 with a ZERO lock is the best solution.

DosList structures representing volumes are build and released by file systems; it depends on them
which resources need to be released along with the DosList structure. While it is recommended that file
systems should go through MakeDosEntry() and FreeDosEntry(), it is not a requirement.

Releasing a DosList representing a handler or file system is currently not possible in a completely
robust way. It is suggested to only unlink such nodes from the device list if absolutely necessary, but tolerate
the memory leak.

8.5.1 Creating a Device List Entry
The MakeDosEntry() creates an empty DosList structure of the given type, and performs elementary
initialization. It does not acquire any additional resources despite the DosList structure and the name, and
neither inserts the created structure into the device list.

If an assign is to be created, the functions in section 8.6 are better alternatives and should be preferred as
they perform a more complete initialization.

newdlist = MakeDosEntry(name, type) /* since V36 */
D0 D1 D2

struct DosList *MakeDosEntry(STRPTR, LONG)

This function allocates a DosList structure and initializes its dol_Type to type. The type argument
shall be one of the values from table 8.1 in chapter 8. The function also initializes the dol_Name element
to a NUL-terminated BSTR, copied from the (regular C string) argument name.

Note that this function performs only minimal initialization of the DosList structure. All elements
except dol_Type and dol_Name are initialized to 0. This makes additional initialization necessary by the
caller.

Creating and Deleting Device List Entries 119

Limit to 30 Characters While this function does not impose a limit on the size on the name, multiple
other components of AmigaDOS are not able to handle device, volume or assign names longer than
30 characters. Thus, the length of name shall be limited to this size.

This function either returns the allocated structure, or NULL for failure. In the latter case, IoErr() is
set to ERROR_NO_FREE_STORE. On success, IoErr() remains unaltered.

8.5.2 Releasing a Device List Entry
The FreeDosEntry() function releases a DosList structure allocated by MakeDosEntry(). The
DosList shall be already removed from the device list by RemDosEntry() specified in section 8.4.2.
While FreeDosEntry() releases the memory holding the name of the entry and the DosList structure
itself, it does not release any other resources. They shall be released by the caller of this function upfront.
Furthermore, this function shall not be called if the DosList structure was allocated by any other means
than MakeDosEntry().

FreeDosEntry(dlist) /* since V36 */
D1

void FreeDosEntry(struct DosList *)

This function releases the DosList structure pointed to by dlist and its name, but only these two and
no other resources.

Unfortunately, the expansion.library function MakeDosNode() uses a memory allocation policy that
is different from MakeDosEntry() and thus DosList structures created by expansion.library cannot be
safely released by FreeDosEntry(). If dol_Type is DLT_DEVICE, corresponding to handlers or file
systems, this function should better not be called at all as the means of how the DosList was allocated is
unclear. In such a case, a memory leak is the least dangerous side effect.

If dol_Type is DLT_DIRECTORY, DLT_NONBINDING or DLT_LATE, this function should not be
used. Instead, the functions from section 8.6 are more appropriate; in specific, AssignLock() with the
name of the assign to remove and the lock argument set to ZERO will remove the assign from the device
list and release all resources associated to it, including the name and all locks.

If the type is DLT_VOLUME, it is up to the file system to release any resources it allocated along with
the DosList entry representing the volume. It is file system dependent which resources can or should be
released. DosList entries of this type should only be allocated and released by the file system that created
them.

Only for Internal Use The FreeDosEntry() function has limited uses. It should not be called on
handler or file system entries as (at least) two incompatible functions exist that create such DosList
structures. For assigns, the functions from section 8.6 are more appropriate, and for volumes, only
the file system managing the volume may call it. That leaves no practical use for this function by
application programs. It is, however, called internally from other functions of dos.library.

FreeDosEntry() cannot fail, and it does not touch IoErr().

8.6 Creating and Updating Assigns
While MakeDosEntry() creates a DosList entry for the device list, it only performs minimal initial-
ization of the structure. For assigns, specifically, dos.library provides specialized functions that allocate,
initialize, enqueue and remove DosList structures representing assigns in a single call and are thus easier
to use. They also lock and unlock the device list appropriately, and thus LockDosList() does not need to
be called.

120 Rom Kernel Reference Manual: DOS

Unfortunately, all the functions provided in this section have a race condition in handling locks repre-
senting the target directory (or directories) of an assign. As locks representing such directories are passed out
by GetDeviceProc() (see section 8.2.1) or DeviceProc() without any internal reference counting, it
can happen that they are still in use when they are released by canceling, updating or converting an assign.

Multi-Assigns are created by starting from a regular assign to one target directory with AssignLock(),
see section 8.6.1, and then iteratively adding directory after directory to the assign with the AssignAdd()
function specified in section 8.6.4.

8.6.1 Create, Update or Remove an Assign
The AssignLock() function scans the device list for an assign of a given name. If this assign is not yet
present, it adds a regular assign to the directory as represented by a lock. If the assign is already present,
the assign is converted to a regular assign to the target directory. If the target lock is ZERO, the assign is
canceled.

success = AssignLock(name,lock) /* since V36 */
D0 D1 D2

BOOL AssignLock(STRPTR,BPTR)

This function creates, updates or cancels the assign identified by name which shall not include a trailing
colon (“:”). The lock argument shall be either ZERO or a shared lock to a directory.

If no DosList of the given name exists, and lock is not ZERO, the function creates a new regular
assign under the given name that points to the target directory given by lock.

If an assign name already exist and lock is not ZERO, then the assign, regardless of its type, is converted
to a regular assign pointing to the target directory given by lock. Any resources associated to multi-assigns
or late- or non-binding assigns are released.

If the assign name already exists and lock is ZERO, then any type of assign is canceled, that is, all its
resources — including locks — are released and the assign is removed from the device list.

Unfortunately, even in the most present release of AmigaDOS, this function has a race condition if an
attempt is made to cancel an assign whose lock is currently in use by an application program, for example
because it has been passed out through GetDeviceProc(), see section 8.2.1.

If the function is successful, it returns a non-zero result code. The lock, if non-ZERO, is then absorbed
into the assign and should no longer be used by the calling program. On success, IoErr() is not consistently
set and its value cannot be relied upon.

On error, the function returns 0 and the lock remains available to the caller. IoErr() is set to an error
code identifying the cause of the failure. ERROR_NO_FREE_STORE is returned if the function run out of
memory, and ERROR_INVALID_COMPONENT_NAME if the assign name is longer than 30 characters. If a
volume, handler or file system of the same name already exists, the error code is ERROR_OBJECT_EXISTS.

8.6.2 Create or Update a Non-Binding Assign
The AssignPath() function creates or converts an assign to a non-binding assign and adds it to the device
list if it is not yet present. This type of assign binds to a path independent of the volume the path is located
on; that is, the assign resolves to whatever volume, handler or even other assign matches the path.

success = AssignPath(name,path) /* since V36 */
D0 D1 D2

BOOL AssignPath(STRPTR,STRPTR)

Creating and Updating Assigns 121

This function scans the device list for an assign given by name. The name shall not contain a trailing colon
(“:”). If such an assign does not yet exit, it creates a non-binding assign to path. While not a formal
requirement of the function or non-binding assigns, the path should better be an absolute path as otherwise
resolution of the created assign can be very confusing — it is then resolved relative to the current directories
of the processes using the assign.

If an assign name already exists, it is canceled, all of its resources, including one or multiple locks are
released, and it is converted into a non-binding assign to path.

Unfortunately, even in the most present release of AmigaDOS, this function has a race condition if locks
of a previous assign are released and these locks are still in use by an application program.

If the function is successful, it returns a non-zero result code. On success, IoErr() is not set con-
sistently and cannot be relied upon. The string path then has been copied into a buffer allocated by the
function, and path remains available to the caller.

On error, the function returns 0 and IoErr() is set to an error code identifying the cause of the
failure. ERROR_NO_FREE_STORE is returned if the function run out of memory. If the assign name is
longer than 30 characters, the error code is set to ERROR_INVALID_COMPONENT_NAME. If a DosList
entry representing a handler, file system or volume of the same name already exists, the error code is
ERROR_OBJECT_EXISTS.

8.6.3 Create a Late Binding Assign

The AssignLate() function creates or converts an assign into late binding assign whose target is initially
given by a path. After its first access, the assign reverts to a regular assign to the directory path refers to at
this time. From that point on, the assign binds to the same target directory on the same volume, even if the
volume is ejected or re-inserted into another drive. This has the advantage that the target of the assign does
not need to be available at creation time of the assign, yet remains unchanged after its first usage.

success = AssignLate(name,path) /* since V36 */
D0 D1 D2

BOOL AssignLate(STRPTR,STRPTR)

This function scans the device list for an assign given by name. The name shall not contain a trailing colon
(“:”). If such an assign does not yet exit, it creates a late-binding assign to path. While not required by
this function, the path should better be an absolute path as otherwise resolution of the created assign can be
very confusing — it is then relative to the current directory of the first process using the assign.

If an assign name already exists, it is canceled, all of its resources, including one or multiple locks are
released, and it is converted into a late-binding assign to path.

Unfortunately, even in the most present release of AmigaDOS, this function has a race condition if locks
of a previous assign are released and these locks are still in use by an application program.

If the function is successful, it returns a non-zero result code. On success, IoErr() is not set con-
sistently and cannot be relied upon. The string path then has been copied into a buffer allocated by the
function, and path remains available to the caller.

On error, the function returns 0 and IoErr() is set to an error code identifying the cause of the
failure. ERROR_NO_FREE_STORE is returned if the function run out of memory. If the assign name is
longer than 30 characters, the error code is set to ERROR_INVALID_COMPONENT_NAME. If a DosList
entry representing a handler, file system or volume of the same name already exists, the error code is
ERROR_OBJECT_EXISTS.

122 Rom Kernel Reference Manual: DOS

8.6.4 Add a Directory to a Multi-Assign
The AssignAdd() function adds a directory, identified by a lock, to an already existing regular or multi-
assign. On success, a regular assign is converted into a multi-assign.

success = AssignAdd(name,lock) /* since V36 */
D0 D1 D2

BOOL AssignAdd(STRPTR,BPTR)

This function adds the lock at the end of the target directory list of the assign identified by name. The
name shall not contain a trailing colon (“:”), and the lock shall be a shared lock to a directory.

A DosList of the given name shall already when entering this function, and this DosList shall be a
regular or a multi-assign. Attempting to add a directory to a handler, file system, volume or any other type of
assign fails.

On success, the function returns a non-zero result code. In such a case, the lock is absorbed into the
assign and shall no longer be used by the caller. The assign is converted into a multi-assign if it is not already
one. The lock is added at the end of the directory list, i.e. the new directory is scanned last when resolving
the assign.

On error, the function returns 0 and the lock remains available to the caller. Unfortunately, this func-
tion does not set IoErr() consistently, i.e. it is unclear on failure what caused the error, i.e. whether the
function run out of memory, whether no fitting device list entry was found, or whether the entry found was
an unsuitable type of assign.

8.6.5 Remove a Directory From a Multi-Assign
The RemAssignList() function removes a directory, represented by a lock, from a multi-assign. If only
a single directory remains in the multi-assign, it is converted into a regular assign. If the assign was a regular
assign, and the only directory is removed from it, the assign itself is removed from the device list and released,
destroying it and releasing all resources.

success = RemAssignList(name,lock) /* since V36 */
D0 D1 D2

BOOL RemAssignList(STRPTR,BPTR)

This function removes the directory identified by lock from a regular or multi-assign identified by name.
The name shall not contain a trailing colon (“:”). If only a single directory remains in the assign, it is
converted to a regular assign. If no directory remains at all, the assign is deleted along with all remaining
resources and removed from the device list.

The lock remains available to the caller, regardless of the return code, its only purpose is to identify
the directory to be removed; it does not need to be identical to the lock contained in the assign, but it shall
be a lock on the same directory. This function uses the SameLock() function to compare lock and the
candidate locks within the assign.

Identified locks to be removed from the assign are released with UnLock(), which causes, even in the
most recent version of AmigaDOS, a race condition if these locks are still in use by an application program,
e.g. because it received them through GetDeviceProc().

On success, the function returns a non-zero result code in success. On error, the function returns 0.
Unfortunately, it does not set IoErr() consistently in all cases, and thus, the cause of an error cannot be
determined upon return. Possible causes of error are that name does not exist, or that it is not a assign or a
multi-assign.

Creating and Updating Assigns 123

8.7 File System Support Functions
Functions in this section act on a file system as a whole; thus, they do not need a file or a lock to operate on,
but modify the file system globally given a volume or device name.

8.7.1 Adjusting File System Buffers
The AddBuffers() function increases or reduces the number of buffers of a file system.

buffers = AddBuffers(filesystem, number) /* since V36 */
D0 D1 D2

LONG AddBuffers(STRPTR, LONG)

This function adds number buffers to the file system responsible for the path given by filesystem.
This should be an absolute path, e.g. the name of the device followed by a colon (“:”), such as “DF0:”.
In case a relative path is provided, the buffer count of the file system responsible for the current directory
of the calling process is modified. The file system object identified by this argument does not actually
matter and does not even need to exist, and providing a complete path is not an error either. See also
GetDeviceProc() in section 8.2.1 how a file system is determined from a path.

The number argument may be both positive — for adding buffers to the file system — or negative, to
reduce the number of buffers. The purpose of these buffers is file-system dependent. The Fast File System
in ROM uses it to buffer administrative information such as directory contents, and also blocks that describe
the location of file content on the disk; thus adding more buffers can help to improve the performance of
random-access into the file with Seek().

A third purpose of the buffers is to store input and output data of the Read() or Write() functions
if the source or target memory block is not aligned to block boundaries or if the source or target buffer is
considered unsuitable for direct transfer to the underlying hardware exec device.

Even though this function only exists from AmigaDOS version 36 onward, the underlying packet, see
section 14.9.1, is also supported in all earlier versions of AmigaDOS, it is just not exposed as a function of
dos.library.

This function returns a non-zero result on success and 0 on failure. In first case, dos.library autodocs
state that the number of buffers is returned in IoErr(), though the FFS returns it as (primary) result code
of this function instead, and the AddBuffers command of the Workbench also expects it there. On error,
the return code is 0 and IoErr() delivers an error code. As Workbench programs depend on the primary
result code, it is therefore suggested to accept this defect as a specification change8.

8.7.2 Change the Name of a Volume
The Relabel() function changes the name of a volume a file system operates on.

success = Relabel(volumename,name) /* since V36 */
D0 D1 D2

BOOL Relabel(STRPTR,STRPTR)

This function relabels the volume that resides on the file system corresponding to the volumename
path. This path is resolved through GetDeviceProc() and thus may be a relative or absolute path based
on the device or volume name. As volumename is interpreted as a path, a device or volume name passed

8[7] recommends to check the return code for this function for DOSTRUE or DOSFALSE, and if it is unequal to these two values,
accept it as buffer count. Otherwise, the buffer count is expected in IoErr() as described in the autodocs.

124 Rom Kernel Reference Manual: DOS

in shall include a colon (“:”) as it would be otherwise interpreted as a path relative to the current directory,
and thus relabel the volume on which the current directory is located. The file system object identified by the
path does not matter and does not even need to exist.

Beware, multiple volumes of the same name, but differing creation dates, can be known to the system.
In case a volume name is provided as first argument, this function (and in general, GetDeviceProc() on
which this function is based) affects the first volume of the given name on the device list. Thus, in case of
doubt, a path based on a file system or handler name (e.g. “DF0:”) should be preferred.

The volume name of the medium or partition is then changed to name. Unlike the first argument, name
is not a path and therefore shall not contain a colon (“:”) nor a slash (“/”) (or the component separator, in
general). Note that not all file systems support volume names; this function fails if a file system does not.

Even though this function only exists from AmigaDOS version 36 onward, the underlying packet, see
section 14.7.4, is also supported in all earlier versions of AmigaDOS, it is just not exposed through a function
of dos.library.

This function returns a non-zero result code for success or 0 for an error. In case of failure, it sets
IoErr() to an error code, otherwise to an undefined value.

8.7.3 Initializing a File System
The Format() function initializes a complete file system. The initialized medium or partition appears after-
wards as completely empty, even though not all blocks are overwritten and only the previous administration
information (if any) is lost.

success = Format(filesystem, volumename, dostype) /* since V36 */
D0 D1 D2 D3

BOOL Format(STRPTR, STRPTR, ULONG)

This function erases all information on the medium or partition identified by filesystem, which is
interpreted as a path. Thus, it may be a device or volume name, which shall then be terminated by a colon
(“:”). However, all other paths also work; however, if they do not include a colon, the argument is interpreted
as path relative to the current directory, and thus will initialize the file system responsible for the current
directory.

Beware, multiple volumes of the same name, but differing creation dates, can be known to the system.
In case a volume name is provided as first argument, this function (and in general, GetDeviceProc() on
which this function is based) affects the first volume of the given name on the device list. Thus, in case of
doubt, a path based on a file system or handler name (e.g. “DF0:”) should be preferred.

To block processes from accessing information on the file system while it is initializing, it shall be inhib-
ited upfront, e.g by Inhibit(filesystem,DOSTRUE) or by lower level packet communication to the
handler, see section 14.9.2.

The Format() function does not attempt a low-level initialization of the corresponding medium; that
is, it does not attempt to low-level format it at the physical layer as for example required when a floppy disk is
prepared for initial use. This step needs to be performed manually by first blocking access of the file system
to the floppy through Inhibit(), then initializing the physical layer through the exec device driver, e.g.
by a TD_FORMAT IORequest, and then finally by calling this function.

The volume name of the medium or partition is initialized to volumename, which shall not contain a
colon (“:”) nor a slash (“/”) (or the component separator, in general). Note that not all file systems support
volume names. In such cases, this argument is ignored.

The dostype defines the flavor of file system created on the device if the file system allows multiple
variations. The flavors the Fast File System supports along with other dos types are listed in table 8.3 in

File System Support Functions 125

section 8.1.3. This argument corresponds to the DOSTYPE in the mountlist. File systems may also ignore it
if they only support a single flavor.

Unfortunately, AmigaDOS does not provide an easy way to access the flavors supported by a file system.
The Format command of the Workbench offers the types listed in the first half of table 8.3 if the mount
entry of the file system indicates that it is the FFS, and otherwise does not offer any choices and just copies
the dostype from the de_DosType of the DosEnvec structure, see also section 8.1.

After initializing the file system, use Inhibit(filesystem,DOSFALSE) or the corresponding
packet ACTION_INHIBIT to grant the file system access to the partition or medium again. See sec-
tions 8.7.4 and 14.9.2.

After making the volume accessible again, it is possible that write access is not permitted immediately
afterwards as the file system has to go through an initial validation phase. This usually takes only seconds as
the FFS, for example, creates the bitmap only after the volume becomes available.

The Format() function and its underlying packet did not exist in AmigaDOS versions below 36. In
such versions, the layout of the FFS and OFS was hard-coded into the Format command which wrote the
root block manually, depending on file-system internals.

This function returns a Boolean success indicator that is non-zero on success or 0 on error. In either case,
IoErr() is to an error code on failure, and to an undefined value on success.

8.7.4 Inhibiting a File System
The Inhibit() function disables or enables access of the file system to the underlying exec device driver.
Typical application for this function are disk editors or file system salvage tools that require exclusive access
to the file system structure; initializing a file system also requires this function, see section 8.7.3.

success = Inhibit(filesystem, flag) /* since V36 */
D0 D1 D2

BOOL Inhibit(STRPTR,LONG)

This call controls whether the file system identified by the path name given as filesystem is allowed
to access the medium or partition it operates on. The filesystem argument is interpreted as a path through
GetDeviceProc(). That is, the function resolves relative and absolute paths, device and volume names,
and even assigns. As filesystem is interpreted as a path, a device or volume name passed in shall include
a colon (“:”) as it would be otherwise interpreted as a path relative to the current directory and thus inhibit
the file system responsible for the current directory of the caller.

Beware, multiple volumes of the same name, but differing creation dates, can be known to the system. In
case a volume name is provided, this function (and in general, GetDeviceProc() on which this function
is based) affects the first volume of the given name on the device list. Thus, in case of doubt, a path based on
a file system or handler name (e.g. “DF0:”) should be preferred.

The flag argument controls whether access to the medium is allowed or disallowed. If flag is set
to DOSTRUE, access is inhibited and the file system stops accessing the partition or volume. It also sets
id_DiskType to the four-character code ’BUSY’, see also section 6.3. Once a file system is inhibited, ap-
plication programs may access the exec device driver directly to access or modify blocks within the partition
managed by the inhibited file system.

If flag is set to DOSFALSE, the file system is allowed to access to the medium again. The file system
then performs a consistency check of the file system structure of the disk, i.e. validates it. This will require a
couple of seconds within which write access to the medium is not possible.

Even though this function only exists from AmigaDOS version 36 onward, the underlying packet, see
section 14.9.2, is also supported in all earlier versions of AmigaDOS, it is just not exposed as a function of
dos.library.

126 Rom Kernel Reference Manual: DOS

This function returns a non-zero result code for success and then sets IoErr() to an undefined value.
On error, it returns 0 and provides an error code in IoErr().

File System Support Functions 127

128 Rom Kernel Reference Manual: DOS

Chapter 9

Pattern Matching

Unlike other operating systems, it is neither the file system nor the shell that expands wildcards — or patterns
as they are also called. Instead, separate functions exist that, given a wildcard, scan a directory or an entire
directory tree and deliver all files, links and directories that match a given pattern. The pattern matcher can
also be used to check whether a given string matches a pattern and thus can also be used to search for patterns
within a text file.

The pattern matcher syntax is build on special characters or wild cards that define the rules by which
strings match. A sequence of regular (non-wild card) characters and wild cards forms a pattern. AmigaDOS
recognizes the following wild cards, defined in dos/dosasl.h:

? The question mark matches a single, arbitrary character within a string. When using the pattern matcher
for scanning directories, the question mark does not match the component separator, i.e. the slash (“/)
and the colon (“:”) that separates the path from the device name. Note in particular that the question
mark also matches the dot (“.”) which is not a special character in AmigaDOS.

The hash mark matches zero or more repeats of the wild card immediately following it. In particular,
the combination “#?” matches zero or more arbitrary characters. If a group of more than one wild
card is required to describe which strings match, this group needs to be enclosed in brackets, see the
next item.

() The brackets bind a pattern together forming a single wild card. This is particularly useful for the hash
mark “#” as it allows to formulate repeats of character sequences or patterns. For example, #(ab)
indicates zero or more repeats of the character sequence ab, such as ab, abab or ababab.

~ The ASCII tilde (“~”) matches names that do not match the next wild card. This is particularly valuable
for filtering out the Workbench icon files that end on .info, i.e. ~(#?.info) matches all files that
do not end with .info.

[] The square brackets (“[]”) matches a single character from a range, e.g. [a-z] matches a single
alphabetic character and [0-9] matches a single digit. Multiple ranges and individual characters can
be combined, for example [ab] matches the characters a and b, whereas [a-cx-z] matches the
characters from a to c and from x to z. If the minus sign (“-”) is supposed to be part of the range, it
shall appear first, directly within the bracket, e.g. [-a-c] matches the dash and the characters a to c.
If the dash is the last character in the range, all characters up to the end of the ASCII range, i.e. 0x7f
match, but none of the extended ISO Latin 1 characters match. If the closing square bracket (“]”)
is to matched, it shall be escaped by an apostrophe (“’”), i.e. [[-’]] matches the backslash (“\”),
the opening and the closing bracket. If the first character of the range is an ASCII tilde (“~”), then
the character class matches all characters not in the class, i.e. [~a-z] matches all characters except
alphabetic characters. In all other places, the tilde stands for itself.

CHAPTER 9. PATTERN MATCHING 129

’ The apostrophe (’) is the escape character of the pattern matcher and indicates that the next character
is not a wild card of the matcher, but rather stands for itself. Thus, ’? matches the question mark, and
only the question mark, and no other character. The apostrophe only escapes the wild cards in this list,
if a non-wild card character follows the apostrophe, it stands for itself. That is, the pattern ’a stands
for itself, i.e. a two-character sequence starting with the apostrophe.

% The percent sign (“%”) matches the empty string. This is most useful with the vertical bar (see below)
formulating alternatives. For example, Tool(%|.info) matches the file Tool and its icon.

| The vertical bar (“|”) defines alternatives and matches the pattern to its left or the pattern to its right.
The alternatives along with the vertical bar shall be enclosed in round brackets to bind them, i.e. (a|b)
is either the character a or b and therefore matches the same strings [ab] matches. A particular
example is ~((#?.info)|.backdrop) which matches all files not used by the Workbench for
storing meta-information.

The Asterisk * is not a Wildcard Unlike many other operating systems, the asterisk (“*”) has a
(two) other meanings under AmigaDOS. It rather refers to the current console as file name, or is the
escape character for quotation and control sequences of the Shell; those are properties AmigaDOS
inherited from the BCPL syntax and Tripos. While there is a flag in dos.library that makes the
asterisk also available as a wildcard, such usage is discouraged because it can lead to situations where
the asterisk would be interpreted differently than potentially intended — as it has already two other
meanings.

Pattern matching works in in two steps: In the first step, the pattern is tokenized into an internal repre-
sentation, which is then later on used to match a string against a pattern. The directory scanning function
MatchFirst() performs this conversion internally, and thus no additional preparation is required by the
caller in this case. However, if the pattern matcher is used to search for strings or wildcards within a text file,
the pattern tokenizers ParsePattern() or its case-insensitive counterpart ParsePatternNoCase()
shall be called first to pre-process the pattern.

Only ISO-Latin Code points The pre-parsing step that prepares from the input pattern its tokenized
version uses the code points 0x80 to 0x9f for tokenized versions of wild-cards and other instructions
for the pattern matcher. This is identical to the extended ISO-Latin control sequence region. The code
points in this range do not represent printable characters. The Fast File System also disallows such
characters in file names. Compare also to section 4.1 defining usable characters in paths.

9.1 Scanning Directories
The prime purpose of the pattern matcher is to scan a directory, identifying all file system objects such as
files, links or directories that match a given pattern. The pattern matcher can even descend recursively into
sub-directories if instructed to do so. This service is used by many shell commands stored in the C assign.

Scanning a directory requires the following steps:

First, the user shall initialize an AnchorPath structure. Only the elements ap_Flags, ap_Strlen,
ap_BreakBits and ap_FoundBreak require initialization by the caller; the element ap_Reserved
shall also be set to zero for forwards compatibility. All remaining elements are initialized by dos.library
itself. In the simplest case, the structure is allocated from exec with the MEMF_CLEAR flag.

This structure contains the state of the directory scanner, including a FileInfoBlock structure (see
section 7.1) describing the matched object. Optionally, the AnchorPath structure can also be configured
to contain its complete (relative) path. The following paragraphs describe this structure in more detail.

130 Rom Kernel Reference Manual: DOS

Shall be Long-Word Aligned As the AnchorPath structure embeds a FileInfoBlock struc-
ture that requires long-word alignment, the AnchorPath structure shall be aligned to long-word
boundaries as well. The simplest way to ensure this is to allocate it with either AllocMem() or
AllocVec(), see also section 2.4.

Then MatchFirst() shall be called, retrieving an AnchorPath structure as second argument, see
section 9.1.1. It returns the first match of the pattern if there is any. Upon return, the AnchorPath structure
contains information on the found object.

If there is any match, and the match is a directory the caller wants to enter recursively, the APF_DODIR
flag of the AnchorPath structure may be set. Then, MatchNext() may be called to continue the scan,
entering this directory if the flag is set, see section 9.1.2. Once the end of a recursively entered directory
has been reached, MatchNext() sets the APF_DIDDIR flag, then reverts back to the parent directory
continuing the scan there. As APF_DIDDIR is never cleared by the pattern matcher, the caller should clear
it once the end of a sub-directory had been noticed.

The above iterative procedure of MatchNext() may continue, either until the user or the running
program requests termination, or until MatchNext() returns an error. Then, finally, the scan is aborted
and all resources shall be released by calling MatchEnd() described in section 9.1.3. The AnchorPath
structure is not released by this function, but must be disposed manually, e.g. by FreeMem().

The AnchorPath structure is defined in dos/dosasl.h and looks as follows:

struct AnchorPath {
struct AChain *ap_Base;

#define ap_First ap_Base
struct AChain *ap_Last;

#define ap_Current ap_Last
LONG ap_BreakBits;
LONG ap_FoundBreak;
BYTE ap_Flags;
BYTE ap_Reserved;
WORD ap_Strlen;
struct FileInfoBlock ap_Info;
UBYTE ap_Buf[1];

};

The semantics of the elements of this structure are as follows:

ap_Base and ap_Last are pointers to an AChain structure that is also defined in dos/dosasl.h.
These structures are allocated and released by dos.library, transparently to the caller. The AChain structure
describes a directory in the potentially recursive scan through a directory tree. The ap_Base element
describes the topmost directory at which the scan started, whereas ap_Last describes the directory which
is currently being scanned.

The AChain structure is also defined in dos/dosasl.h:

struct AChain {
struct AChain *an_Child;
struct AChain *an_Parent;
BPTR an_Lock;
struct FileInfoBlock an_Info;
BYTE an_Flags;
UBYTE an_String[1];

};

Scanning Directories 131

an_Child and an_Parent are only used internally and shall not be interpreted by the caller.

an_Lock is a lock to the directory corresponding to the AChain structure, i.e. ap_Last->an_Lock
is a lock to the directory that is currently being scanned, and ap_Base->an_Lock a lock to the topmost
directory at which the scan started. These two locks have been obtained and will be unlocked by dos.library;
they may be used by the caller provided they are not unlocked manually.

an_Info is only used internally and is the FileInfoBlock of the directory described by the AChain
structure, see section 7.1 for its definition.

an_Flags is only used internally, and an_String contains potentially the path to the directory; both
shall not be modified or interpreted by the caller.

ap_BreakBits of the AnchorPath structure shall be initialized to a signal mask that defines which
signal bits abort a directory scan. This is typically a combination of signal masks defined in the dos/dos.h
include file, e.g. SIGBREAKF_CTRL_C to abort on the Ctrl-C key combination in the console.

ap_FoundBreak contains, if MatchNext() aborts with ERROR_BREAK, the signal mask that caused
the abortion.

ap_Flags contains multiple flags that can be set or inspected by the caller while scanning a directory.
In particular, the following flags are defined in dos/dosasl.h:

APF_DOWILD while documented, is not used nor set at all by the pattern matcher.

APF_ITSWILD is set by MatchFirst() if the pattern includes a wildcard and more than a single
file system object can match. Otherwise, no directory scan is performed and the pattern is delivered as only
match. The user may also set this flag to enforce a scan. This resolves situations in which matching an
explicit path without a wildcard is not possible because the object is locked exclusively.

APF_DODIR may be set or reset by the caller of MatchNext() to enforce entering a directory recur-
sively, or avoid entering a directory. This flag is cleared by MatchNext() when entering a directory, and
it shall only be set by the caller if ap_Info indicates that a directory was found.

APF_DIDDIR is set by MatchNext() if the end of a recursively entered directory has been reached,
and thus the parent directory is re-entered. As this flag is never cleared by the pattern matcher itself, it shall
be cleared by the caller.

APF_NOMEMERR is an internal flag that shall not be interpreted; it is set if an error is encountered while
scanning a directory. Errors indicated by this flag are not restricted to memory allocation errors.

APF_DODOT is, even though documented, not actually used. Its intended purpose was probably to emu-
late the Unix-style directory entries “.” and “..” indicating the current and the parent directory.

APF_DirChanged is a flag that is set by MatchNext() if the scanned directory changed, either by
entering a directory recursively via APF_DODIR, or by leaving a recursively entered directory. It is also
cleared if the directory is the same as in the previous iteration.

APF_FollowHLinks may be set by the caller to indicate that hard links to directories shall be recog-
nized as regular directories and may be recursively entered by setting APF_DODIR. Otherwise, hard links
to directories are never entered. Note that not all file systems are able to distinguish between hard links and
regular entries, so this functionality does not work reliable for all file systems.

Soft links to directories are never entered, this this cannot be enforced by any flag. A potential danger of
links is that they can cause endless recursion if a link within a directory points to a parent directory. Thus,
callers should be aware of such situations and store directories that have already been analyzed. It is safer to
keep the APF_FollowHLinks flag cleared.

ap_Strlen is the size of the buffer ap_Buf that is optionally filled with the complete path of the
matched entry, see below for a more detailed description. Unlike what the name suggests, this is not a string
length, but the byte size of the buffer, including the terminating NUL byte of a string. If the complete path
of the match does not fit into this buffer, it is truncated without proper string termination and the error code

132 Rom Kernel Reference Manual: DOS

ERROR_BUFFER_OVERFLOW is reported. If, however, the complete path is not required, this element shall
be set to 0.

ap_Info contains the FileInfoBlock of the matched file system object, including all metadata the
file system has available for it. Note that fib_FileName only contains the name of the object, not its
complete path.

ap_Buf is filled with the complete path to the matched object if ap_Strlen is non-zero. This buffer
shall be allocated by the caller at the end of the AnchorPath structure, i.e. for a buffer of s bytes, in total
sizeof(AnchorPath)+s-1 bytes are required to store the structure and the buffer. The byte size of this
additional buffer shall be placed in ap_Strlen. If this buffer is not present, ap_Strlen shall be set to 0.

9.1.1 Starting a Directory Scan
The MatchFirst() function starts a directory scan, locating the first object in a directory matching a
pattern.

error = MatchFirst(pat, AnchorPath) /* since V36 */
D0 D1 D2

LONG MatchFirst(STRPTR, struct AnchorPath *)

This function starts a directory scan, locating the first object matching the pattern pat. This pattern does
not require pre-parsing (e.g. the functions in section 9.2), i.e. MatchFirst() performs the initial step of
pre-parsing the pattern and converting it to something suitable for the lower level pattern matcher.

AnchorPath shall be a pointer to an AnchorPath structure allocated and initialized by the caller. In
particular, ap_BreakBits shall be initialized to a signal mask on which the scan terminates. Furthermore,
ap_FoundBreak shall be set to 0, and ap_Strlen to the size of the buffer ap_Buf which is filled by
the full path of the matching objects. If the path is not required, ap_Strlen shall be set to 0. ap_Flags
shall be set to the flags you need, see the parent section. For forward compatibility, ap_Reserved shall
also be set to zero.

Unlike many other functions, MatchFirst() returns an error code directly, and not a success/failure
indicator. That is, 0 indicates success, and everything else an error code IoErr() would provide for many
other functions of dos.library. In particular, if ERROR_BREAK is returned in case any of the signal bits in
ap->ap_BreakBits have been received during the scan. If pat is a wild card that could match multiple
objects and not a single match is found, the error code will be ERROR_NO_MORE_ENTRIES. If pat does
not contain a wild card, the function will attempt to Lock() the provided object name pat directly, and
ERROR_OBJECT_NOT_FOUND will be returned instead in this situation. Unfortunately, this has the side
effect that a dangling soft link, i.e. a link whose target is not available, will also trigger a return code of
ERROR_OBJECT_NOT_FOUND. In some cases, this is undesirable, e.g. if a scan is made to delete such a
link. To work around this issue, the input should be forcefully turned into a pattern and the access should be
retried:

#define ENVMAX 112
LONG MyMatchFirst(const UBYTE *name,struct AnchorPath *ac)
{

LONG error,trc;
UBYTE path[ENVMAX];

error = MatchFirst(name,ac);
if (error == ERROR_OBJECT_NOT_FOUND &&

(trc = strlen(name)) + 4 < ENVMAX) {
strcpy(path,name);

Scanning Directories 133

strcpy(path + trc,"(|)");
MatchEnd(ac);
error = MatchFirst(path,ac);

}

return error;
}

The above code checks the return code for the first attempt to match, and if an error code is generated that
indicates that a single object could not be found, “(|)” is attached to the pattern. This matches the same
object as the original name, but is a wildcard the pattern matcher will resolve by scanning a directory instead
of locking the object itself.

On success, ap->ap_Info.fib_FileName contains the name of the first matched object; the di-
rectory containing the found object is available in ap->ap_Current->an_Lock, represented as a lock.
You would typically set the current directory to this lock, then access the found object, and then revert the
directory. This lock shall not be released; it is implicitly released by the pattern matching functions when
changing the directory or terminating the scan.

If the full path of the matching object is needed, an additional buffer shall be allocated at the end of the
AnchorPath, and the size of the buffer shall be placed into ap_Strlen. The function then fills in the
path into ap_Buf. Note that ap_Strlen is the byte size of the buffer, i.e. an additional NUL for string
termination shall be accounted for.

If the matching object is a directory, i.e. ap->ap_Info.fib_DirEntryType is positive and not
equal to ST_SOFTLINK identifying it as a soft link, the caller may request to enter it by setting APF_DODIR
in ap_Flags. If the matching object can be identified as a hard link to a directory, that its type is
ST_LINKDIR, and APF_FollowHLinks is set, then APF_DODIR will also enter such linked directo-
ries.

Beware, however, that first not all file systems are able to distinguish between regular directories and
links to directories, i.e. the ext2 and related systems from the Unix world will not; furthermore, entering
hard links can cause an endless recursion if the hard link goes to a parent directory of the current directory.

9.1.2 Continuing a Directory Scan
The MatchNext() function continues a directory scan initiated by MatchFirst(), returning the next
matching object, if any, or an error.

error = MatchNext(AnchorPath) /* since V36 */
D0 D1

LONG MatchNext(struct AnchorPath *)

This function takes an existing AnchorPath structure, as prepared by a previous MatchFirst() or
MatchNext() function, and finds the next matching object. Unlike most other functions of dos.library,
this function returns an error code on failure and 0 for success. It does not return a Boolean success indicator.
In particular, if ERROR_BREAK is returned in case any of the signal bits in ap_BreakBits have been
received.

As for MatchFirst(), this call fills ap_Infowith meta information on the found object, in particular
its file name, and in ap->ap_Current->an_Lock the lock of the directory containing the object. As for
MatchFirst(), APF_DODIR may be set to enter directories recursively, and ap_Buf will be filled with
the full path of the found object if ap_Strlen is non-zero.

The following code provides a simple example for a directory scan. It uses the D_S macro from sec-
tion 2.4 to place the AnchorPath structure on the stack and align it properly.

134 Rom Kernel Reference Manual: DOS

/*
** Scan a directory tree recursively for entries matching

** the supplied pattern, and print the objects found.

*/
LONG ScanDirectories(const UBYTE *pat)
{

LONG error;
D_S(struct AnchorPath,ac);

/* Minimal initialization */
ac->ap_BreakBits = SIGBREAKF_CTRL_C;
ac->ap_FoundBreak = 0;
ac->ap_Flags = 0;
ac->ap_Reserved = 0;
ac->ap_Strlen = 0;

for(error = MatchFirst(pat,ac);error == 0;error = MatchNext(ac)) {
if (ac->ap_Flags & APF_DIDDIR) {

Printf("leaving %s\n",ac->ap_Info.fib_FileName);
ac->ap_Flags &= ~APF_DIDDIR;

} else if (ac->ap_Info.fib_DirEntryType > 0 &&
ac->ap_Info.fib_DirEntryType != ST_SOFTLINK &&
ac->ap_Info.fib_DirEntryType != ST_LINKDIR) {
Printf("entering %s\n",ac->ap_Info.fib_FileName);
ac->ap_Flags |= APF_DODIR;

} else {
BPTR lock = CurrentDir(ac->ap_Current->an_Lock);
Printf("%s\n",ac->ap_Info.fib_FileName);
/* Do something on ac->ap_Info.fib_FileName */
CurrentDir(lock);

}
}
MatchEnd(ac);

return error;
}

This function returns the error code that lead to abortion of the scan, it does not attempt to detect a dangling
soft link if pat does not contain a wildcard, see section 9.1.1 for a workaround. It neither attempts to detect
endless recursions on file systems that cannot identify hard links to directories. Note that each directory will
be visited twice: Once when entering it, and once when leaving it.

The MatchFirst() and MatchNext() functions compare file names with the pattern in a case-
insensitive way, thus upper and lower case are considered identical. For that, characters of the file name
and the pattern are converted to upper case by means of the ToUpper() function of utility.library which
is potentially localized by locale.library if loaded. Note that this is potentially different from how the Fast
File System converts characters to upper case, namely by the algorithm that is used in computing the hash
key, see section 13.6.4. Thus, the pattern matcher can potentially identify file system objects as matching
the pattern the file system itself would consider non-matching, and vice versa. This is most critical for the
non-international versions of the FFS and OFS, i.e. the first two (legacy) entries of table 8.3 in section 8.1.3
which consider upper and lower characters from the ISO-Latin-1 supplement block as non-identical. For
the remaining flavors, the FFS interpretation of case-insensitive comparison is, most likely, the correct one
assuming the locale is also based on ISO-Latin-1. Compare also with section 4.1 for similar quirks.

Scanning Directories 135

9.1.3 Terminating a Directory Scan
The MatchEnd() function terminates a running directory scan started with MatchFirst(), and releases
all resources associated with the scan. It does not release the AnchorPath structure.

MatchEnd(AnchorPath) /* since V36 */
D1

VOID MatchEnd(struct AnchorPath *)

This function ends a directory scan started by MatchFirst() and releases all resources associated
to the scan. This function shall be called regardless whether the scan is aborted due to exhaustion (i.e.
ERROR_NO_MORE_ENTRIES, by error, or by choice of the scanning program (e.g. the desired object has
been detected and no further matches are required, or the scan has been aborted by Ctrl-C).

This function does not release the AnchorPath structure, and it may be reused after re-initializing it as
described in section 9.1.1.

9.2 Matching Strings against Patterns
While the prime purpose of the pattern matcher is to scan directories, it can also be used to check whether an
arbitrary string matches a wildcard, for example to scan for a pattern within a text document. This requires
two steps: In the first step, the wildcard is pre-parsed, generating a tokenized version of the pattern. The
second step checks whether a given input string matches the pattern. You would typically tokenize the
pattern once, and then use it to match multiple strings against the pattern. The wild cards possible in a
pattern are those from the start of chapter 9. While the token encoding is documented in dos/dosasl.h,
it should be considered internal, see also the warning at the end of the introduction in chapter 9 and and also
section 4.1. As the tokens use the C1 control set of ISO-Latin 1, patterns should be restricted to printable
ISO-Latin characters.

Two versions of the tokenizer and pattern matcher exist: One pair that is case-sensitive, and a second pair
that is case-insensitive. Note that AmigaDOS file names are case-insensitive, so the MatchFirst() and
MatchNext() functions internally only use the second pair.

The buffer for the tokenized version of the pattern shall be allocated by the caller. It requires a buffer that
is at least 2 + (n << 1) bytes large, where n is the length of the input wildcard.

9.2.1 Tokenizing a Case-Sensitive Pattern
The ParsePattern() function tokenizes a pattern for case-sensitive string matching. This tokenized
version is then later on used to test a string for a match.

IsWild = ParsePattern(Source, Dest, DestLength)
d0 D1 D2 D3

LONG ParsePattern(STRPTR, STRPTR, LONG)

This function tokenizes a wildcard pattern in Source, generating a tokenized version of the pattern
in Dest. The size (capacity) of the target buffer is DestLength bytes. The buffer shall be at least 2
+ (n << 1) bytes large, where n is the length of the input pattern. While this buffer size is currently
sufficient, future implementations can require larger buffers; the result code shall therefore be checked for−1
to determine possible buffer overruns (see below) and the buffer should then be enlarged and the call retried.
The result code IsWild is one of the following:

1 is returned if the source contained wildcards and was tokenized successfully.

136 Rom Kernel Reference Manual: DOS

0 is returned if the source contains no wildcards. In this case, the tokenized pattern may still be used to
match a string against the pattern, though a simple string comparison would also work.

-1 is returned in case of an error, either because the input pattern is ill-formed, or because DestLength
is too short. Then, IoErr() provides an error code. Possible errors include ERROR_LINE_TOO_LONG if
the target buffer is not large enough to keep the parsed pattern, and ERROR_BAD_TEMPLATE if the template
is ill-formed, for example if the “|” token is not enclosed in brackets.

9.2.2 Tokenizing a Case-Insensitive Pattern
The ParsePatternNoCase() function tokenizes a pattern for case-insensitive string matching. This
tokenized version is then later on used to test a string for a match. This version is suitable for matching file
names, but is otherwise similar to ParsePattern().

IsWild = ParsePatternNoCase(Source, Dest, DestLength)
d0 D1 D2 D3

LONG ParsePatternNoCase(STRPTR, STRPTR, LONG)

This function tokenizes a wildcard pattern in Source, generating a tokenized version of the pattern
in Dest. The size (capacity) of the target buffer is DestLength bytes. The buffer shall be at least 2
+ (n << 1) bytes large, where n is the length of the input pattern. While this buffer size is currently
sufficient, future implementations can require larger buffers; the result code shall therefore be checked for−1
to determine possible buffer overruns (see below) and the buffer should then be enlarged and the call retried.
The result code IsWild is one of the following:

1 is returned if the source contained wildcards.
0 is returned if the source contains no wildcards. In this case, the tokenized pattern may still be used to

match a string against the pattern, though a simple case-insensitive string comparison would also work.
-1 is returned in case of an error, either because the input pattern is ill-formed, or because DestLength

is too short. Then, IoErr() provides an error code. Possible errors include ERROR_LINE_TOO_LONG if
the target buffer is not large enough to keep the parsed pattern, and ERROR_BAD_TEMPLATE if the template
is ill-formed, for example if the “|” token is not enclosed in brackets.

9.2.3 Match a String against a Pattern
MatchPattern() matches a string against a tokenized pattern prepared by ParsePattern(), taking
the case of the string and the pattern into consideration.

match = MatchPattern(pat, str)
D0 D1 D2

BOOL MatchPattern(STRPTR, STRPTR)

This function matches the string str against the tokenized pattern pat, returning an indicator whether
the string matches the pattern. This function is case-sensitive. The pattern pat shall have been tokenized by
ParsePattern().

The result code match is non-zero in case the string matches, or 0 in case either the string did not
match, or the function run out of stack. The latter two cases can be distinguished by IoErr(). In case
the string did not match, IoErr() returns 0, or a non-zero error code otherwise. A possible error code is
ERROR_TOO_MANY_LEVELS indicating that the pattern matcher run out of stack due to too many levels of
recursion.

The caller shall have at least 1500 bytes of stack space available to avoid race conditions, despite the
function checking for out-of-stack conditions.

Matching Strings against Patterns 137

9.2.4 Match a String against a Pattern ignoring Case
The MatchPatternNoCase() function matches an input string against a tokenized pattern prepared by
ParsePatternNoCase(), ignoring the case of the string and the pattern.

match = MatchPatternNoCase(pat, str)
D0 D1 D2

BOOL MatchPatternCase(STRPTR, STRPTR)

This function matches the string str against the tokenized pattern pat, returning an indicator whether
the string matches the pattern. This function is case-insensitive. The pattern pat shall have been tokenized
by ParsePatternNoCase().

Case-insensitive comparison is defined by converting characters of the string and the pattern to upper
case by the ToUpper() function of utility.library which is potentially localized by locale.library if loaded.

The result code match is non-zero in case the string matches, or 0 in case either the string did not
match, or the function run out of stack. The latter two cases can be distinguished by IoErr(). In case
the string did not match, IoErr() returns 0, or a non-zero error code otherwise. A possible error code is
ERROR_TOO_MANY_LEVELS indicating that the pattern matcher run out of stack due to too many levels of
recursion.

The caller shall have at least 1500 bytes of stack space available to avoid race conditions, despite the
function checking for out-of-stack conditions.

138 Rom Kernel Reference Manual: DOS

Chapter 10

Processes

Processes are extensions of exec tasks. They include a message port in the form of a MsgPort structure
for inter-process communication to handlers, a current directory to resolve relative paths, the standard input,
output and error streams and the last input/output error as returned by the IoErr() function.

Processes are represented by the Process structure documented in dos/dosextens.h. It reads as
follows:

struct Process {
struct Task pr_Task;
struct MsgPort pr_MsgPort;
WORD pr_Pad;
BPTR pr_SegList;
LONG pr_StackSize;
APTR pr_GlobVec;
LONG pr_TaskNum;
BPTR pr_StackBase;
LONG pr_Result2;
BPTR pr_CurrentDir;
BPTR pr_CIS;
BPTR pr_COS;
APTR pr_ConsoleTask;
APTR pr_FileSystemTask;
BPTR pr_CLI;
APTR pr_ReturnAddr;
APTR pr_PktWait;
APTR pr_WindowPtr;

/* the following definitions are new in V36 */
BPTR pr_HomeDir;
LONG pr_Flags;
void (*pr_ExitCode)();
LONG pr_ExitData;
UBYTE *pr_Arguments;
struct MinList pr_LocalVars;
ULONG pr_ShellPrivate;
BPTR pr_CES;

}; /* Process */

CHAPTER 10. PROCESSES 139

Many functions of dos.library can only be called from processes as they depend on and update the ele-
ments of the process structure shown above. The AddPart(), FilePart() and PathPart() functions
from sections 7.3.3 and following are noteworthy exceptions as they do not interface to handlers but only
operate on strings. The DoPkt() function from section 12.1 is also prepared to accept ordinary exec tasks
as callers, but then cannot set the secondary result code, i.e. the return value of IoErr(), as it is repre-
sented as an element in the process structure. To be able to initiate processes, CreateNewProc() and
CreateProc() specified in sections 10.1.1 and 10.1.2 are also callable from tasks; the latter function also
existed in AmigaDOS versions 34 and below, but was not task-callable there.

The elements of this structure are as follows:

pr_Task is the exec task structure defined in exec/tasks.h and discussed in more detail in [4]. To
distinguish between an exec Task and a Process, the pr_Task.tc_Node.ln_Type element of the latter
is set to NT_PROCESS instead to NT_TASK. Prior starting the process, dos.library also pushes the stack
size onto the stack, i.e. (ULONG *)(pr_Task.tc_Upper)[-1] contains the size of the stack in bytes.
Some binaries, in particular those compiled with the Aztec (Manx) compiler depend on this value deposited
there.

dos.library also installs a custom exception handler into the tc_TrapCode element of the Task struc-
ture which is called upon CPU exceptions caught by the exec kernel. It shows the “Software Failure” re-
quester, allowing users to suspend the process or reboot the system. When selecting suspension, the code
runs into a Wait(0)which waits forever. Otherwise, the exception handler runs into the Alert() function
of exec which will show the usual red software failure, with the option to enter the ROM debugger. Unfor-
tunately, AmigaDOS versions 45 and below had a defect here that did not interpret the 68K exception stack
frames correctly and thus left unusable data on the stack before entering the ROM debugger.

pr_MsgPort is a message port structure as defined in exec/ports.h. This port is used by many
functions of dos.library to communicate with handlers and file systems. Details of the communication pro-
tocol are given in chapters 12 and 13.

pr_Pad is unused and only included in the structure to ensure that all following elements are aligned to
long word boundaries.

pr_SegList contains an array of segments which are used to populate the BCPL Global Vector (see
below) by the BCPL runtime binder. The usage of the segment array and the Global Vector is questionable as
version 47 removed the last BCPL compiled handler and by that also the last BPCL compiled program from
the system. Its contents will be briefly described in the following for historical purposes:

The first entry in the segment array is a 32-bit integer indicating the number of elements the BCPL
runtime binder scans for populating the Global Vector, the remaining entries are BPTRs to segment lists. A
segment list is a BPTR linked list of program sections, its structure is explained in more detail in chapter 11.
Some entries in the segment array can also be ZERO indicating that the corresponding entry is currently
not used. Entries 1 and 2 are system segments containing AmigaDOS functions, namely the BCPL “kernel
library” klib and the BCPL support library blib. Functions in these two segments are either trivial (e.g. long
multiplication) or available as functions dos.library as well. They are always included in the count at offset 0
of the segment array.

Entry 3 is populated by the segment list of the program, see chapter 11, the process is executing. It is
only included in the count if the started process requested BCPL binding, thus for handlers with a GLOBVEC
entry in their mountlist of 0 or −3, see table 8.2 in chapter 8. For BCPL code, the program segments are
also used to populate the Global Vector, see section 11.5.4 for details, and thus the count value is then 3.
Segments of C and assembler programs lack BCPL runtime binding information, they are excluded from the
count and thus ignored by the binder. The count for them is therefore 2.

Entry 4 contains the segment list of the shell if the process represents a shell, or is currently executing
a command line program overlaying the shell process. The shell startup code moves its own segment from
entry 3 to 4, see also section 15.7, leaving room for the segment of command line programs in entry 3.

140 Rom Kernel Reference Manual: DOS

The above only reflects the current (version 47) usage of the pr_SegList, and later versions of Amiga-
DOS can populate this vector differently or abandon it completely as it does not contain relevant information
for non-BCPL programs, and the BCPL runtime binding mechanism will likely be phased out at some point,
too.

pr_StackSize is the size of the process stack in bytes which is always a multiple of 4. In case the
process is executing a command line program, the stack size recorded here is the stack size of the shell,
and not the stack size of the command line tool executing in the context of the shell. Thus, this element
is unsuitable to retrieve the stack size of the currently running process in general. Instead, the elements
tc_SPLower and tc_SPUpper of the task structure shall be used, which are updated properly when
providing a new stack by StackSwap(), or RunCommand() is used to execute commands in the context
of the shell and provides a custom stack for them. The latter, namely the stack size for command execution,
is adjustable by means of the Stack command.

pr_GlobVec is another BCPL legacy. It contains the Global Vector of the process. For binaries using
the BCPL linkage, this is a custom-build array of global data and function entry points populated from the
pr_SegList array through the BCPL runtime binder introduced in section 11.5.4. For C and assembler
binaries, the Global Vector is the system shared vector; it contains dos.library global (BCPL) functions and
data required by dos.library, such as base pointers to system libraries. As no particular advantage can be
taken from this vector (anymore), it should be left alone and its entries are not documented here.

pr_TaskNum is an integer allocated by the system for processes that execute a shell, or command line
programs executed in the context of a shell. The number here corresponds to the integer printed by the
Status command. It is the closest AmigaDOS analog of a process ID. The FindCliProc() function
can be used to retrieve the process corresponding to a task number, it is specified in section 15.2.6. Note
that AmigaDOS does not use task numbers consistently, i.e. processes that are started from the Workbench,
handlers, file systems or processes that have been created by CreateNewProc() or CreateProc() are
not identified by a task number. In such a case, this element remains 0.

pr_StackBase is a BPTR to the address of the lower end of the stack, i.e. the end of the C or assembler
stack. As the BCPL stack grows in opposite direction, it is the start of the BCPL stack. While it is initialized,
it is not used by dos.library at all. It neither reflects the lower end of the stack of a command line program
executing in the context of a shell process. In such a case, pr_StackBase is the lower end of the stack
of the shell. The lower end of the stack of the process may instead be found in the tc_SPLower element
of pr_Task, which is always correct, regardless of whether the process is run from the Workbench, or
executing a command overlaying the shell process. pr_StackBase should thus be left alone as it serves
no practical purpose.

pr_Result2 is the secondary result code set by many functions of dos.library. The value stored
here is delivered by IoErr() specified in section 10.2.9, and it can be altered by SetIoErr(), see
section 10.2.10. The above two accessor functions should be preferred to accessing this element directly.

pr_CurrentDir is the lock representing the current directory of the process. All relative paths are
resolved through this lock, i.e. they are relative to pr_CurrentDir. If this element is ZERO, the current di-
rectory is the root directory of the file system whose MsgPort pointer is stored in pr_FileSystemTask.
As the latter is (unless altered) the file system of the boot volume, this is usually identical to the directory
identified by the SYS assign. As for the above, this element should not be read or modified directly, instead
the accessor functions GetCurrentDir() from section 10.2.7 and CurrentDir() from section 10.2.8
should be preferred.

pr_CIS is file handle of the standard input stream of the process. It should preferably accessed through
the Input() function specified in section 10.2.1. The input file handle can be ZERO in case the process
does not have a standard input stream. This is not equivalent to a NIL: input handle — in fact, any attempt
to read from a non-existing input stream will crash. Processes started from the Workbench do not have an
input stream, unless one is installed here with SelectInput(), see section 10.2.2.

CHAPTER 10. PROCESSES 141

pr_COS is the file handle of the standard output stream of the process. It should preferably be obtained
through the Output() function of dos.library specified in section 10.2.3. The output file handle can be
ZERO in case the process does not have a standard output stream, which is not equivalent to a NIL: file
handle. Any attempt to output to ZERO will crash the system. Processes started from the Workbench do not
have an output stream, unless one is installed with SelectOutput(), see section 10.2.4.

pr_ConsoleTask is the MsgPort of the console within which this process is run, if such a console
exists. This handler is contacted when opening “*” or a path relative to CONSOLE:. Processes started
from the Workbench do not have a console, unless one is installed with SetConsoleTask() from sec-
tion 10.2.11. The pointer stored in this element should be preferably obtained by GetConsoleTask(),
see section 8.2.4.

pr_FileSystemTask is the MsgPort of the file system that is contacted in case a path relative to the
ZERO lock is resolved, i.e. if pr_CurrentDir is ZERO. This element is initialized to the MsgPort of the
file system the system was booted from, but can be changed by SetFileSysTask(), see section 10.2.12.
This element is also returned by GetFileSysTask() specified in section 8.2.5, and access through this
function should be preferred.

pr_CLI is a BPTR to the CommandLineInterface structure containing information on the shell
this process is running in. If this process is not part of a shell, this element is ZERO. This is for example the
case for programs started from the Workbench, or handlers and file systems. This structure is specified in in
section 15.3.7, and it should preferably be obtained through the Cli() function of the same section. There
is no corresponding setter function, indicating that this element shall not be modified by user code at all.

pr_ReturnAddr is another BCPL legacy and should not be used by new implementations. It points to
the BCPL stack frame of the process or the command overlaying the process, and used there to restore the
previous stack frame by the Exit() function from section 10.1.3. This is typically the process cleanup code
for processes initialized by CreateProc() or CreateNewProc(), or the shell command shutdown code
placed there by RunCommand(). This cleanup code does not, however, release any resources obtained by
user code, and for C programs the C standard library function exit() (with a small-case “e”) is in almost
all cases the better (and correct) choice. BCPL code or custom startup code could deposit here a pointer to a
BCPL stack frame for a custom shutdown code, but as the entire BCPL activation and shutdown mechanism
is a legacy construction, this element should be better left alone.

The BCPL stack frame is described by the following (undocumented) structure:

struct BCPLStackFrame {
ULONG bpsf_StackSize; /* in bytes */
APTR bpsf_PreviousStack;

};

where bpsf_StackSize is the stack size of the current (active) stack, and bpsf_PreviousStack the
stack of the caller; to restore the previous stack, the latter value is placed in the CPU register A7.

pr_PktWait is a function that is called by dos.library when waiting for a packet to return from a
handler or file system. Packets are used by dos.library to communicate with handlers, see also chapters 12
and 13. If this is NULL, the system default function is used, which waits on the arrival of a message on
pr_MsgPort. The signature of this function is

msg = (*pr_PktWait)(void)
D0

struct Message *(*pr_PktWait)(void)

that is, no particular arguments are delivered, the process structure of the calling process must be obtained
from exec.library, and the message received shall be delivered back into register D0. From this, dos.library

142 Rom Kernel Reference Manual: DOS

retrieves the packet. The returned pointer shall not be NULL, rather, this function shall block until a mes-
sage has been retrieved. For details on packets and inter-process communication through packets, see the
DoPkt() function in section 12.1 and chapter 13 in general.

pr_WindowPtr is a pointer to an intuition Window structure, see intuition/intuition.h,
which will borrow its title and its screen to error requesters. If this is NULL, error requesters appear on the
default public screen, usually the Workbench screen; if this is set to (APTR)(-1L), error requesters will be
suppressed at all, and the implied response to them is to cancel the operation. All other values will redirect
the requester to the same screen the window pointed to by this element is located on. The workings of error
requesters is specified in more detail in the description of the ErrorReport() function in section 16.2.1.

Particular care shall be taken when replacing pr_WindowPtrwithin command line executables as com-
mands only overlay the shell process, and thus share the same process with the shell and all other commands
executing within the same shell. If, upon termination of a command, the window pointed to by this element
is closed, the next command could find an invalid pr_WindowPtr in its process. The generation of an error
requester would then crash the machine. Shell commands shall therefore store the initial value of this pointer
prior to modification, and restore it back when exiting.

Also, redirection of error requesters only works for requesters that are generated in the context of the
calling process. Requesters the file system itself displays, for example if a particular block on a medium is
corrupt and unreadable, cannot be redirected by means of pr_WindowPtr.

At present, there are no accessor functions for this pointer, it can only be read and modified by accessing
the process structure itself.

All subsequent elements were added in AmigaDOS version 36 and are not available for earlier releases:
pr_HomeDir is the lock to the directory containing the command or binary that is currently executing

as this process, if such a directory exists. It is ZERO if the command was taken from the list of resident com-
mands, see section 15.6, or is a shell built-in command. This lock is filled in by the shell or the Workbench
when loading an executable program. It is used to resolve paths relative to the PROGDIR pseudo-assign,
see chapter 4.4. If this lock is ZERO, any attempt to resolve a path within PROGDIR: will create a request
to insert a volume named PROGDIR1. This lock shall not be released nor altered by the process; instead,
dos.library unlocks it when the process dies.

pr_Flags are system-use only flags that shall not be accessed, modified or interpreted. They are used
by the system process shutdown code to identify which resources need to be released, but future systems may
find additional uses for this element or extend the flags stored here. Table 10.1 lists the currently used flags
defined in dos/dosextens.h:

Table 10.1: Process Flags

Flag Meaning
PRF_FREESEGLIST Unload the segment pr_SegList[3]
PRF_FREECURRDIR Unlock the current directory pr_CurrentDir
PRF_FREECLI Unlink the CLI structure pr_CLI
PRF_CLOSEINPUT Close the standard input stream pr_CIS
PRF_CLOSEOUTPUT Close the standard output stream pr_COS
PRF_FREEARGS Release CLI arguments pr_Arguments
PRF_CLOSEERROR Close the standard error output pr_CES

The PRF_FREESEGLIST flag requests that the program segment is released with UnLoadSeg()when
the process terminates. This segment is taken from pr_SegList[3], see above. This flag corresponds to
the NP_FreeSeglist tag of the CreateNewProc() function from section 10.1.1.

The PRF_FREECURRDIR flag releases pr_CurrentDir via UnLock() upon termination of the pro-
cess. This flag is set when creating processes by CreateNewProc() and a non-ZERO lock is installed as

1This is probably unintended and a defect of GetDeviceProc().

CHAPTER 10. PROCESSES 143

current directory. The only way how to clear this flag is to install a ZERO lock by the NP_CurrentDir
tag, see also section 10.1.1 and the description of this tag.

The PRF_FREECLI flag requests to release the CommandLineInterface structure and all structures
referenced by it upon termination of the process. This flag is set if building a CLI structure is requested by
the NP_Cli tag.

The PRF_CLOSEINPUT flag closes the pr_CIS standard input stream upon termination of the process.
This flag corresponds to the NP_CloseInput tag of CreateNewProc().

The PRF_CLOSEOUTPUT flag closes the pr_COS standard output stream upon termination of the pro-
cess. It corresponds to the NP_CloseOutput tag of CreateNewProc().

The PRF_FREEARGS flag requests to release the command line arguments stored in pr_Arguments
upon process termination. This flag is set implicitly by providing arguments through the NP_Arguments
tag of CreateNewProc().

The PRF_CLOSEERROR flag closes the pr_CES standard error stream upon termination of the pro-
cess. This flag was introduced in AmigaDOS version 47. It corresponds to the NP_CloseError tag of
CreateNewProc().

pr_ExitCode() is a pointer to a function that is called by AmigaDOS as part of the process shutdown
code, and as such more useful that pr_ReturnAddr. The function prototype is as follows:

returncode = ExitFunc(rc, exitdata)
D0 D0 D1

LONG ExitFunc(LONG,LONG)

The value of rc is the process return code, i.e. the value left in register D0 when the code drops off the
final RTS. exitdata is taken from pr_ExitData. The returncode allows the exit function to modify
the process return value; however, currently this value has no use as dos.library shutdown code directly runs
into RemTask() of exec.library which discards all register values of the terminating task. The process exit
function is defined by the NP_ExitCode tag of the CreateNewProc() function, see section 10.1.1.

pr_ExitData is used as argument for the pr_ExitCode() function, see above. It is defined by the
NP_ExitData tag of CreateNewProc().

pr_Arguments is a pointer to the command line arguments of the process if it executes a command
started from the shell. It is a NUL terminated string not including the command name itself. The latter
can be retrieved from cli_CommandName, see section 15.3.7. The argument string can also be found
in register A0, or in the buffer of the pr_CIS file handle. The ReadArgs() function takes it from the
latter source, and not from pr_Arguments. If the process does not execute a command from the shell,
this element remains NULL. The command line arguments can also be retrieved through GetArgStr()
specified in section 10.2.15. Even though this is possibly a bit pointless, the argument string can also be
set by SetArgStr() from section 10.2.16, though arguments installed by this function will not reach
ReadArgs().

pr_LocalVars is a MinList structure, as defined in exec/lists.h, that contains all local vari-
ables and alias definitions specific to the shell and commands executed by it in the context of this process,
see section 15.1.5 and following. The structure of a node in this list is specified in section 15.4.3 and defined
in dos/var.h. Access to this list is not protected by a semaphore, and thus, it shall not be accessed from
any other process but the one represented by the containing Process structure. Even more so, the list and
its contents should not be accessed directly at all, but through the accessor functions listed in section 15.4.

pr_ShellPrivate is reserved for the Shell and its value shall not be used, modified or interpreted. It
is currently unused, but can be used by future releases.

pr_CES is the file handle to be used for error output. This stream goes usually to the console the
process runs in, if such a console exists. This handle can be changed by SelectError() specified in

144 Rom Kernel Reference Manual: DOS

section 10.2.6. If pr_CES is ZERO, processes should print errors through pr_COS instead; preferably,
processes should use the ErrorOutput() function defined in section 10.2.5 to get access to the standard
error stream. This function will also implement the fall-back to the standard output stream in case no standard
error stream is available. Even though this element already existed in AmigaDOS version 36, it only came in
use from AmigaDOS version 47 onward.

Prefer Accessor Functions The elements of the Process structure should not be accessed di-
rectly if an accessor function is available. Thus, prefer Input() to pr_CIS and Cli() to
pr_CLI, etc. There are only very few elements in this structure which should be accessed directly:
pr_WindowPtr controls the generation of error requesters, and pr_TaskNum provides the task
ID of a shell process. All remaining elements are either accessible through functions of dos.library
or are BCPL legacies that serve little practical purpose today.

10.1 Creating and Terminating Processes
AmigaDOS provides several functions to create processes: CreateNewProc() is the newer and most
flexible function for launching a process, taking parameters in the form of a tag list. The legacy function
CreateProc() supports less options, but is available under all AmigaDOS versions. Creating shells and
running shell scripts by the System() function implicitly also creates processes, but it is not discussed
here, but in chapter 15. However, System() shares a couple of tags with CreateNewProc() to create
the process running the shell.

There is not a single function to delete a process. Processes die whenever their execution drops off at
the end of the main() function, or whenever execution reaches the final RTS instruction of their program
code. The Exit() function only terminates the calling program, but cannot be used to shut down any
other process. As it neither releases any resources beyond those allocated implicitly by AmigaDOS when
starting the process or command, its practical use is limited. Processes shall not be terminated by exec.library
function RemTask() either as this function will miss to release even the resources allocated by dos.library
when creating processes, leave alone resources allocated within the executed program code.

CreateProc() and CreateNewProc() alone are not sufficient to launch applications intended to
be run from the Workbench, nor to start command line programs expecting a shell environment. While the
Workbench also goes through CreateNewProc(), the delivery of a WBStartup message as documented
in workbench/startup.h is necessary in addition. Such a message can be created manually and send
to the process once started. The WBLoad program added to AmigaOs version 45 emulates the Workbench
startup mechanism by such a technique.

For shell commands, the RunCommand() function of section 15.2.3 or the System() function de-
scribed in section 15.2.1 are more appropriate. The former overlays the calling process with a command
represented by a segment list, e.g. obtained from LoadSeg(), but requires already the presence of a shell
environment on the caller side. The latter creates a shell, loads one or multiple commands from within this
new shell and executes them there. More details on these functions are found in sections 15.2.3 and 15.2.1.

10.1.1 Creating a New Process from a TagList
The CreateNewProc() function takes a TagItem array as defined in utility/tagitem.h and
launches a new process taking parameters from this list.

process = CreateNewProc(tags) /* since V36 */
D0 D1

struct Process *CreateNewProc(struct TagItem *)

Creating and Terminating Processes 145

process = CreateNewProcTagList(tags) /* since V36 */
D0 D1

struct Process *CreateNewProcTagList(struct TagItem *)

process = CreateNewProcTags(Tag1, ...) /* since V36 */

struct Process *CreateNewProcTags(ULONG, ...)

The above functions go all through the same entry point of dos.library, only the calling conventions
are different. For CreateNewProcTags(), the TagList is created by the compiler on the stack and a
pointer is then implicitly passed into the function. The first two functions are identical and differ only by
name.

The following tags are recognized by the function and are defined in dos/dostags.h:

NP_Seglist takes a BPTR to a segment list as returned by LoadSeg() and launches the process at
the first byte of the first segment of the list.

NP_FreeSeglist is a Boolean indicator that defines whether the provided segment list is released via
UnLoadSeg() when the process terminates. Unlike what the official documentation claims, the default
value of this tag is DOSFALSE, i.e. the segment list is not released by default. The segment list is never
released if creating the process failed, regardless of this tag.

NP_Entry is mutually exclusive to NP_Seglist and defines an absolute address (and not a segment)
as entry point of the process to be created. Either NP_Entry or NP_Seglist shall be included in the tags.
If NP_Entry tag is present, then NP_FreeSeglist shall not be included, or shall be set to DOSFALSE.

NP_Input sets the input file handle, i.e. pr_CIS, of the process to be created. This tag takes a BPTR
to a FileHandle structure. The default is to open a file handle to NIL:.

NP_CloseInput selects whether the input file handle will be closed when the process terminates. If
non-zero, the input file handle will be closed, otherwise it remains opened. The default is to close the input
file handle, no matter which handle the process left in pr_CIS when terminating. If creating the process
failed, a handle provided by NP_Input remains available to the caller and will not be closed. The handle to
NIL: that is used as default will, however, be cleaned up on error.

NP_Output sets the output file handle, i.e. pr_COS, of the process to be created. This tag takes a BPTR
to a FileHandle structure. The default is to open a file handle to NIL:.

NP_CloseOutput selects whether the output file handle will be closed when the process terminates.
If non-zero, the output file handle will be closed, otherwise it remains open. The default is to close the
output file handle in pr_COS when the created process terminates, even if it is not the file handle passed into
NP_Output. If creating the process failed, a file handle provided through NP_Output remains open and
available to the caller. The file handle to NIL: that is used as default will, however, be cleaned up on error.

NP_Error sets the error file handle, i.e. pr_CES, of the process to be created. This tag also takes a
BPTR to a FileHandle structure. The default is to set the error output handle to ZERO. This tag was not
implemented prior to AmigaDOS version 47.

NP_CloseError selects whether the error file handle will be closed when the process terminates, no
matter whether it was set by a tag or by the process itself during its life-time. If non-zero, the error file handle
will be closed, otherwise it remains open. The default is not to close the error file handle. This (different)
default is to ensure backwards compatibility. This tag was also introduced in AmigaDOS version 47.

NP_CurrentDir sets the current directory of the process to be created. The argument is a lock which
is absorbed into the created process, and will also be released by it. The default is to duplicate the current
directory of the caller with DupLock() if the caller is a process, or set it to ZERO if the caller is only a task.

146 Rom Kernel Reference Manual: DOS

The current directory of the process, i.e. pr_CurrentDir, is released when the process terminates, unless
the initial current directory is ZERO. The provided lock is also released if creating the new process failed.

NP_StackSize sets the stack size of the process to be created in bytes. The default is a stack size of
4000 bytes2.

NP_Name is a pointer to a NUL terminated string determining the name of the new process. This string is
copied before the process is launched, and the copy is released automatically when the process terminates or
creating the process fails; thus, the original string remains available to the caller. The default process name
is “New Process”.

NP_Priority sets the priority of the process to be created. The tag value shall be an integer in the
range −128 to 127, though useful values are in the range of 0 to 19. The default is 0.

NP_ConsoleTask specifies a pointer to a MsgPort to the handler that is responsible for the console
of the process to be created. That is, if the created process opens “*” or a path relative to CONSOLE:, it will
use the specified handler. The default is to use the console handler of the caller if it is process, or NULL if the
caller is only a task.

While not explicitly available as a tag, the pr_FileSystemTask of the created process is set to the
default file system of the calling process, or to the default file system from dos.library if the caller is a task.
This file system is contacted to resolve paths relative to the ZERO lock, and is typically also the file system
responsible for the SYS assign.

NP_WindowPtr specifies a pointer to a Window structure that determines the title of and the screen
on which error requesters will be displayed, see also section 16.2.1. If this pointer is NULL, requesters will
be shown on the default public screen — that is, typically the Workbench — and if it is −1, error requesters
are suppressed and dos.library reacts as if the user canceled the requester. The argument of the tag will
be installed in the pr_WindowPtr of the new process. If no tag is provided, the default is to copy the
value from the calling process if its window pointer is NULL or −1, or set to NULL otherwise. To set the
pr_WindowPtr of the created process to that of the caller, the tag and the window pointer shall be explicitly
provided. If called from a task and not a process, the default is NULL. The reason why pr_WindowPtr is
not explicitly copied is that otherwise the calling process need to ensure that its own window remains at least
as long open as the created process keeps running.

NP_HomeDir sets the pr_HomeDir lock which is used to resolve paths relative to the PROGDIR
pseudo-assign. The default is to duplicate pr_HomeDir of the calling process, or ZERO in case the caller is
a task. This lock is released when the process terminates, even if it is the lock of the caller. Should the caller
still require the lock, it needs to be copied by DupLock() upfront. The provided lock is released even if
creating the new process fails.

NP_CopyVars determines if the local shell variables and alias definitions in pr_LocalVars of the
calling process are copied into the new process. If set to non-zero, a deep copy of the variables of the calling
process are made, otherwise the new process does not receive any shell variables and alias definitions. The
latter also happens if the caller is a task and not a process. The variables are automatically released when
the new process terminates, and once the new process is running, two independent sets of variables and alias
definitions exist.

NP_Cli determines whether the new process will receive a new shell environment in the form of a
CommandLineInterface structure. If non-zero, a new CLI structure will be created and a BPTR to this
structure will be filled into the pr_CLI element. The new shell environment will be a copy of the shell
environment of the caller if one is present, or a shell environment initialized with all defaults. This means
that the prompt, the path, and the command name will be copied over if possible. If the tag value is 0, no CLI
structure will be created. The latter is also the default.

NP_Path provides a chained list of locks within which commands for shell execution are searched.
This is the same list the Path command adjusts, see section 15.3.7 for details on this structure. This tag

2Versions 34 and below of dos.library allocated 1500 bytes for the BCPL environment at the bottom of the 68K stack for each
function called, requiring a somewhat larger stack. Programs not using dos.library could get away with as little as 2000 bytes.

Creating and Terminating Processes 147

only applies if NP_Cli is non-zero to request a shell environment. This chained list is not copied, only
referenced, and will be released when the created process terminates; hence, the locks provided here are no
longer available to the caller if CreateNewProc() succeeds. If CreateNewProc() fails, the entire
lock list remains a property of the caller and thus needs to be potentially released there. The default, if this
tag is not provided, is to copy the paths of the caller if the calling process is equipped with a CLI structure.
This (implicit) copy is, of course, released on error.

NP_CommandName provides the name of the command being executed within the shell environment if
NP_Cli indicates that one is to be created. This tag does not actually load any command, it only provides
an identification within the shell which command is running, see also section 15.3.7. The default is to copy
the command name of the shell environment of the calling process if one exists, or to leave the command
name empty if the caller is not part of a shell or is a task. The string is copied, and the original thus remains
available to the caller. More on the shell environment is found in section 15.3.7.

NP_Arguments provides command line arguments for the process to be created. This is a NUL termi-
nated string containing all arguments to be received by the created process, excluding the command name
itself which is set by the above tag. If provided, the arguments are copied into pr_Arguments of the new
process, and the string and its lengths will be loaded into registers A0 and D0 before execution of the process
begins. If NP_Arguments are non-NULL, the tag value of NP_Input, if it is included, shall not be ZERO.
This is because the arguments are additionally copied into the buffer of the input file handle to make them
available to ReadArgs(), or any other function that reads from pr_CIS using buffered I/O functions, see
section 5.6 for details. The arguments are always copied by this function and the string thus remains avail-
able to the caller, the copy will released when the created process terminates or when creation of the process
failed.

NP_ExitCode determines a pointer to function that is called when the created process terminates. It is
installed into pr_ExitCode. See chapter 10 for the description and the signature of this function.

NP_ExitData provides an argument that will be passed into the NP_ExitCode function in register
D1 when the process terminates. Details are again at the beginning of chapter 10.

While dos/dostags.h also defines the tags NP_NotifyOnDeath and NP_Synchronous, these
tags are currently ignored and do not perform any function.

The CreateNewProc() function returns on success a pointer to the Process structure just created.
At this stage, the process has already been launched and, depending on its priority, may already be running.
On failure, the function returns NULL. Unfortunately, it does not set IoErr() consistently on failure, thus
one cannot easily determine the cause of the error.

What’s Released on Error? Unfortunately, CreateNewProc() is not very consistent on which
resources it releases in case it cannot create a process. The locks representing the current directory
and the home directory are released in such a case, all other resources remain available to the caller.

10.1.2 Create a Process (Legacy)
The CreateProc() function creates a process from a segment list, a name, a priority and a stack size. It
is a legacy function that is not as flexible as CreateNewProc().

process = CreateProc(name, pri, seglist, stackSize)
D0 D1 D2 D3 D4

struct MsgPort *CreateProc(STRPTR, LONG, BPTR, LONG)

This function creates a process of the name name running at priority pri. The process starts at the first
byte of the first segment of the segment list passed in as seglist, and a stack of stackSize bytes will
be allocated for the process.

148 Rom Kernel Reference Manual: DOS

The Process structure is initialized as follows: The task name is set to a copy of name, and this copy
is released when the process terminates. pr_ConsoleTask and pr_WindowPtr are copied from the
calling process, or are set to NULL respective 0 if called from a task. The element pr_FileSystemTask
is also copied from the calling process, or is initialized from the default file system of dos.library if called
from a task. AmigaDOS versions 34 and below do not support calling CreateTask() from a task at all
and would simply crash.

Input, output and error file handles are set to ZERO, and no shell environment is created either. The
current directory and home directory are also not initialized and left at ZERO. No command line arguments
are provided to the process, and no shell variables are copied from the caller either.

The passed in seglist is not released upon termination. This should be done manually, though
CreateProc() does not offer a protocol to learn when the created process terminates and the segment
list containing the running code can be safely released again. The Workbench startup protocol described
in [4] may be used as a blue-print for a similar mechanism, though CreateNewProc() offers a more prac-
tical solution by the NP_FreeSeglist tag and should be preferred, unless compatibility to AmigaDOS 34
and below is required.

If CreateProc() succeeds, the returned value process is a pointer to the MsgPort of the created
process. It is not a pointer to a process itself.

On failure, the function returns NULL. Unfortunately, it does not set IoErr() consistently in case of
failure, thus the cause of the problem cannot be easily identified.

10.1.3 Terminating a Process

The Exit() function terminates the calling process or the calling command line program. In the latter case,
control is returned to the shell, in the former case, the process is removed from the exec scheduler.

However, this function does not release any resources except those implicitly allocated when creating
the process through CreateNewProc() or CreateProc(), or the resources created when starting the
program from the shell through RunCommand(). As it misses to release resources allocated by the program
itself or the compiler startup code, this function should not be used and rather a compiler or language specific
shutdown function should be preferred. Ideally, programs should simply return from their main() function
to the operating system. The C standard library provides exit() (with smaller case “e”) which releases
resources obtained through the ANSI C environment.

Exit(returnCode)
D1

void Exit(LONG)

This call either terminates the calling process, in which case the argument is ignored, or returns to the
shell, then delivering returnCode as result code. It locates the BCPL stack frame at pr_ReturnAddr,
removes it, initializes the previous stack linked there and then returns to whatever function created the pre-
vious stack frame; see the beginning of chapter 10 how the stack frame looks like. The function returned to
is typically either the process shutdown code of AmigaDOS, or the shell command shutdown code installed
by RunCommand(). In the former case, pr_ExitCode() may be used to implement additional cleanup
activities.

This function is a BCPL legacy function that is also part of the Global Vector and historically exported
from there to the dos.library interface; BCPL programs would typically overload its entry to customize their
shutdown activities. ANSI-C offers with the atexit() function a similar mechanism. Exit() is therefore
less relevant (if relevant at all) to C or assembler programs.

Creating and Terminating Processes 149

10.2 Process Properties Accessor Functions
Many elements of the Process structure described in section 10 are accessible through getter and setter
functions. They implicitly relate to the calling process, and are the preferred way of getting access to its
properties and state. The functions listed in this section do not touch IoErr() unless explicitly stated.

10.2.1 Retrieve the Process Input File Handle
The Input() function returns the input file handle of the calling process if one is installed. If no input file
handle is provided, the function returns ZERO.

file = Input()
D0

BPTR Input(void)

This function returns a BPTR to the input file handle of the calling process, or ZERO if none is defined. It
returns pr_CIS of the calling process, which is approximately the stdin of ANSI-C. Depending on process
creation, this file handle will be closed by the process shutdown code or the calling shell and thus should not
be closed explicitly by the caller. The standard input stream may be changed through SelectInput().

For command line programs started from the shell, this file handle is connected to the console, unless
it has been redirected by the “<”, “<<” or “<>” operators, see section 15.1.1. Programs started from the
Workbench do not receive an input file handle at all, pr_CIS remains ZERO unless explicitly set3.

10.2.2 Replace the Input File Handle
The SelectInput() function replaces the input file handle of the calling process with its argument and
returns the previously used input handle.

old_fh = SelectInput(fh) /* since V36 */
D0 D1

BPTR SelectInput(BPTR)

This call replaces the input file handle of the calling process with the file handle given by fh and returns
the previously used input file handle. It sets pr_CIS of the calling process. It is advisable to replace the
input file handle to its original value before terminating a running program.

10.2.3 Retrieve the Output File Handle
The Output() function returns the output file handle of the calling process if one is installed. If no output
file handle is provided, the function returns ZERO.

file = Output()
D0

BPTR Output(void)

This function returns a BPTR to the output file handle of the calling process, or ZERO if none is de-
fined. It returns pr_COS of the calling process, which is approximately the stdout of ANSI-C. Depending
on process creation, this file handle will be closed by the process shutdown code or the calling shell and

3The information in [7] that programs run from the Workbench receive a NIL: handle is incorrect.

150 Rom Kernel Reference Manual: DOS

thus should not be closed explicitly by the caller. The standard output stream may be changed through
SelectOutput().

For command line programs started from the shell, this file handle is connected to the console, unless
it has been redirected by the “>”, “>>” or “<>” operators, see section 15.1.1. Programs started from the
Workbench do not receive an output file handle at all, pr_COS remains ZERO unless explicitly set4.

10.2.4 Replace the Output File Handle
The SelectOutput() function replaces the output file handle of the calling process with its argument and
returns the previously used output handle.

old_fh = SelectOutput(fh) /* since V36 */
D0 D1

BPTR SelectOutput(BPTR)

This call replaces the output file handle of the calling process with the file handle given by fh and returns
the previously used output file handle. It sets pr_COS of the calling process. It is advisable to replace the
output file handle to its original value before terminating a running program.

10.2.5 Retrieve the Error File Handle
The ErrorOutput() function returns the file handle through which diagnostic or error outputs should be
printed. It returns either pr_CES if this handle is non-ZERO, or pr_COS otherwise. If neither an error
output nor a regular output is available, this function returns ZERO.

file = ErrorOutput() /* since V47 */
D0

BPTR ErrorOutput(void)

This function returns a BPTR to the error file handle of the calling process, or falls back to the BPTR of
the output file handle if the former is not available. This is the file handle through which diagnostic output
should be printed and corresponds therefore to stderr of ANSI-C. Depending on process creation, this
file handle can be closed by the process shutdown code or the calling shell and thus should not be closed
explicitly. The standard error stream may be changed through SelectError().

For command line programs started from the shell, this file handle is connected to the console. It is by
the workings of ErrorOutput() redirected along with the output file handle as typically a standard error
stream is not supplied — note that this is different from how shells under Unix type operating systems work.
The standard error stream of command line executables can be explicitly redirected to a different file by
means of the “*>”, “*<>” or “*>>” operators, see section 15.1.1. Programs started from the Workbench do
not receive an error file, pr_CES remains ZERO unless explicitly set.

10.2.6 Replace the Error File Handle
The SelectError() function replaces the error file handle of the calling process with its argument and
returns the previously used error handle.

old_fh = SelectError(fh) /* since V47 */
D0 D1

BPTR SelectError(BPTR)

4Again, while [7] claims that programs run from the Workbench receive a NIL: handle, this is not the case.

Process Properties Accessor Functions 151

This call replaces the error file handle of the calling process with the file handle given by fh and returns
the previously used error file handle. It sets pr_CES of the calling process. It is advisable to replace the
error file handle to its original value before terminating a running program.

10.2.7 Retrieve the Current Directory
The GetCurrentDir() function returns the current directory of the calling process, represented by a lock.
This lock, and the file system that manages the lock are used to resolve relative paths, see also chapter 4.

lock = GetCurrentDir(void) /* since V47 */
D0

BPTR GetCurrentDir()

This function returns the lock to the current directory, unlike the CurrentDir() function which also
changes it. It returns the pr_CurrentDir element of the calling process. The original current directory
supplied to a program should not be released in general, see also the warnings in section 10.2.8.

10.2.8 Replace the Current Directory
The CurrentDir() function updates the current directory of the calling process and returns the previously
installed current directory. The directory is represented by a lock. This lock, and the file system that created
the lock are used to resolve relative paths, see also chapter 4.

oldLock = CurrentDir(lock)
D0 D1

BPTR CurrentDir(BPTR)

This function sets the current directory to lock and returns in oldLock the previously installed current
directory. It updates the pr_CurrentDir element of the Process structure. The passed in lock then
becomes part of the process and shall not be released by UnLock() until another lock is installed as current
directory. For programs started from the shell, the original lock (and not just a lock to the same directory)
shall be restored back before the program terminates as otherwise the shell would be confused, i.e. the
current directory shown by the prompt would then be no longer corresponding to the current directory the
shell operates in. The only exception is the CD command and related commands such as PushCD, PopCD
and SwapCD which modify the current directory on purpose, but also update the prompt, see sections 15.3.1
and following for further details.

If the current directory is ZERO, paths are relative to the root directory of the file system accessible
through the pr_FileSystemTask element of the calling process. AmigaDOS installs there the file system
of the boot volume, unless changed by a user.

10.2.9 Return the Error Code of the Previous Operation, List of Error Codes
The IoErr() function returns the secondary result code of the most recent AmigaDOS operation. This
code is, in case of failure, an error code indicating the nature of the failure.

error = IoErr()
D0

LONG IoErr(void)

152 Rom Kernel Reference Manual: DOS

This function returns the secondary result code from the last call to dos.library. Unfortunately, not all func-
tions set IoErr(), and some only set it in particular cases and leave it untouched otherwise. All unbuffered
operations in section 5.4 provide an error code in case of failure, though still modify IoErr() in case of
success to an undefined value. Reading and writing bytes, and the Seek() function can be expected to set
IoErr() to 0 on success.

The buffered functions in section 5.6 generally only set a secondary result code in case an (unbuffered)
I/O operation is required, but do not touch IoErr() if the call can be satisfied from the buffer of the file
handle. Whether a function of dos.library touches IoErr() is stated in the description of the corresponding
function.

Some rare functions of dos.library also provide a secondary result code differing from an error code
in case of success. Such unconventional use of IoErr() is explicitly mentioned in the description of the
corresponding function. A particular example is DeviceProc(), which returns the (first) lock of a regular
assign through IoErr().

Most error codes are defined in dos/dos.h, with some additional error codes only used by the pattern
matcher (see chapter 9) in dos/dosasl.h. While those include files define the error codes within Ami-
gaDOS, some file systems forward errors generated by an underlying device driver directly to the caller, and
thus, for example, the errors from devices/trackdisk.h can also appear as IoErr() return codes.
This design is probably not ideal as a caller has in general no idea which underlying device is used by a han-
dler or file system, and thus lacks the proper interpretation of such codes. Instead, handlers and file systems
should rather attempt to restrict the delivered error codes to those defined in the above two files and poten-
tially translate errors from a lower level to those defined within AmigaDOS, i.e. should only report codes
from the list below.

Generally, handlers and file systems can select error codes as they seem fit, the list below provides a
general indication how the codes are used by dos.library itself, or what their suggested usage is:

ERROR_QPKT_FAILURE: This non-documented error code of value 101 is generated if an attempt is
made to send a DosPacket whose dp_Link element is NULL and thus is not carried by a message. See also
section 12.2.1 for the definition of the DosPacket structure and its usage.

ERROR_NO_FREE_STORE: This error code is set if the system runs out of memory. Actually, this error
code is not set by dos.library, but rather by exec.library memory allocation functions if the caller is a process.

ERROR_TASK_TABLE_FULL: This error code was generated by AmigaDOS versions 34 and before
if more than 20 shell processes were about to be created. It used a fixed-size table to store CLI processes
that could not hold more than 20 processes. See also section 15.2.6 and following for more details. As this
limitation was removed, the error code is unused in AmigaDOS version 36 and above.

ERROR_GLOBALS: This undocumented error code of the value 111 is generated when the initialization
of the Global Vector fails because an entry beyond the vector bounds is supposed to be populated. This error
is generated by the runtime binder described in section 11.5.4.

ERROR_BAD_TEMPLATE: This error code indicates that the argument template for ReadArgs() is
syntactically incorrect, see section 15.5.1. It is also set by the pattern matcher in case the pattern is syntacti-
cally incorrect, see 9.2.

ERROR_BAD_NUMBER: This error code indicates that a string could not be converted to a number. It is
for example set by ReadArgs() if a command line argument of type /N is requested, but the user failed to
provide a valid number. It is also set by ExAll() if its type argument is beyond the supported range, see
section 7.1.4. Surprisingly, the StrToLong() function of section 2.6.1 does not touch IoErr() and thus
does not generate this error.

ERROR_REQUIRED_ARG_MISSING: This error code is set by ReadArgs() if a non-optional argu-
ment is not provided.

ERROR_KEY_NEEDS_ARG: This error code is also used by the argument parser ReadArgs() if an
argument key is provided on the command line, but a corresponding argument value is missing.

Process Properties Accessor Functions 153

ERROR_TOO_MANY_ARGS: This error code can also be set by ReadArgs(). It indicates that more
arguments are provided on the command line than requested by the template.

ERROR_UNMATCHED_QUOTES: This error code indicates that a closing quote is missing for at least one
opening quote. It is created by the argument parser and ReadItem(), see section 15.5.3.

ERROR_LINE_TOO_LONG: This error code is a general indicator that a user provided buffer is too
small to contain a string. It is for example used by the argument parser, the path manipulation functions in
section 7.3 and the soft link resolver ReadLink() of section 7.4.2. Surprisingly, the dos.library internal
function that uses ReadLink() to resolve soft links for functions such as Lock() or Open() raises the
error code ERROR_INVALID_COMPONENT_NAME if its internal buffer is too small to hold the target of a
link.

ERROR_FILE_NOT_OBJECT: This error code is generated by the shell if an attempt is made to load
a file that is neither a script, nor an executable nor a file that can be opened by a viewer. Surprisingly,
the Workbench uses the code ERROR_NOT_EXECUTABLE if an attempt is made to load a tool whose
FIBB_EXECUTE bit (see section 7.1) is set to indicate a non-executable file.

ERROR_INVALID_RESIDENT_LIBRARY: AmigaDOS versions up to release 34 generated this error
code if an attempt was made to open a non-existent or invalid system library as a segment of a binary file
(see chapter 11). The structure of such files allowed runtime linking to libraries, further information on
this obsolete mechanism is found in [7]. This mechanism was phased out in AmigaDOS version 36 as it is
incompatible with the AmigaOs library calling conventions expecting the library base in register A6. Today,
several handlers and other AmigaOs components use this error code to indicate that a required library or
device is not available.

ERROR_NO_DEFAULT_DIR: This is error code is not in use by the current version(s) of AmigaDOS.
Its intended purpose is unclear.

ERROR_OBJECT_IN_USE: This error code is used by multiple AmigaDOS components to indicate that
a particular operation cannot be performed because the object to be modified is in use. It is for example raised
to indicate that an attempt was made to lock an object that is exclusively locked by another process, or an
request for an exclusive lock on an already locked object was made.

ERROR_OBJECT_EXISTS: This error code is a generic error indicator that an operation could not be
performed because another object already exists in a place where an object is to be created. AmigaDOS file
systems use it, for example, when attempting to create a directory, but a file or a directory of the requested
name is already present.

ERROR_DIR_NOT_FOUND: This error code indicates that the target directory is not found. Of the
AmigaDOS ROM components, only the shell — or rather the CD, PopCD, PushCD and SwapCD commands
of the AmigaDOS Shell — use this error code on an attempt to change the working directory to a non-existing
target directory.

ERROR_OBJECT_NOT_FOUND: This is a generic error code that indicates that the object on which a
particular operation is to be performed does not exist. It is for example generated on an attempt to open a
non-existing file or to lock a file or directory that could not be found. It is also generated on an attempt to
resolve a soft link whose target has been renamed, moved or deleted.

ERROR_BAD_STREAM_NAME: This error code is currently not in use by AmigaDOS ROM components.
AmigaDOS versions 45 and before generated it if an attempt was made to provide a non-interactive input file
to the NewShell command. The CON-Handler version 34 and below also used this error code if it could
not parse the path.

ERROR_OBJECT_TOO_LARGE: This error could be used to indicate that an object is beyond the size
a handler or file system is able to handle. Note that a full disk (or full storage medium) is indicated by
ERROR_DISK_FULL, and not this error. However, currently no AmigaDOS component uses this error,
even though the FFS should probably return it on an attempt to create or access files larger than 2GB.

ERROR_ACTION_NOT_KNOWN: This is a generic error code that is returned by many handlers or file
systems when an action (in the form of a DosPacket, see section 12.2.1) is requested the handler does not

154 Rom Kernel Reference Manual: DOS

support or understand. For example, this error is created when attempting to create a directory on a console
handler.

ERROR_INVALID_COMPONENT_NAME: This is an error that is raised by file systems when providing
an invalid path, or a path that contains components that are syntactically incorrect. For example, the colon
(“:”) shall only appear once in a path as separator between the device name and the path components, a
colon within a component is therefore a syntactical error; also, the forwards slash (“/”) shall not appear in a
volume name. All Amiga ROM file systems do not accept code points below 0x20 in file names, i.e. ASCII
control characters. It is also generated if the temporary buffer used by dos.library to resolve a soft link is too
small to keep the link target.

ERROR_INVALID_LOCK: This error is raised if a value is passed in as a lock that is, in fact, not a valid
lock of the target file system. For example, an attempt to use a file handle as a lock can result in such an error.
Note, however, that file systems can, but do not need to check locks for validity. Passing incorrect objects to
file systems can raise multiple error conditions of which this error code is probably the most harmless.

ERROR_OBJECT_WRONG_TYPE: This error code indicates that a particular operation is not applicable
to a target object, even though the target object is valid and existing. For example, an attempt to open an
existing directory for reading as file or an attempt create a hard link to the root directory of a FFS volume
will raise this error.

ERROR_DISK_NOT_VALIDATED: This error indicates that the inserted medium is currently not vali-
dated, i.e. not checked for consistency, and the consistency check either failed or is still ongoing. This error
is for example generated if a write operation is attempted on an FFS volume whose validation has not yet
completed. In such a case, retrying the operation later may solve the problem.

ERROR_DISK_WRITE_PROTECTED: This indicates that an attempt was made to write to a medium,
e.g. a disk, that is write-protected, or that cannot be written to, such as an attempt to write to a CD-ROM.
It is also generated if the medium is write protected by software, e.g. through the Lock command, see
section 14.7.7.

ERROR_RENAME_ACROSS_DEVICES: Generated if an attempt is made to move an object to a target
directory that is located on a different medium or different file system than the source directory. As two dif-
ferent file systems with potentially different architectures are involved, this cannot succeed. The Workbench
copies objects (and their sub-objects) in such a case instead.

ERROR_DIRECTORY_NOT_EMPTY: Indicates that an attempt was made to delete a directory that is not
empty. First, all objects within a directory must be deleted before the directory itself may be deleted.

ERROR_TOO_MANY_LEVELS: This error code is generated if too many soft links refer iteratively to
other soft links. In order to avoid an endless indirection of links referring to each other, dos.library aborts
following links after 15 passes; application programs attempting to resolve soft links themselves through
ReadLink() should implement a similar mechanism, see also section 7.4.2. This error is also generated
by the MatchNext() function of the directory scanner specified in section 9.1 if directories are nested too
deeply and the function runs out of stack space.

ERROR_DEVICE_NOT_MOUNTED: This error indicates that an access was attempted to either a handler,
file system or assign that is not known to the system, or to a volume that is currently not available in any
mounted drive. If, however, a known drive is accessed through an absolute path name but no medium is
inserted, then the error ERROR_NO_DISK is generated instead.

ERROR_SEEK_ERROR: This error is generated by an attempt to Seek() to a file position that is either
negative, or behind the end of the file. It is also signaled if the mode of Seek() or SetFileSize() is
none of the modes indicated in table 5.2 of section 5.4.3. The FFS also sets this error if it cannot read one of
its administration blocks and thus is unable to find the data blocks of a file.

ERROR_COMMENT_TOO_BIG: This error is raised if the size of the comment is too large to be stored in
the file system. Note that while file systems shall validate the size of the comment, it shall silently truncate
file names to the maximal size possible. The FFS allows comments of at most 79 characters.

Process Properties Accessor Functions 155

ERROR_DISK_FULL: Generated by file systems when an attempt is made to write more data to a
medium than it can hold, i.e. when the target medium or partition is full.

ERROR_DELETE_PROTECTED: This error is generated by file systems if an attempt is made to delete
an object that is delete protected, i.e. whose FIBB_DELETE protection bit is set. This bit is also defined in
table 7.2 of section 7.1.

ERROR_WRITE_PROTECTED: This error is raised by file systems if a write is attempted to a file that is
write protected, i.e. whose FIBB_WRITE bit is set. Physical or software write protection through Lock is,
however, indicated by the error code ERROR_DISK_WRITE_PROTECTED.

ERROR_READ_PROTECTED: This error is generated on an attempt to read from a file that is protected
from reading, i.e. by having its FIBB_READ bit is set.

ERROR_NOT_A_DOS_DISK: This error is raised by a file system on an attempt to access a disk that
is not structured according to the requirements of the file system, e.g. because it is initialized by another
incompatible file system different from the mounted one. Unfortunately, AmigaDOS does not have a control
instance that selects file systems according to the disk structure.

ERROR_NO_DISK: This error indicates that an attempt was made to access an object on an empty phys-
ical drive through an absolute path based on its device name. If the access to a file system object on an
empty drive is made through a lock or a file handle, then the error code ERROR_DEVICE_NOT_MOUNTED
is reported instead.

ERROR_NO_MORE_ENTRIES: This secondary result code does not really indicate an error condition,
it just reports to the caller that the end of a directory has been reached when scanning it by ExNext() or
ExAll().

ERROR_IS_SOFT_LINK: This error code is generated by file systems on an attempt to access a soft
link. For many functions, dos.library recognizes this error and then resolves the link by ReadLink()
within the library, not requiring intervention of the caller. However, not all functions of dos.library are aware
of soft links, see table 7.4 of section 7.4 for the list.

ERROR_OBJECT_LINKED: This error code is currently not used by AmigaDOS and its purpose is not
known.

ERROR_BAD_HUNK: Generated by LoadSeg() and NewLoadSeg(), this error code indicates that
the binary file includes a hunk type that is not supported or recognized by AmigaDOS. The Hunk format for
binary executables is documented in section 11.2.

ERROR_NOT_IMPLEMENTED: This error code is not used by any ROM component, but several Work-
bench components signal this error for indicating that the requested function is not supported by this compo-
nent. For example, the Format command generates it on an attempt to format a disk with long file names if
the target file system does not support them. This error could also be generated by file systems that are able
to interpret a packet, but do not implement it. The borderline between ERROR_ACTION_NOT_KNOWN and
this error is not well defined, and handlers should report the former and not this error if they receive a packet
they do not understand.

ERROR_RECORD_NOT_LOCKED: Issued by file systems and their record-locking subsystem if an at-
tempt is made to release a record that is, actually, not locked. See section 5.9 for more information on record
locking.

ERROR_LOCK_COLLISION: This error is also created by the record-locking subsystem of file systems
if an attempt is made to lock the same region within a file by two conflicting locks, that is, request an
exclusive lock on a region that is overlapping with an already locked region, or request a shared lock on a
region overlapping with an exclusively locked region. See section 5.9 for more details.

ERROR_LOCK_TIMEOUT: Also generated by the record-locking mechanism of file systems if an attempt
was made to lock a region of a file that is locked already by a conflicting lock, and the attempt failed because
the region did not became available before the request timed out.

156 Rom Kernel Reference Manual: DOS

ERROR_UNLOCK_ERROR: This error is currently not generated by any file system, though could be used
to indicate that an attempt to unlock a record failed for an unknown reason. It was used by earlier versions
of the RAM-Handler.

ERROR_BUFFER_OVERFLOW: This error is raised by the pattern matcher and indicates that the buffer
allocated in the AnchorPath structure is too small to keep the fully expanded matching file name, see also
chapter 9 and the functions in section 9.2.

ERROR_BREAK: This error is also raised by the pattern matcher if it received an external signal for
aborting a directory scan, see section 9.1. Such signals are raised, for example, by pressing Ctrl-C to
Ctrl-F on the console.

ERROR_NOT_EXECUTABLE: This error is generated by the Workbench on an attempt to start an appli-
cation icon from a file whose FIBB_EXECUTE protection bit is set, indicating that the file is not executable.
Why the Workbench does not use the same error code as the shell, namely ERROR_FILE_NOT_OBJECT is
unclear.

10.2.10 Setting IoErr
The SetIoErr() function sets the value returned by the next call to IoErr() and thus initializes or resets
the IO error code.

oldcode = SetIoErr(code) /* since V36 */
D0 D1

LONG SetIoErr(LONG);

This function sets the next value returned by IoErr() by updating the pr_Result2 element of the
Process structure of the calling process; this can be necessary because some functions of dos.library do not
update this value in all cases. A particular example are the buffered I/O functions introduced in section 5.6
that do not touch IoErr() in case the input or output operation can be satisfied from the buffer. A good
practice is to call SetIoErr(0) upfront to ensure that these functions leave a 0 in IoErr() on success.

This function returns the previous value of IoErr(), and thus the same value IoErr() would return.
See section 10.2.9 for the specified error codes. This function may also be used by command line tools to set
the error code the Why command will report on.

10.2.11 Select the Console Handler
The SetConsoleTask() function selects the handler responsible for the “*” file name and the CONSOLE
pseudo-device.

oldport = SetConsoleTask(port) /* since V36 */
D0 D1

struct MsgPort *SetConsoleTask(struct MsgPort *)

This function selects the MsgPort of the console handler. AmigaDOS contacts this handler for opening
the “*” as file name, or a path relative to the CONSOLE pseudo-device. Note that the argument is not a
pointer to the handler process, but rather to a MsgPort through which this process can be contacted. The
function returns the previously used console handler in oldport. It sets the pr_ConsoleTask element
of the calling process.

This function is the setter function corresponding to the GetConsoleTask() getter function intro-
duced in section 8.2.4.

Process Properties Accessor Functions 157

A particular use case for this function to clone a file handle, i.e. to create a duplicate of an already open
handle, see the code in section 5.7.3.

In command line executables, any modification to the console task shall be reverted before the program
returns to the shell.

10.2.12 Select the Default File System
The SetFileSysTask() function selects the handler responsible for resolving paths relative to the ZERO
lock.

oldport = SetFileSysTask(port) /* since V36 */
D0 D1

struct MsgPort *SetFileSysTask(struct MsgPort *)

This function selects the MsgPort of the default file system. AmigaDOS will contact this file system if
a path relative to the ZERO lock is resolved, e.g. a relative path name if the current directory is ZERO. This
file system should be identical to the file system of the SYS assign, and should therefore not be replaced as
otherwise resolving file names may be inconsistent between processes.

Note that the argument is not a pointer to the handler process, but rather to a MsgPort through which this
process can be contacted. It returns the previously used default file system in oldport. This function is the
setter equivalent of GetFileSysTask() introduced in section 8.2.5. It sets the pr_FileSystemTask
element of the Process structure of the calling process.

10.2.13 Retrieve the Lock to the Program Directory
The GetProgramDir() returns a lock to the directory that contains the binary the calling process executes,
if such a directory exists. If the executable was taken from the list of resident segments (see section 15.6),
this function returns ZERO.

lock = GetProgramDir() /* since V36 */
D0

BPTR GetProgramDir(void)

The lock returned by this function corresponds to the PROGDIR (pseudo)-assign and the pr_HomeDir
element of the Process structure, with the only exception that ZERO does not correspond to the root
directory of the boot volume, but rather indicates that no home directory exists. This lock may be used to
access data that are stored along with the executing binary. It is allocated — and will be released — by the
AmigaDOS component that loaded the executable, e.g. the Workbench or the shell; it shall therefore not be
unlocked by the caller.

10.2.14 Set the Program Directory
The SetProgramDir sets the directory within which the executing program is made to believe of getting
started from, and the directory that corresponds to the PROGDIR pseudo-assign.

oldlock = SetProgramDir(lock) /* since V36 */
D0 D1

BPTR SetProgramDir(BPTR)

158 Rom Kernel Reference Manual: DOS

This function installs lock into pr_HomeDir of the Process structure and returns the lock that was
previously installed there. The passed lock indicates the directory the currently executing program was
loaded from and is used to resolve the PROGDIR pseudo-assign. If ZERO is installed, the current process
will be unable to resolve this pseudo-assign.

Application programs should rarely have a reason to call this function. However, if the home directory of
the caller is modified, the original lock shall be restored back before the program terminates.

10.2.15 Retrieve Command Line Arguments
The GetArgStr() function returns the command line arguments, if any, of the calling process. If the
calling process was launched from from the Workbench, this function returns NULL.

ptr = GetArgStr() /* since V36 */
D0

STRPTR GetArgStr(void)

This function returns the command line arguments of the calling process as NUL-terminated string. The
same string is found in register a0 on startup, and is also located in the buffer of the Input() file handle.
While this string contains all arguments provided on the command line, it does not include the program name
itself.

This function returns NULL if the program was run from the Workbench. This function is the accessor
function of the pr_Arguments element in the Process structure.

10.2.16 Set the Command Line Arguments
The SetArgStr() function sets the string returned by GetArgStr(). It cannot set the command line
arguments as seen by ReadArgs().

oldptr = SetArgStr(ptr) /* since V36 */
D0 D1

STRPTR SetArgStr(STRPTR)

This function requires a pointer to a NUL terminated string as ptr and installs it in the pr_Arguments
element of the Process structure of the calling process. This function has limited use as ReadArgs()
takes the command line arguments from a different source, namely the input buffer of the Input() file
handle, and it rarely makes sense to adjust the command line arguments in first place as the functions
RunCommand() and CreateNewProc() can set them in a more consistent way before a loaded pro-
gram starts up.

Process Properties Accessor Functions 159

160 Rom Kernel Reference Manual: DOS

Chapter 11

Binary File Structure

The AmigaDOS Hunk format is the structure of executable programs, linkable object files and link libraries
on disk. The first type includes application programs that are loaded from the Workbench or the shell. Their
structure is specified in section 11.2. An object file is an intermediate file that is generated by a compiler or
assembler from a translation unit, i.e. typically one source file and the headers it includes. It still contains
references to symbols defined in other translation units or in link libraries that are resolved when linking them
to an executable. Object files are introduced in section 11.6. Link libraries are collections of small utility
functions; those referenced in the object files are pulled into the executable by the linker. Unlike AmigaDOS
libraries stored in the LIBS assign, they are not loaded at runtime and not shared between applications.
Section 11.7 specifies their format.

A file in either format, i.e. regardless whether it is an executable, an object file or a link library, consists
of multiple hunks, each of which defines either payload data as an indivisible segment of code or data that
is zero-initialized or loaded from disk, or additional meta-information. This format is interpreted by the
AmigaDOS loader — i.e. the LoadSeg() function — or by a linker. Meta information within executables
is used to relocate the payload to their final position in memory, to define the size of the segments, to select
the memory type that is allocated for the segment, or to control the loading process. Meta information only
present in object files or link libraries is required for resolving references across files when linking them
together to form a final executables.

Once an executable file has been loaded to memory by the LoadSeg() function — see section 11.3 for
details on this process — it is represented there as a singly linked list of segments. Each node in this list looks
as follows:

struct SegmentList {
BPTR NextSegment; /* BPTR to next segment or ZERO */
ULONG Data[1]; /* Payload data */

};

The LoadSeg() function returns a BPTR to the first node of this list. While the entire list is called the
segment list in the following, each of its nodes will be called a segment. The long word immediately preceding
the NextSegment element contains the byte size of the allocated memory block including overhead, i.e.
compatible to AllocVec() and FreeVec() — which is sometimes helpful to derive the size of the
segment.

The above structure is not documented and is not identical to the Segment in dos/dosextens.h,
neither to the pr_SegList stored in the Process structure. The former describes a resident executable,
see section 15.6, but also contains a BPTR to a segment list in the above sense. The pr_SegList element
is an array where each entry except the first consists of a BPTR to a segment list in the above sense. The
segment array is defined in chapter 10.

CHAPTER 11. BINARY FILE STRUCTURE 161

The Hunk format represents each segment by a hunk, but distinguishes three different types: code hunks
that should contain constant data, most notably executable machine code and constant data associated to this
code, data hunks that contain (variable) data, and so called BSS hunks that contain data that is initialized to
zero. Thus, the contents of BSS hunks is not represented on disk, but only their size is.

Const is not enforced While code hunks should contain executable code and other constant data,
and data hunks should contain variable data, nothing in AmigaDOS is able to enforce these conven-
tions. In principle, data hunks may contain executable machine code, and code hunks may contain
variable data. Note, however, that some third party tools may require programs to follow the above
conventions. Many commercial compilers structure their object code according to these conventions,
or at least do so in their default configuration.

Additional hunks describe how to relocate the loaded code and data. Relocation means that data within
each hunk is corrected according to the addresses the hunks are loaded to. The relocation process takes
an offset into one hunk, and adds to the long word at this offset the absolute address of another hunk, see
section 11.2.5 and following. That is, hunks on disk are represented as if their first byte is placed at address 0,
and relocation adjusts the pointers within hunks such that they point to their target positions into other loaded
hunks.

An extension of the executable file format is the overlay format also supported by the AmigaDOS loader,
i.e. LoadSeg(). Here initially only a part of the file is brought into memory, while the remaining parts are
only loaded on demand, potentially releasing other already loaded parts from memory. Overlaid executables
thus take less memory, though require that the volume containing the executable remains available while the
loaded program is running. The format is specified in more detail in section 11.4.

AmigaDOS also contains a simple run-time binder that is only used by executables written in BCPL, or
by code that operates under BCPL conventions. The purpose of this binder is to populate the BCPL Global
Vector of the loaded program. While this runtime binder implements a legacy protocol, certain parts of
AmigaDOS still depend on it. These are handlers or file systems that use the dol_GlobVec value of 0 or
−3, or the corresponding GLOBVEC entry in the mountlist. While new handlers should not use this BCPL
legacy protocol, the ROM file system (the FFS) and the Port-Handler currently still depend on it, despite not
being written in BCPL. This mechanism is described in section 11.5.4.

11.1 Conventions and Pseudo-Code
In the following, the syntax of files and its hunks is represented as pseudo-code in three-column tables that
reflect approximately the inner workings of the AmigaDOS loader, or the implementation of an Amiga linker.
In such tables, the first column identifies the number of bits a syntax element takes. Bits within a byte are read
from most significant to least significant bit, and bytes within larger objects are read from most significant
to least significant byte. That is, the binary file format follows the big-endian convention. If the first column
contains a question mark (“?”), the structure is variably-sized, and the number of removed bits is defined by
the second column, or the section it refers to. If the first column is empty, no bits are removed from the file.

The second column either identifies the variable or element of a structure to which the value removed from
the stream is assigned to; if it is empty, the read data is ignored. If it contains a constant, then the read value
shall be equal to this constant, otherwise the file is ill-formed. An expression such as t ∈ [a, b] first removes
the number of bits as indicated in the left-hand column from the stream, assigns it to the variable t, and then
checks whether the resulting value is greater or equal than a and smaller or equal than b. If this is not the
case, the file is ill-formed. Unfortunately, the AmigaDOS loader does not always perform these checks and
can crash the system if the formulated constrains are violated. The second column can also contain pseudo-
code that describes the flow of operations during interpretation of files. These elements follow closely the
conventions of the C language [8]. In their absence, the contents of the tables shall be interpreted top to
bottom, where the topmost elements are removed from the file first, or executed first.

162 Rom Kernel Reference Manual: DOS

In particular, if(cond) formulates a condition that is only executed if cond is true, else describes code
that is executed following an if clause that is executed if cond is false. The statements executed in each case
are enclosed in curly brackets, i.e. { and }.

The do . . . while(cond) control structure indicates a loop that continues as long as cond is true, and
that may alternatively be terminated by a break within the body of the loop. The body of the loop is again
enclosed in curly brackets. The syntax element for(init;cond;incr) also represents a loop where
init are statements executed initially, cond are conditions that are checked before each loop is entered,
and incr are statements that are executed at the end of each iteration. If cond is false, the loop is aborted;
as this test is also made before the first loop, the body of the loop is possibly not executed at all. Similar to
the first type of loop, break aborts the loop, and the loop body is enclosed in curly brackets.

Statements starting with parse_ continue the parsing process in other sections that are referenced in the
rightmost column and return to the execution path when done there. Thus, they are the analog of function
calls in the C programming language. A statement such as ERROR_BAD_HUNK aborts the loading process
completely and signals the indicated error code. The symbols starting with HUNK_ are defined in the include
file dos/doshunks.h, but their values are conveniently also presented at the top of each table in square
brackets.

The conditional operator == checks for equality, and != checks for inequality. Similarly <, >, ≤ and ≥
check whether the left hand expression is smaller, greater, smaller or equal or greater or equal than the right
hand side, and return either true or false. The condition EOF is true if the end of the file has been reached, it
is false otherwise. Unlike its C counterpart, the condition becomes true at the end of the file, and not when
an attempt is made to read beyond its end. The operator ! inverts the result of the condition behind it.

Arithmetic operators follow the conventions of the C language, + is addition, − is subtraction and ×
indicates multiplication of the left hand side with the right hand side, where multiplication binds stronger
than addition or subtraction, i.e. is executed first. The & operator is the binary “and”, i.e. p&1 is true if p
is odd. The expression i++ increments an internal state variable i, and the expression --j decrements an
internal state variable. The value of i++ is the value of i before the increment, and the value of --j is the
value of j after decrementing it. The expressions += and -= add or subtract the value on its right to the
variable on its left.

11.2 Executable File Format
The Hunk format of executable files consists of 4-byte (long word) hunk identifiers and subsequent data that
is interpreted by the AmigaDOS loader according to the introducing hunk identifier. The following pseudo-
code describes the top-level syntax of a binary executable file AmigaDOS is able to bring to memory by
means of LoadSeg(). The table defines the file format using the pseudo-code introduced in section 11.1:

Table 11.1: Regular Executable File
Size Code Syntax
? parse_HEADER Defines all segments, see section 11.2.1

for details
i = tnum Start with the first hunk, tnum is de-

fined in the HUNK_HEADER
do { Repeat until all hunks done

2 m̂t[i] These two bits are unused, but some
utilities set it identical to mt[i], the
memory type of the hunk, see 11.2.1

1 af Advisory hunk flag.
29 h This is the hunk type

Executable File Format 163

if (af) { Check for bit 29, these are advisory
hunks

32 l Read length of the advisory hunk
32 × l l long words of hunk contents ignored

}
else if (h == HUNK_END)
i++

Advance to next segment, see 11.2.11

else if (h == HUNK_BREAK)
break

Terminate an overlay, see 11.4.4

? else if (h == HUNK_NAME)
parse_NAME

See section 11.2.8

? else if (h == HUNK_CODE)
parse_CODE

See section 11.2.2

? else if (h == HUNK_DATA)
parse_DATA

See section 11.2.3

? else if (h == HUNK_BSS)
parse_BSS

See section 11.2.4

? else if (h == HUNK_RELOC32)
parse_RELOC32

See section 11.2.5

? else if (h == HUNK_SYMBOL)
parse_SYMBOL

See section 11.2.9

? else if (h == HUNK_DEBUG)
parse_DEBUG

See section 11.2.10

? else if (h == HUNK_OVERLAY)
{ parse_OVERLAY; break }

See section 11.4.3

? else if (h == HUNK_DREL32)
parse_RELOC32SHORT

Compatibility kludge
Use HUNK_RELOC32SHORT instead
See section 11.2.6

? else if (h == HUNK_RELOC32SHORT)
parse_RELOC32SHORT

See section 11.2.6

? else if (h == HUNK_RELRELOC32)
parse_RELRELOC32

See section 11.2.7

else ERROR_BAD_HUNK Everything else is invalid
} while(!EOF) repeat until end of file

In particular, every executable shall start with the HUNK_HEADER identifier, the big-endian long-word
0x3f3. The following stream contains long-word identifiers of which the first 2 bits are ignored and masked
out. Some tools (e.g. the Atom tool by CBM) places there memory requirements similar to what is indicated
in the body of the HUNK_HEADER. They have there, however, no effect as the segments are allocated within
the HUNK_HEADER and not at the time the hunk type is encountered.

Bit 29 (HUNKB_ADVISORY) has a special meaning. If this bit is set, then the hunk contents is ignored.
The size of such an advisory hunk is defined by a long-word following the hunk type, and the contents of this
hunk is skipped over. Currently, there is no publicly known use of such hunks, and AmigaDOS versions 34
and below do not support them.

Loading a binary executable terminates on three conditions. Either, if an end of file is encountered.
This closes the file handle and returns to the caller with the loaded segment list; or, if a HUNK_BREAK or
HUNK_OVERLAY are found. This mechanism is used for overlaid files. In this case, the file remains open,
and for HUNK_OVERLAY, information on the loaded file is injected into the first hunk of the loaded data.
More information on this mechanism is provided in section 11.4. Finally, an error condition or an attempt to
read past the end of file also aborts loading.

164 Rom Kernel Reference Manual: DOS

11.2.1 HUNK_HEADER
The HUNK_HEADER shall be the first hunk of every executable file. It identifies the number of segments in
an executable and the amount of memory to reserve for each segment.

Table 11.2: Hunk Header Syntax
Size Code Syntax
32 HUNK_HEADER [0x3f3] Every executable file shall start with

this hunk
32 0 Number of resident libraries, BCPL

legacy, shall be zero
32 tsize ∈ [1, 231 − 1] Number of segments in binary
32 tnum ∈ [0, tsize − 1] First segment to load
32 tmax ∈ [tnum, tsize − 1] Last segment to load (inclusive)

for(j=tnum;j ≤ tmax;j++) { Iterate over all hunks
2 mt[j] Read memory type of the segment
30 ms[j] Read memory size in long words

if (mt[j] == 3) { if the memory type is 3
32 µt Memory type is explicitly provided

} else {
µt = mt[j] << 1 Regular memory requirement
}
ma[j] = AllocVec(
sizeof(BPTR)+ms[j]×sizeof(LONG),
µt | MEMF_PUBLIC)+sizeof(BPTR)

Get memory for segment

} End of loop over segments

The first member of a HUNK_HEADER shall always be 0; it was used by a legacy mechanism which
allowed run-time binding of the executable with dynamic libraries. While first versions of AmigaDOS inher-
ited this mechanism from Tripos, it was not particularly useful as the calling conventions for such libraries did
not follow the usual conventions of AmigaDOS, i.e. requiring the library base in register a6. Later versions
of AmigaDOS, in particular its re-implementation as of Kickstart v36, removed support for such libraries.
As this mechanism is no longer supported, it is not documented here. More information is found in [7].

The second entry tsize contains the number of segments the executable consists of. In case of overlays, it
is the maximal number of segments that can be resident in memory at once. See section 11.4 for more infor-
mation. This value shall be consistent for all HUNK_HEADERs within an overlaid file. In regular executables,
only a single HUNK_HEADER exists at the beginning of the file.

The members tnum and tmax define the 0-based index of the first and last segment to load within the
branch of the overlay tree described by this HUNK_HEADER. For a regular (non-overlaid) file and for the root
node of the overlay tree, tnum shall be 0, that is, the first segment to load is 0.

For regular files, tmax shall be identical to tsize − 1, that is, the last segment to load is the last entry in
the segment table described by this HUNK_HEADER. For overlaid files, the number may be smaller, i.e. not
all segments may be populated initially and loading may continue later on when executing the binary.

The remaining data in the hunk define the sizes of the segments along with their memory type. The
memory type is indicated by two bits that map directly to MEMF_ANY, MEMF_CHIP and MEMF_FAST for
the bit combinations 00, 01 and 10 respectively, see also exec/memory.h. If the two memory type bits
are both 1, an additional long word contains the memory type explicitly. This combination was introduced in
AmigaDOS version 33.

Executable File Format 165

11.2.2 HUNK_CODE
This hunk should contain executable machine code and constant data. As executables are started from the
first byte of the first segment, the first segment of an executable should be represented by a HUNK_CODE,
and it should start with a valid opcode.

Compilers use typically this hunk to represent text segments, i.e. compiled code and constant data, such
as strings.

The structure of this hunk is as follows:

Table 11.3: Hunk Code Syntax

Size Code Syntax
HUNK_CODE [0x3e9] A hunk describing a segment of code

and constant data
32 l ∈ [0,ms[i]] Size of the payload
l × 32 Code l long words of payload

Note that the size of the payload loaded from the file may be less than the size of the allocated segment
as defined in HUNK_HEADER. In such a case, all bytes of the segment not included in the HUNK_CODE are
zero-initialized. AmigaDOS versions earlier than 36 skipped this initialization. Due to a bug in the loader in
later versions, the initialization is also skipped if the hunk length l is 0.

11.2.3 HUNK_DATA
This hunk should contain variable data, and it should not contain executable code. Compilers typically use
this hunk to represent initialized non-constant data.

The structure of this hunk is otherwise identical to HUNK_CODE:

Table 11.4: Hunk Data Syntax

Size Code Syntax
HUNK_CODE [0x3ea] A hunk describing a segment of data

32 l ∈ [0,ms[i]] Size of the payload
l × 32 Data l long words of payload

Similar to HUNK_CODE, the size of the payload defined by this hunk may be less than the size of the
segment allocated by HUNK_HEADER. Excess bytes are zero-initialized in all AmigaDOS releases from 36
onward. Due to a bug in the loader in later versions, the initialization is also skipped if the hunk length l is 0.

11.2.4 HUNK_BSS
This hunk contains zero-initialized data; it does not define actual payload.

The structure of this hunk is as follows:

Table 11.5: Hunk BSS Syntax

Size Code Syntax
HUNK_CODE [0x3eb] A hunk describing zero-initialized data

32 l ∈ [0,ms[i]] Size of the segment in long-words

Note that this hunk does not contain any payload; the segment allocated from this hunk is always zero-
initialized.

Due to a defect in AmigaDOS prior release 36, the BSS segment will not be completely initialized to
zero if the segment size is larger than 256K, i.e. if l > 216. Also, these releases do not initialize long words
beyond the lth long-word to zero, i.e. the excess bytes included if l < ms[i].

166 Rom Kernel Reference Manual: DOS

11.2.5 HUNK_RELOC32
This hunk contains relocation information for the currently loaded segment; that is, it corrects addresses
within segment i by adding the absolute address of this or other segments to long words at indicated offsets
of the previous segments. As it needs to fix up offsets within an already loaded segment, it shall appear behind
the hunk carrying the payload data it is supposed to relocate, i.e. behind HUNK_CODE or HUNK_DATA. While
it is also possible to relocate data within BSS hunks, this is at least unusual.

The structure of this hunk is as follows:

Table 11.6: Hunk Reloc32 Syntax
Size Code Syntax

HUNK_RELOC32 [0x3ec] A hunk containing relocation informa-
tion

do { Loop over relocation entries
32 c Number of relocation entries

if (c == 0) break Terminate the hunk if the count is zero
32 j ∈ [0, tsize − 1] Read the hunk to which the relocation

is relative to
do { Loop over the relocation entries

32 ro ∈ [0,ms[i]× 4− 4] Relocation offset into this hunk as byte
offset

(UBYTE **)(ma[i] + ro) += ma[j] Fix-up this hunk by the start address of
the selected hunk

} while(--c) until all entries are used
} while(true) until a zero-count is read.

That is, the hunk consists first of a counter that indicates the number of relocation entries, followed by the
hunk index relative to which an address should be relocated. Then relocation entries follow; each long-word
defines an offset into the previously loaded segment to relocate, that is, to fix up the address. As this hunk
relocates pointers into other hunks, the relocation offsets ro shall all be even; the AmigaDOS loader does not
check this condition, and would crash on an odd offset if executed on an 68000 or 68010 processor.

For AmigaDOS versions 36 and up (Kickstart 2.0 and later), the number of relocation entries c shall
not be larger than 216. This is a known defect of the loader that has currently not yet been fixed. If more
relocation entries are needed, they need to be split into multiple hunks.

11.2.6 HUNK_RELOC32SHORT
This hunk contains relocation information for the currently loaded segment, similar to HUNK_RELOC32,
except that hunk indices, counts and offsets are only 16 bits in size. To ensure that all hunks start at long-word
boundaries, the hunk contains an optional padding field at its end to align the next hunk appropriately. This
hunk type was introduced1 in AmigaDOS version 36. Similar to all hunks carrying relocation information,
this hunk shall appear after the hunk carrying the payload data it relocates.

The structure of this hunk is as follows:

Table 11.7: Hunk Reloc32Short Syntax
Size Code Syntax

HUNK_RELOC32SHORT [0x3fc] A hunk containing relocation informa-
tion

p=1 Padding count

1But see also the note at the end of the table for defects.

Executable File Format 167

do { Loop over relocation entries
16 c Number of relocation entries

if (c == 0) break Terminate the hunk if the count is zero
16 j ∈ [0, tsize − 1] Read the hunk to which the relocation

is relative to
p += c Update padding count
do { Loop over the relocation entries

16 ro ∈ [0,ms[i]× 4− 4] Relocation offset into this hunk as byte
offset

(UBYTE **)(ma[i] + ro) += ma[j] Fix-up this hunk by the start address of
the selected hunk

} while(--c) until all entries are used
} while(true) until a zero-count is read.
if (p & 1) { check whether padding is required.

16 dummy for long-word alignment
}

Similar to its long counterpart, the relocation offsets ro shall all be even as otherwise the AmigaDOS
loader crashes on the smaller processors.

Due to an oversight, versions 36 to 38 of AmigaDOS do not understand the hunk type 0x3fc properly
and use instead 0x3f7. This alternative (but incorrect) hunk type for the short version of the relocation hunk
is still supported currently.

11.2.7 HUNK_RELRELOC32
This hunk contains relocation information for 32-bit relative displacements the 68020 and later processors
offer. Its purpose is to adjust the offsets of a 32-bit wide PC-relative branches between segments. This hunk
was introduced in AmigaDOS 39. Similar to all hunks carrying relocation information, this hunk shall appear
after the hunk carrying the payload data it relocates.

The structure of this hunk is as follows:

Table 11.8: Hunk RelReloc32 Syntax

Size Code Syntax
HUNK_RELRELOC32 [0x3fd] A hunk containing relocation informa-

tion
do { Loop over relocation entries

32 c Number of relocation entries
if (c == 0) break Terminate the hunk if the count is zero

32 j ∈ [0, tsize − 1] Read the hunk to which the relocation
is relative to

do { Loop over the relocation entries
32 ro ∈ [0,ms[i]× 4− 4] Relocation offset into this hunk as byte

address
(UBYTE **)(ma[i] + ro) +=
ma[j]−ma[i]− ro

Fix-up this hunk by the start address of
the selected hunk

} while(--c) until all entries are used
} while(true) until a zero-count is read.

Even if this hunk only makes sense for processes from the 68020 onward, odd relocation offsets make
little sense as the instructions it relocates are still word-aligned.

168 Rom Kernel Reference Manual: DOS

For AmigaDOS versions 36 and up (Kickstart 2.0 and later), the number of relocation entries c shall not
be larger than 216. This is a known defect of the loader that has currently not yet fixed. If more relocation
entries are needed, they shall be split into multiple chunks.

Due to another defect in AmigaDOS 39 onward, all elements of this hunk, namely c, j and ro are only
read as 16 bit wide elements, even though they should be (as documented) 32 bits wide, which limits the
usefulness of this hunk. It is therefore recommended not to depend on this hunk type at all and avoid 32-bit
wide branches between segments. Luckily, the support and demand for this hunk type is very limited.

11.2.8 HUNK_NAME

This hunk defines a name for the current segment. The AmigaDOS loader completely ignores this name, and
it does not serve a particular purpose for the executable file format. This hunk shall always appear upfront
the hunk carrying the payload data, i.e. before HUNK_CODE, HUNK_DATA or HUNK_BSS. This hunk is used
and relevant in object files: Linkers that bind object files together use the name to decide which segments to
merge to a single segment, more details on this in section 11.6.

The structure of this hunk is as follows:

Table 11.9: Hunk Name Syntax

Size Code Syntax
HUNK_NAME [0x3e8] A hunk assigning a name to the current

segment
32 l Size of the name in long-words
32 × l hn Hunk name

The size of the name is not given in characters, but in 32-bit units. The name is zero-padded to the next
32-bit boundary if necessary to fill an integer number of long-words. If the name fills an entire number of
long-words already, it is not zero-terminated.

While the specification does not define a maximum size of the name, the AmigaDOS loader fails on
names longer than 124 character, i.e. 31 long-words.

11.2.9 HUNK_SYMBOL

This hunk defines symbol names and corresponding symbol offsets within the currently loaded segment.
Again, the AmigaDOS loader ignores this hunk, but the linker uses it to resolve symbols with external
linkage to bind multiple object files together. If the symbol information is retained in the executable file, it
may be used for debugging purposes. This hunk should appear behind the payload data it annotates.

The syntax of this hunk reads as follows:

Table 11.10: Hunk Symbol Syntax

Size Code Syntax
HUNK_SYMBOL [0x3f0] A hunk assigning symbols to offsets

within a segment
do { Repeat . . .

8 st Symbol type
24 sl Symbol name length in long-words

if (sl == 0) break Terminate the hunk
32 × sl sn Symbol name, potentially zero-padded
32 sv Symbol value

} while(true) until zero-sized symbol

Executable File Format 169

The length of the symbol name is encoded in long-words, not in characters. If it does not fill an integer
number of long-words, it is zero-padded; the name is not zero-terminated if it does fill an integer number of
long-words, though. The AmigaDOS loader is currently limiting the maximum size of the symbol name to
124 characters, i.e. sl = 31.

The symbol type st defines the nature of the symbol. The symbol types are defined in the include file
dos/doshunks.h and shared with the HUNK_EXT hunk; the latter hunk type shall not appear in an exe-
cutable file, but may only appear in an object file; it is defined in section 11.6.8.

Only a single type is permitted here, namely EXT_SYMB, which corresponds to the value st = 0. The
address of the symbol is given by sv +ma[i], i.e. the symbol value is the offset into the segment represented
by the hunk to which the HUNK_SYMBOL hunk belongs. All other types only appear in HUNK_EXT.

11.2.10 HUNK_DEBUG
This hunk contains debug information such as function names and line number information. Generally, the
contents of this hunk is compiler or assembler specific, and the AmigaDOS loader does not interpret the
contents of this hunk at all, it is just skipped over. Similar to HUNK_SYMBOL, this hunk should appear
behind the payload data it annotates.

The debug information emitted by the SAS/C compiler for the “line-debug” option is also shared by other
development tools such as the DevPac assembler and will be documented here. In this format, the debug hunk
contains for each line of the source file an offset into the segment containing the code that was compiled from
this line.

The syntax of this hunk is as follows:

Table 11.11: Hunk Debug Syntax
Size Code Syntax

HUNK_DEBUG [0x3f1] Hunk including debug information
32 l ∈ [3, 231 − 1] Size of the hunk in long words
32 ho Offset of symbols into the segment
Compiler- and configuration specific data for line-debug data:
32 ’LINE’ Identifies the type of debug information
32 ln Size of the source file name in long-

words
32 ×ln nf Source file name that compiled to the

current segment in ln long-words
l -= 3 + ln Remove long-words read so far
while(l > 0) { Repeat for all entries

8 Dummy byte
24 ll Line number within the source file
8 Dummy byte
24 lv Offset into the source file. The source

file at line ll is compiled or assembled
to the code at at addressma[i]+ lv+ho
and following.

l -= 2 Remove the read data
} Loop over the hunk.

The file name nf is encoded in ln long-words, and potentially padded with 0-bytes to fill an integer
number of long-words. If it already is an integer number of long-words sized, it is not zero-terminated.

The hunk offset ho is added to all offsets lv to determine the position of a symbol in the segment. It is

170 Rom Kernel Reference Manual: DOS

generated by the linker when merging multiple segments into one.
While [1] and [7] document the entire hunk contents except the hunk length l to be compiler dependent, it

is is recommended for custom debug hunks to always include the hunk offset ho and the ID field — ’LINE’
in this case — to simplify linker designs.

11.2.11 HUNK_END
This hunk terminates the current segment and advances to the next segment, if any. It does not contain any
data.

Table 11.12: Hunk End Syntax

Size Code Syntax
HUNK_END [0x3f2] Terminate a segment

11.3 The AmigaDOS Loader
dos.library provides service functions for loading and releasing binary executables in the Hunk format intro-
duced in section 11.2. The functions discussed in this section load such binaries into memory, constructing
a segment list from the hunks found in the files, or release such segment lists. Overlay files are discussed
separately in section 11.4 due to their additional complexity.

A segment list is a linearly linked list of segments as defined in the beginning of chapter 11, i.e. the first
four bytes of every segment form a BPTR to the following segment of the loaded binary, or ZERO for the last
segment.

Segment lists are the representation of loaded executables. The loaded code can be, for example, either
launched as a new process through CreateNewProc() explained in chapter 10.1.1 or run as command
overloading the current process via RunCommand() introduced in section 15.2.3. Processes and commands
using the C or assembler binding are started from offset 0 of the first segment loaded. Segments loaded as
BCPL handlers as indicated by their GLOBVEC mountlist entry, see table 8.2 in chapter 8, use the mechanism
of section 11.5.4 instead.

11.3.1 Loading an Executable
The LoadSeg() function loads an executable binary in the Hunk format and returns a BPTR to the first
segment:

seglist = LoadSeg(name)
D0 D1

BPTR LoadSeg(STRPTR)

This function loads the binary executable from the path name and returns a BPTR to the singly linked list
of segments in case of success, or ZERO in case of failure. The name is passed into the Open() function,
accessing the file in the MODE_OLDFILE (shared) mode, and follows the conventions of this function for
locating the file.

When done, the segment list shall be released from memory via UnLoadSeg(), see section 11.3.4.
Unfortunately, this function has a series of defects: For AmigaDOS 34 and below, the function only

zero-initialized the first 256K of BSS segments, and it failed to zero-initialize the regions behind the payload
data of code and data segments. AmigaDOS 36 and up fixed the initialization problem, but the implicit BSS
space at the end of code and data segments is only initialized if they do contain payload. Due to another bug
in AmigaDOS 36 and up, at most 216 relocation entries are supported. While this version also introduced

The AmigaDOS Loader 171

a new and more efficient relocation hunk with 16 bit offsets for short executables, see section 11.2.6, the
wrong hunk identifier was picked for it. AmigaDOS 39 fixed this problem (but none of the others), and also
introduced another hunk type for 32-bit relative relocation as specified in section 11.2.7. Unfortunately, its
implementation is defect and limited to 16 bit relocation offsets.

To work around these issues, one should first clear the (implicit) BSS regions of code and data hunks
manually, or avoid them. BSS hunks larger than 256K should also be avoided, memory of this size should
probably be allocated through exec.library anyhow. While more than 216 relocation entries are rare, au-
thors of linker tools should break such relocation lists up into multiple arrays, all going to the same hunk.
While HUNK_RELOC32SHORT is more efficient, it shall not be used for executables that are supposed
to execute under AmigaDOS 34 and below, and for better compatibility, the (albeit incorrect) hunk type
HUNK_DRELOC32 [0x3f7] should be preferred as such binaries also load under AmigaDOS 36, includ-
ing the fixed version 39. The new 32-bit relative relocation by HUNK_RELRELOC32 should be avoided
altogether.

The LoadSeg() function sets IoErr() to an error code in case of failure, or to an undefined value in
case of success.

11.3.2 Loading an Executable with Additional Parameters
The NewLoadSeg() function loads an executable providing additional data for loading, and receiving
additional data from the binary if available.

seglist = NewLoadSeg(file, tags) /* since V36 */
D0 D1 D2

BPTR NewLoadSeg(STRPTR, struct TagItem *)

seglist = NewLoadSegTagList(file, tags) /* since V36 */
D0 D1 D2

BPTR NewLoadSegTagList(STRPTR, struct TagItem *)

seglist = NewLoadSegTags(file, ...) /* since V36 */

BPTR NewLoadSegTags(STRPTR, ...)

This function loads a binary executable from file and returns a BPTR to the first segment of the singly
linked list of segments, similar to LoadSeg().

Additional parameters may be provided in the form of a TagList, passed in as tags. The first two
functions are identical and differ only by their name; the last function prototype also refers to the same entry
within dos.library, though uses a different calling convention where the second and all following arguments
form the tag list, i.e. the last argument shall be TAG_DONE. This tag list is build on the stack, and the pointer
to this stack-based TagList is passed in.

While this function looks quite useful, AmigaDOS does currently not define any tags for this function,
and thus no additional functionality exceeding that of LoadSeg() is made available. Version and stack
information is instead extracted from by the loaded segments by the mechanisms specified in sections 11.5.1
and 11.5.2.

The segment list returned by this function shall be removed from memory via UnLoadSeg(), a spe-
cialized unloader function is not required for this call.

As this function shares the implementation with LoadSeg(), it unfortunately also shares its defects, see
section 11.3.1. This function returns ZERO on error, and then sets IoErr() to an error code. Otherwise, it
returns the BPTR to the loaded segment list and sets IoErr() to an undefined value.

172 Rom Kernel Reference Manual: DOS

11.3.3 Loading an Executable through Call-Back Functions
The InternalLoadSeg() function loads a binary executable, retrieving data and memory through call-
back functions. While LoadSeg() always goes through dos.library and exec.library for file access and
allocating memory, this function instead calls through user-provided functions.

seglist = InternalLoadSeg(fh, table, funcs) /* since V36 */
D0 D0 A0 A1

BPTR InternalLoadSeg(BPTR, BPTR, struct LoadSegFuncs *)

This function loads a binary executable in the Hunk format from an opaque handle fh through functions in
the funcs argument. The table argument shall be ZERO when loading regular binaries or the root node of
an overlay file, and shall be a BPTR to the array containing pointers to all segments when loading a non-root
overlay node, see section 11.4 for more details.

The LoadSegFuncs structure contains function pointers through which this function reads data or
retrieves memory. It is unfortunately not officially documented, though is defined as follows:

struct LoadSegFuncs {
LONG __asm ReadFunc (register __d1 BPTR fh,

register __d2 APTR buffer,
register __d3 ULONG size,
register __a6 struct DosLibrary *DOSBase);

APTR __asm AllocFunc(register __d0 ULONG size,
register __d1 ULONG flags,
register __a6 struct ExecBase *SysBase);

void __asm FreeFunc (register __a1 APTR mem,
register __d0 ULONG size,
register __a6 struct ExecBase *SysBase);

}

The ReadFunc() function retrieves d3 bytes from an opaque handle passed into register d1 and places the
read bytes into the buffer pointed to by register d2, it shall return the number of bytes read in register d0, or
a negative value in case of error. Note that the file handle d1 need not to be a file handle as returned by the
Open() function, it is only a copy of the fh argument provided to InternalLoadSeg(). Register a6
is loaded by a pointer to dos.library. Clearly, the Read() function of dos.library (see section 5.4.1) satisfies
this interface,

The AllocFunc() function allocates d0 bytes of memory, requiring the memory type in d1. The
requirements are encoded as flags from exec/memory.h such as MEMF_CHIP to request chip memory or
MEMF_FAST for fast memory. This function shall return a pointer to the allocated memory in register d0, or
NULL in case of failure. Register a6 is loaded with a pointer to exec.library. The AllocMem() function is
suitable for this interface.

The FreeFunc() function releases a block of d0 bytes pointed to by a1. Register a6 is loaded with a
pointer to exec.library. The FreeMem() function works according to this interface.

The purpose of this function is to load a segment or a binary without having access to a file or a file
system, or for loading binaries into dedicated memory areas; for example, this function could load binaries
from ROM-space, or from the Rigid Disk Block of a boot partition. In particular, the fh argument does not
need to be a regular file handle; it is rather an opaque value identifying the source. This argument is not
interpreted, it is forwarded to funcs->ReadFunc() in register d1.

The InternalLoadSeg() function follows the conventions of the AllocVec() function and stores
the number of allocated bytes in the first long word of every memory block by itself. In specific, the memory

The AmigaDOS Loader 173

allocator and memory releaser functions provided in the LoadSegFuncs structure do not need to keep track
of the memory sizes, and the AllocMem() and FreeMem() functions of exec.library satisfy the interfaces
for InternalLoadSeg() function already. All necessary size and pointer adjustments are made within
dos.library.

This function does not set IoErr() consistently, unless the functions within LoadSegFuncs do.
Callers should potentially use SetIoErr(0) upfront this function to have the possibility to identify errors.
This function also shares its implementation, and thus its defects, with LoadSeg().

11.3.4 Unloading a Binary
The UnLoadSeg() function releases a linked list of segments as returned the AmigaDOS segment loaders.

success = UnLoadSeg(seglist)
D0 D1

BOOL UnLoadSeg(BPTR)

This function releases all segments chained together by LoadSeg() and NewLoadSeg() and returns
their memory back into the system pool. This function also accepts overlaid segments, see section 11.4, and
releases additional resources acquired for them. Clearly, the segments shall be no longer in use, i.e. executed
by the CPU, at the time they are unloaded. AmigaDOS does not provide a protocol to learn when a process
started from a segment terminates, but also see the notes on the CreateProc() function in section 10.1.2
and the NP_FreeSeglist tag of the CreateNewProc() function in section 10.1.1.

Segment lists loaded through InternalLoadSeg() require in general a more generic unloader. They
shall be be released through InternalUnLoadSeg() instead, see 11.3.5.

This function returns a non-zero result in case of success, or 0 in case of error. Currently, the only source
of error is passing in ZERO as segment list, and IoErr() will not be touched in this case; all other cases
will indicate success. In particular, this function does not attempt to check return codes of the function calls
required to release resources associated to overlaid files.

11.3.5 UnLoading a Binary through Call-Back Functions
The InternalUnLoadSeg() function releases a segment list loaded through InternalLoadSeg().

success = InternalUnLoadSeg(seglist,FreeFunc) /* since V36 */
D0 D1 A1

BOOL InternalUnLoadSeg(BPTR,
void __asm (*)(register __a1 APTR,

register _d0 ULONG,
register __a6 struct ExecBase

*SysBase))

This function releases a segment list created by InternalLoadSeg() passed in as seglist. To release
memory, it uses a function pointed to by a1. This function expects the memory block to release in register
a1 and its size in register d0. Additionally, register a6 will be populated by a pointer to exec.library.

The pointer in a1 should be identical to the FreeFunc() function pointer in the LoadSegFuncs
structure provided to InternalLoadSeg(), or at least shall be able to release memory allocated by the
AllocFunc() function pointer in the same structure. Note that the InternalLoadSeg() stores the
sizes of the allocated memory blocks itself and the memory release function does not need to retrieve them.

174 Rom Kernel Reference Manual: DOS

This function is also able to release overlaid binaries, but then closes the file stored in the root node of the
overlay tree (see section 11.4) through the Close() function of dos.library. It therefore can only release
overlaid files that were loaded from regular file handles obtained through Open()2.

This function returns a non-negative result code in case of success, or 0 in case of failure. Currently,
the only cause of failure is to pass in a ZERO segment list; the function does not check of the result code
of Close() on the file handle of overlaid files. It therefore neither sets IoErr() consistently in case of
failure.

11.4 Overlays
While regular binary executables are first loaded to memory in entity and then brought to execution, over-
laid binaries only keep a fraction of the executable code in memory and then load additional code parts as
required, potentially releasing code fragments no longer needed; thus, more memory remains available for
the program. Overlaid binaries therefore allow execution of large and complex programs under constrained
memory conditions.

Overlays are an extension of the AmigaDOS Hunk format that splits the executable into a root node that
is loaded initially and stays resident for the lifetime of the program, and one or multiple extension or overlay
nodes that are loaded and unloaded on demand. If the program calls a function that is located in a segment
residing in an overlay mode, this call is routed through the overlay manager which determines whether the
function is in memory. If not so, it locates the overlay node containing the requested function, potentially
releases unused nodes, loads the required node into memory and then calls into the target function.

AmigaDOS, i.e. dos.library, does not provide a ROM-resident overlay manager, though it provides ser-
vices for overlay managers. Instead, the overlay manager is part of the root node of an overlaid binary, and
thus overlay management is fully under control of the application.

As it would be bothersome to redesign an overlay manager for each application, compiler vendors equip
their development kits with suitable implementations. The Amiga linker ALink, the Software Distillery
linker BLink and the SAS/C linker SLink include a hierarchical overlay manager; except for minor de-
tails in the calling convention, their designs and data structures are all alike and discussed in detail in sec-
tion 11.4.2.

An alternative to the hierarchical ALink overlay manager was provided by the MANX (Aztec) C com-
piler. Its design is roughly based on the Resource Manager of the 68K MacOs, which organizes applications
in multiple resources that can be loaded and unloaded independently. Unfortunately, as the overlay manager
uses self-modifying code without being aware of CPU caches, it is no longer functional from the 68040 (or
even 68030) onward, but will nevertheless be described here as a historical artifact. Section 11.4.10 provides
details on this flat overlay manager.

11.4.1 The Overlay File Format
A binary file making use of overlays consists of several nodes, one root node and several overlaid nodes.
Nodes contain one or multiple segments, represented by hunks such as HUNK_CODE, HUNK_DATA or
HUNK_BSS, similar to regular (non-overlaid) binary files. Additional hunk types provide data to the overlay
manager and steer the loading process.

Each node, the root node and all overlaid nodes start with a HUNK_HEADER identifying which segments
are contained in the node. The root node is terminated by a HUNK_OVERLAY on which loading stops; this
hunk contains additional data for the purpose of the overlay manager, and the organization of this hunk
therefore depends on the overlay manager contained in the first hunk of the root node.

Every other overlay node terminates with a HUNK_BREAK where LoadSeg() interrupts loading as
well. Unlike HUNK_OVERLAY, this hunk does not contain any data.

2Loading overlays through InternalLoadSeg() is probably a bad idea anyhow.

Overlays 175

The overall structure of an overlaid binary looks as follows:

Table 11.13: Overlay File Format
Hunk Type Description
HUNK_HEADER Defines segments for the root node
HUNK_CODE Contains the overlay manager and other resident

code
... Other hunks, such as relocation information
HUNK_END Terminates the previous segment
HUNK_OVERLAY Metadata for the overlay manager, see 11.4.3
do { Repeats over all overlay nodes

HUNK_HEADER Defines the segments in this overlay node
HUNK_CODE or HUNK_DATA First segment of the overlay node
... Other hunks of this overlay node
HUNK_END Terminates the previous segment
HUNK_BREAK Terminates the overlay node, see 11.4.4

} while(!EOF) This pattern repeats until end of file

The AmigaDOS loader injects overlay-specific data into the first segment loaded from disk, that is, into
the root-node. The data placed there is used to locate symbols in overlay nodes, load the segments, but is also
required to release resources associated to loaded overlays and is therefore expected there by UnLoadSeg()
and InternalUnLoadSeg().

The first bytes of the first HUNK_CODE in the root node shall form the following structure:

struct OverlayHeader {
UWORD oh_Jump[2]; /* Forms a branch to the startup code */
LONG oh_Magic; /* Shall be 0x0000abcd */
BPTR oh_FileHandle;/* Filled by the loader with the fh */
struct OVTab *oh_OVTab; /* Overlay table from HUNK_OVERLAY */
BPTR oh_Segments; /* Array of segment BPTRs */
BPTR oh_GV; /* standard Global Vector */

};

The elements oh_FileHandle to oh_GV are filled in by the AmigaDOS loader, i.e. LoadSeg() and
related functions; oh_Jump and oh_Magic shall be part of the segment itself and shall be included as
first two long words in the hunk. Note that the first segment(s) contains the overlay manager, and thus are
typically contributed by the linker and not by the application programmer.

oh_Jump forms a valid 68K opcode, and shall contain a jump or branch branch around this structure.
This is because loaded binaries are executed from the first byte of the first segment loaded, and the CPU
would run into the data of the structure otherwise, likely crashing on illegal opcodes. This first long word is
not interpreted by the AmigaDOS loader, it just expects it to be present.

oh_Magic shall contain the “magic” long-word 0xabcd. This value is neither filled or interpreted by
the loader, but shall nevertheless be present. It is, however, checked by UnLoadSeg() and used there as an
identifier for the OverlayHeader structure. If this identifier is not present, UnLoadSeg() will not be
able to release resources associated to overlays3.

oh_FileHandle will be filled by the AmigaDOS loader with a BPTR to the file handle from which
the root node has been loaded, or with the first argument of InternalLoadSeg(). This handle is used

3From this follows that flat (non-overlaid) AmigaDOS binary shall not contain this magic long word at this position as otherwise
attempting to unload such a binary will cause mischief.

176 Rom Kernel Reference Manual: DOS

by the overload manager to load all subsequent overlay nodes. Also, UnLoadSeg() and related functions
call Close() on the handle stored here. This handle needs to stay open for the life time of the program as
overlay nodes are loaded as they are required by the executing code.

oh_OVTab is filled by the AmigaDOS loader to a pointer to the payload data of HUNK_OVERLAY, i.e.
the data stored in the hunk following the length indicator l in table 11.14.

oh_Segments in the OverlayHeader structure is filled by the AmigaDOS loader with a BPTR to
the segment table of the loaded binary, represented as an array of BPTRs. The size of this array is taken from
tsize in the HUNK_HEADER of the root node, see table 11.2 in section 11.2.1. Each element in the segment
table contains a BPTR to a segment of the loaded binary, and it is indexed by the segment number, counting
from 0 for the first segment of the root node, i.e. the overlay manager itself. Thus, the segments of the loaded
executable form a singly linked list whose nodes are in addition directly accessibly through the table pointed
to by oh_Segments.

When parsing a HUNK_HEADER, the table entries tnum to tmax will be populated by the BPTRs to the
segments allocated within this hunk, and when unloading an overlay node, the corresponding segments will
be unlinked, released and their corresponding entries in this table set to ZERO again. This table is therefore
essentially the ma array of table 11.2, except that its entries are BPTRs, not regular pointers — of course
another Tripos legacy. Note that the segment table contains segments and is indexed by the segment number
counting from 0, whereas the entries of the OVTab array are ordinate numbers of loaded overlay nodes,
where each node typically consists of multiple segments. The first entry in the latter array is the first overlaid
node, the root node is not represented there.

oh_GV is, finally, filled with the public Global Vector of dos.library containing all regular functions in
the library, as required by BCPL code. Overlay managers implemented in C or assembler will not make use
of it and instead call vectors of dos.library through the base address loaded in register a6.

11.4.2 The Hierarchical Overlay Manager
The overlay manager that comes with the standard Amiga linkers ALink, BLink and SLink structures
overlay nodes into a tree such as the following:

root

a

b c

d e

f g

h k

l m

Only those nodes that form a path from the root to one of the nodes of the tree can be in memory at a
time. Thus, for the above example, the root node and nodes a, c and e can be in memory simultaneously, or
the root node, and nodes k and m can be loaded at the same time, but not the nodes a, g and h because they
do not form a path from the root to one of the nodes.

Thus, in the above example, if nodes a and f are in memory, and node l is required, the nodes a and f
will be removed from memory, and nodes k and l are loaded. Even though k is not explicitly requested, it
will be loaded as it is the parent of l.

Every node in the overlay tree is identified by two numbers: The depth of the node, which identifies the
level within the tree where a node is located. The root node is at level 0, the nodes a, h and k forms level 1
in the above example, nodes b, c, f , g and l and m form level 2, and nodes d and e are at level 3.

The second number is the ordinate number of a node. The ordinate enumerates nodes from left to right
within a level, and it starts from 1 in the hierarchical overlay manager. In the above example, a is at ordinate 1,
h at ordinate 2, and k at ordinate 3. At level 2, node b has ordinate 1, node c ordinate 2 and so on.

Overlays 177

11.4.3 HUNK_OVERLAY
This hunk terminates loading and indicates the end of the root node. The HUNK_OVERLAY contains meta-
data, namely the overlay table, for the overlay manager. This table contains information where symbols
within the overlaid segments are located and is as such dependent on the overlay manager included in the
root node.

This section describes the layout of HUNK_OVERLAY for the hierarchical overlay manager that is pro-
vided by ALink, BLink and SLink. While their implementations differs slightly, the contents of the hunk
is identical. The format of their HUNK_OVERLAY is as follows:

Table 11.14: Hunk Overlay Syntax
Size Code Syntax

HUNK_OVERLAY [0x3f5] Overlay table definition
32 l Size of the overlay table, it is l + 1 long-words

large.
Format for the hierarchical overlay manager, l + 1 long-words in total
32 od Number of levels in the overlay tree, including

the root node.
for(i = 1;i < od;i++) { For all nodes, excluding the root node

32 0 Will become the currently loaded ordinate once
loaded, shall be zero in the file.

} ...that is, od − 1 zeros
l− =od Remove read data from the count.
for(s = 0;l ≥ 0;s++) { Repeat over the overlay table

32 op[s] Absolute offset of the HUNK_HEADER of the
overlay node containing the symbol.

64 0 Two reserved long-words.
32 ol[s] Level of the overlay node containing the symbol,

the root level containing the overlay manager is
at level 0.

32 on[s] Ordinate of the overlay node, enumerating over-
lay nodes of the same level.

32 oh[s] Segment index of the first segment within the
overlay node.

32 os[s] Segment index of the segment containing the
symbol described by this entry in the overlay
node.

32 oo[s] Symbol offset within segment os[s].
l -=8 Remove 8 long words.

} End of loop over table

Note that the overlay table is l + 1 and not l long-words large, i.e. a table only defining a single symbol
within a tree of two levels would be indicated by a value of l = 9 and would have 10 × 4 = 40 bytes of
payload, excluding the length field. The length is always indicated in this (unorthogonal) way, regardless of
the overlay manager used.

As for all overlay managers, the oh_OVTab pointer in the OverlayHeader structure introduced
in 11.4.1 points to the memory representation of the overlay hunk and consists initially of the contents of
table 11.14 starting from element the element od. They can also be described by the following structures
which store for each tree level the ordinate of the currently loaded overlay node, and for every externally
referenced symbol in an overlaid executable the position of the symbol within the overlay tree, along with
the segments to be loaded:

178 Rom Kernel Reference Manual: DOS

struct OVTab {
ULONG ot_TreeDepth; /* Depth of the tree, including the root */
ULONG ot_Ordinate[od-1];/* The loaded ordinate, indexed by level-1 */

}
struct SymTab {

ULONG ot_FilePosition; /* File position of HUNK_HEADER of the node */
ULONG ot_Reserved[2]; /* Not in use */
ULONG ot_Level; /* Level of the overlay node */
ULONG ot_Ordinate; /* Ordinate of the overlay node */
ULONG ot_FirstSegment; /* First segment of the overlay node */
ULONG ot_SymbolSegment; /* Segment containing the referenced symbol */
ULONG ot_SymbolOffset; /* Offset of the segment within the segment */

} [] /* Repeats for each symbol */

That is, the overlay table of a tree depth od starts with an array of od−1 elements within which each element
stores the ordinate of the currently loaded overlay node at this level4, excluding the level of the root node. If
an entry in this array is 0, no overlay node at this tree level is loaded, otherwise it is the 1-based ordinate of
the node in the overlay tree.

The ordinate table is followed by the symbol table. The purpose of this structure is to allow the overlay
manager to find and load an overlay node given a reference to an external symbol. How exactly it does so is
explained in more detail in section 11.4.9.

11.4.4 HUNK_BREAK
This hunk terminates the loading process and indicates the end of an overlay node. The hunk itself does not
contain any data. It is not required at the end of the root node as there the HUNK_OVERLAY provides already
sufficient information for the loader that the end of a node has been reached.

Table 11.15: Hunk Break Syntax

Size Code Syntax
HUNK_BREAK [0x3f6] Terminate an overlay node

11.4.5 Loading an Overlaid Node
The LoadSeg() function is not only able to load the root node of an overlaid binary, it can also be used for
loading an overlay node and all segments within it. For that, the file pointer shall first be placed by Seek()
to the file offset of the HUNK_HEADER of the node to load. For the hierarchical overlay manager, this file
offset should be taken from the ot_FilePosition of the overlay table.

seglist = LoadSeg(name, table, fh)
D0 D1 D2 D3

BPTR LoadSeg(STRPTR, BPTR, BPTR)

For overlaid node loading, the first argument name shall be NULL, which is used as an indicator to this
function to interpret two additional (usually hidden) arguments.

table is a BPTR to the segment table, and should be taken from oh_Segments in the first segment
of the root node. It contains BPTRs to all allocated segments, see section 11.4.3.

fh is a BPTR to the file handle from which the overlay node is to be loaded. This handle should be taken
from oh_FileHandle, also stored in the first segment of the root node.

4Such variably sized arrays cannot be expressed properly in the C syntax.

Overlays 179

While this function allocates and loads the segments in the overlaid node, it does not attempt to release
already allocated segments populating the same entries in the segment table; it is instead up to the overlay
manager to release entries in the segment table upfront, see 11.4.7. The overlay manager therefore needs to
know which segments the node to load will populate.

For the hierarchical overlay manager, this information is available from the the ot_FirstSegment
element of the overlay table. Due to the tree structure imposed by the hierarchical overlay manager, it has to
release all segments from ot_FirstHunk onward up to the end of the table, unlink the segments contained
therein, and then proceed loading the new overlay node through LoadSeg().

Note that this function populates the same entry in dos.library as the regular LoadSeg() function;
the function distinguishes loading regular binaries through a file name from loading overlay nodes by its
first argument. The function prototype available in the official AmigaDOS include files do not expose the
additional arguments.

Seek to the Segment! The file pointer of the file handle fh from which the executable is loaded is
undefined after returning from LoadSeg(). You therefore shall Seek() to the start of the overlaid
node before calling LoadSeg(), i.e. the byte offset of a HUNK_HEADER defining the node to be
loaded. How to obtain the file position of an overlaid node depends on the overlay manager in use,
but they are typically included in the overlay hunk, see section 11.4.3 for the hierarchical overlay
manager, and section 11.4.10 for the MANX overlay manager.

As for the regular LoadSeg() call, this function links all loaded segments together, populates the seg-
ment table and returns the BPTR to the first segment loaded on success. On error, it returns ZERO and installs
an error code in IoErr(). On success, IoErr() is undefined.

11.4.6 Loading an Overlay Node through Call-Back Functions
While the InternalLoadSeg() function can also load an overlay node, its usage for overlay managers is
discouraged. Generally, overlays should load code through standard file handles and not through an abstract
object as UnLoadSeg() will call Close() on the stream used for overlay loading, regardless whether it
is a file handle or not.

seglist = InternalLoadSeg(fh,table,funcs)
D0 D0 A0 A1

BPTR InternalLoadSeg(BPTR,BPTR,struct LoadSegFuncs *)

The fh argument is an opaque file handle that is suitable for the ReadFunc() provided by the funcs
structure. The corresponding file pointer shall first be placed to the file offset of the HUNK_HEADER of the
overlaid node, e.g. by a functionality similar to Seek() for regular file handles. This file offset should, for
the standard hierarchical overlay manager, be taken from ot_FilePosition.

The table shall be the BPTR to the segment table; this should be taken from oh_Segments in the
root node, see section 11.4.3. This argument determines whether a regular binary load is requested, or an
overlay node is to be loaded. In the latter case, this argument is non-ZERO.

Like LoadSeg(), this function does not release segments in populated entries in the segment list, it is up
to the overlay manager to unload such segments. For the hierarchical overlay manager, the information which
entries of the segment table will be populated by an overlay node may be taken from the ot_FirstHunk
member of the overlay table, see also 11.4.5 for an algorithm.

The funcs argument points to a LoadSegFuncs structure as defined in section 11.3.3 and contains
functions for reading data and allocating and releasing memory.

This function does not set IoErr() consistently, unless the functions in the LoadSegFuncs structure
do. The function returns a BPTR to the first segment of the overlay node on success, or ZERO on error.

180 Rom Kernel Reference Manual: DOS

11.4.7 Unloading Overlay Nodes
Unloading overlay nodes — and not the root node — of an overlaid binary requires some manipulation of
the segment table as dos.library does not provide a function for such operation. This algorithm is part of
the overlay manager and thus depends on its structure; the implementation within the hierarchical overlay
manager is documented here for completeness. Other overlay managers would need to perform different
algorithms, as for example the flat overlay manager presented in section 11.4.10.

The hierarchical overlay manager first finds the previous segment upfront the first segment of the overlay
node to be unloaded, and cleans its NextSegment pointer to unlink all following segments. Then all
subsequent segments are released through FreeVec() or, in case a custom allocator was provided for
InternalLoadSeg(), whatever memory release function is appropriate. An implementation in C of
this algorithm is given below, section 11.4.9 provides a complete implementation of the hierarchical overlay
manager and thus an alternative implementation in assembler.

The following sample code releases the overlay node starting at segment i > 0 from a segment table of
an overlay header, i.e. the structure from section 11.4.3 found in the first segment of the root node:

void UnloadOverlayNode(struct OverlayHeader *oh,ULONG i)
{

BPTR *segtbl = (BPTR *)BADDR(oh->oh_Segments);
BPTR *segment = (BPTR *)BADDR(segtbl[i - 1]);
BPTR next;

/* Unlink the first segment to release */

*segment = NULL;

while (segment = (BPTR *)BADDR(segtbl[i++])) {
FreeVec(segment);

}
}

Note that a previous segment always exists because the root node populates at least entry 0 of the segment
table, i.e. i > 0 upon entry. In addition, the AmigaDOS loader also zero-terminates the segment table, thus
the above code cannot overrun its end.

If a custom memory allocator has been used for loading overlay nodes through InternalLoadSeg(),
the FreeVec() in the above function is replaced by the corresponding memory release function; however,
see the note in section 11.4.6, usage of InternalLoadSeg() for overlays is discouraged.

11.4.8 Unloading Overlay Binaries
To unload the root node, and thus unload the entire program including all overlay nodes, UnLoadSeg() on
the first segment of the root node is sufficient if neither custom I/O nor a custom memory allocator has been
used to load the binary. The overlay manager used does not matter. UnLoadSeg() will detect overlaid
executables from the magic value in oh_Magic in the first segment passed, and will then not only release
the segments, but also close the overlay file handle and release the segment table.

If InternalLoadSeg() has been used for loading the root node through custom I/O functions or
with a custom memory allocator, InternalUnLoadSeg() shall be used instead to release the root node.
Unfortunately, it always calls Close() on oh_FileHandle, even if oh_FileHandle does not corre-
spond to a BPTR to a FileHandle structure as returned by Open(), e.g. because ReadFunc() upon
loading the overlay program pointed to a custom I/O function. The best strategy in this case is probably to
close oh_FileHandle manually upfront with whatever method is appropriate, then set it to zero and then
finally call into InternalUnLoadSeg() to perform all remaining cleanup steps. This strategy works
because Close() on a ZERO file handle performs no operation and is legit. Due to these peculiarities,

Overlays 181

InternalLoadSeg() should not be used for overlaid code, or at least, its fh argument should be a
BPTR to a FileHandle such that loading is attempted through a regular file handle.

11.4.9 An Implementation of the Hierarchical Overlay Manager
Several versions of the hierarchical overlay manager exist. The version described here stems from the SAS/C
SLink utility and is designed for the registerized parameters configuration by which a subset of function
arguments are passed in CPU registers. Earlier versions of the overlay manager required stack-based param-
eter passing. The version provided here is, however, also suitable for assembler programs and preserves all
CPU registers.

When binding objects together to an overlaid executable, the linker checks whether a referenced symbol
is within or outside the node it is referenced from. References that go to a parent node or to the node itself can
be resolved by the linker by creating a relocation entry in a HUNK_RELOC32 hunk as it can assume that the
segment containing the symbol is already present when the referencing hunk is loaded. Calls to such symbols
thus become regular function calls whose jump destination is updated through the relocation mechanism of
the Hunk format.

References to symbols within children nodes require another treatment as their segment is not necessarily
in memory yet. Instead, the linker assigns to each such symbols a unique integer identifier and creates an
entry in the symbol table. Each instance of the SymTab structure that is part of the HUNK_OVERLAY
(section 11.4.3) represents such a (forward) reference to a child node. The actual call to the referenced
symbol is replaced by the linker to a call of a trampoline function

@symX:
jsr @ovlyMgr
dc.w symbX

where @ovlyMgr is the entry point of the overlay manager and symbX is the integer identifier of the
referenced symbol. The overlay manager then reads from its stack frame the return address, which instead
points to the integer identifier. From that, it finds the SymTab structure representing the target function.

The symbol table contains both the ordinate and the level of the symbol which allows the overlay manager
to check whether the node containing the symbol is already loaded. If this is not the case, it will unload the
currently loaded node at the same level along with all its children, and then loads the required node from the
file offset recorded in the symbol table.

Once the overlay node containing the symbol has been loaded or was found to be in memory already, the
symbol address is computed from the offset in the symbol table and the address of the segment it is contained
within. The symbol address replaces then the return address of the overlay manager, thus forwards the code
to the desired function.

As symbols in children nodes can only be reached through a call of the overlay manager potentially
loading the symbol, data in a child cannot be directly referenced from the parent node. A possible workaround
for this limitation is to make such data available through accessor functions in children nodes that return
pointers to the requested data.

The following code provides a general overlay manager for register-based or stack-based function calls:

xdef @ovlyMgr
;***
;** Offsets in the overlay-table **
;***

rsreset
ot_FilePosition: rs.l 1 ;File position
ot_reserved: rs.l 2 ;for whatever
ot_OverlayLevel: rs.l 1 ;Overlay-Level

182 Rom Kernel Reference Manual: DOS

ot_Ordinate: rs.l 1 ;Overlay-Ordinate
ot_FirstSegment: rs.l 1 ;Start of the overlay node
ot_SymbolSegment: rs.l 1 ;Segment containing symbol
ot_SymbolOffset: rs.l 1 ;Offset of symbol
ot_len: rs.b 0

;***
;** Other stuff **
;***
MajikLibWord = 23456 ;ignored by by the Os

section NTRYHUNK,CODE ;ensure this is first
;***
;** Manager starts here **
;***
Start:

bra.w NextModule ;Jump to init code

;* This next word serves to identify the overlay
;* manager to the ’unloader’, i.e. UnLoadSeg()

dc.l $ABCD ;Magic longword for UnLoadSeg

;* The next four LWs are filled by the loader (LoadSeg())
oh_FileHandle: dc.l 0 ;Overlay file handle
oh_OVTab: dc.l 0 ;Overlay table
oh_Segments: dc.l 0 ;BPTR to Overlay hunk table
oh_GlobVec: dc.l 0 ;BPTR to global vector (unused)

dc.l MajikLibWord ;identifies hierarchical mngr
;used by SegTracker

dc.b 7,"Overlay" ;Identifier

;* the following data is specific to this manager

oh_SysBase: dc.l 0 ;additional pointer
oh_DOSBase: dc.l 0 ;to libraries

dc.b "THOR Overlay Manager 1.2",0 ;another ID

@ovlyMgr: ;Entry-points
movem.l d0-d3/a0-a4/a6,-(a7) ;Saveback register

moveq #0,d0
move.l 10*4(a7),a0 ;return address
move.w (a0),d0 ;get the overlay reference ID

move.l oh_OVTab(pc),a3 ;get pointer to overlay table
move.l a3,a4 ;to a4
add.l (a3),d0 ;add length
lsl.l #2,d0 ;get offset

Overlays 183

add.l d0,a3 ;address of symbol
move.l ot_OverlayLevel(a3),d0 ;get symbol level
lsl.l #2,d0
adda.l d0,a4
move.l ot_Ordinate(a3),d0 ;get required ordinate
cmp.l (a4),d0 ;check resident ordinate
beq.s .segmentresident ;if equal, is already resident

;incorrect ordinate
;clear all other entries

move.l oh_OVTab(pc),a1 ;get pointer to overlay table
move.l d0,(a4)+ ;fill with new ordinate
move.l (a1),d1 ;get size
lsl.l #2,d1
adda.l d1,a1 ;end of table

moveq #0,d1
.do1: cmp.l a1,a4 ;terminate on end of table

bhs.s .br1
move.l d1,(a4)+ ;clear this
bra.s .do1

.br1:
move.l ot_FirstSegment(a3),d0 ;first segment to load
add.l oh_Segments(pc),d0 ;plus BPTR of hunk table
lsl.l #2,d0 ;address of entry in segtable
move.l d0,a4
move.l -4(a4),d0 ;get previous segments
beq.s .noprevious
lsl.l #2,d0
move.l d0,a2
move.l d1,(a2) ;unlink fields before loading

;now free all children
move.l oh_SysBase(pc),a6

.do2: move.l (a4)+,d0 ;next hunk ?
beq.s .br2
lsl.l #2,d0
move.l d0,a1 ;->a1
move.l -(a1),d0 ;get length
jsr FreeMem(a6) ;free this hunk
bra.s .do2 ;and now the next

.br2:

.retry:
move.l oh_DOSBase(pc),a6
move.l oh_FileHandle(pc),d1 ;get our stream
move.l ot_FilePosition(a3),d2 ;get file position
moveq #-1,d3 ;relative to beginning of file
jsr Seek(a6) ;seek to this position
tst.l d0 ;found something ?
bmi.s .loaderror ;what to do on failure ?

;now call the loader

184 Rom Kernel Reference Manual: DOS

move.l oh_Segments(pc),d2 ;segment table
moveq #0,d1 ;no name (is overlay)
move.l oh_FileHandle(pc),d3 ;filehandle
jsr LoadSeg(a6) ;load this stuff
tst.l d0 ;found
beq.s .loaderror
move.l d0,(a2) ;add new chain

;found this stuff
.segmentresident:

move.l ot_SymbolSegment(a3),d0 ;get hunk # containing symbol
add.l ol_HunkTable(pc),d0
lsl.l #2,d0 ;get APTR to hunk
move.l d0,a4
move.l (a4),d0 ;BPTR to hunk
lsl.l #2,d0
add.l ot_SymbolOffset(a3),d0 ;Offset

move.l d0,10*4(a7) ;Set RETURN-Address

movem.l (a7)+,d0-d3/a0-a4/a6
rts

;***
;** Go here if we find an error **
;***
.loaderror:

movem.l d7,-(a7)
move.l oh_SysBase(pc),a6
move.l #$0700000C,d7
jsr Alert(a6) ;Post alert
movem.l (a7)+,d7
bra.s .retry ;Retry or die

.noprevious:
move.l oh_SysBase(pc),a6
move.l #$8700000C,d7 ;dead end !
jsr Alert(a6) ;Post alert
bra.s .noprevious

;***
;** NextModule **
;** Open stuff absolutely necessary and **
;** continue with main program code **
;***
NextModule:

;why safe registers ?
move.l a0,a2
move.l d0,d2 ;keep arguments
lea oh_SysBase(pc),a3
move.l AbsExecBase.w,a6

Overlays 185

move.l a6,(a3) ;fill in Sysbase
lea DOSName(pc),a1 ;get name of DOS
moveq #33,d0 ;at least 1.2 MUST be used
jsr OpenLibrary(a6)
move.l d0,4(a3) ;Save back DOS base for loader
beq.s .nodosexit ;exit if no DOS here

move.l d0,a6
move.l Start-4(pc),a0 ;Get BPTR of next hunk
adda.l a0,a0
adda.l a0,a0
exg.l a0,a2 ;move to a2
move.l d2,d0 ;restore argument
jsr 4(a2) ;jump in
move.l d0,d2 ;Save return code

move.l oh_SysBase(pc),a6
move.l oh_DOSBase(pc),a1
jsr CloseLibrary(a6) ;Close the lib

move.l d2,d0 ;Returncode in d0
rts

.nodosexit:
move.l #$07038007,d7 ;DOS didn’t open
jsr Alert(a6)
moveq #30,d0 ;Something went really wrong !
rts

DOSName: dc.b "dos.library",0

11.4.10 The MANX Overlay Manager
The Aztec C compiler from MANX offers an alternative overlay manager that is related to the Resource
Manager present in the early 68K versions of MacOs. It does not organize overlay nodes in a hierarchy,
but implements a flat organization of nodes — or resources as they would be called under MacOs. All
nodes of the single level can be loaded independently of each other, either on demand through the function
segload() in the MANX C library, or whenever a function of an overlaid node is called. The correspond-
ing freeseg() function unloads a node again. A node consists of one or more segments that are loaded
and unloaded jointly. Unfortunately, the implementation of this overlay manager depends on self-modifying
code and ignores the instruction cache present in later members of the Motorola 68K family. It is therefore
no longer safe to use.

Similar to the hierarchical overlay manager, the MANX overlay manager keeps meta-data for organizing
the overlay nodes in the HUNK_OVERLAY hunk, though its format is different from the one in documentation
in section 11.4.3. The AmigaDOS LoadSeg() function does not care about the contents of this hunk as
long as its first LONG word indicates its size.

Trampoline functions redirect the code flow for non-resident functions to the overlay manager. The
trampolines are not part of HUNK_OVERLAY but reside at the beginning of the HUNK_DATA hunk, in the
second segment of the root node relative to the __H1_org symbol. If a call to a function in another overlay
node is called, then the jump goes through this trampoline, which initially calls the overlay manager.

The HUNK_OVERLAY hunk contains offsets within the file, the offsets to the trampoline functions and
to the symbol table. This table provides information in which segment the referenced overlaid functions

186 Rom Kernel Reference Manual: DOS

reside. The contents of the overlay hunk are, as always, accessible through the oh_OVTab element of the
OverlayHeader structure.

The overlay hunk for the MANX compiler reads on disk as follows:

Table 11.16: MANX Hunk Overlay Syntax
Size Code Syntax

HUNK_OVERLAY [0x3f5] Overlay table definition for MANX
32 l Size of the overlay table, it is l + 1 long-words

large.
Format for the MANX overlay manager, l + 1 long-words.
32 od Number of nodes in the overlay, excluding the

root node
for(i = 1;i < od;i++) { For all nodes, excluding the root node

32 op[i] Absolute offset of the HUNK_HEADER of the
overlay node

16 ot[i] Offset of the first trampoline relative to the linker
symbol __H1_org

16 os[i] Offset to the symbol table relative to &op[1]
}
l -= od × 2− 1 Remove read data from the count.
for(s = 0;l ≥ 0;s++) { Repeat over the symbol table

16 oh[s] Segment within which the symbols resides, or 0
for end of node

16 oc[s] Symbol count within segment oh[s]
l -= 1 Remove one long words.

} End of loop over table

In memory, it is approximately described by the following (pseudo-) structure, replacing the OVTab
structure in section 11.4.3. As in that section, some elements are variably sized and are thus hard to represent
in the C syntax:

struct MANXOVTab {
ULONG ot_NodeCount; /* Number of overlay nodes */
struct OvNode { /* One per overlay node */

ULONG ot_FilePosition; /* Position of HUNK_HEADER */
UWORD ot_TrampolineOff; /* Offset of the first trampoline */
UWORD ot_SymbolOffset; /* Relative to &ot_NodeCount+1 */

} ot_Nodes[od-1];
}

struct MANXSymTab {
UWORD ot_Segment; /* Segment containing symbols or 0 for end */
UWORD ot_Count; /* Number of trampolines to patch */

} [] /* Repeats multiple times */

The element od representing ot_NodeCount defines the number overlay nodes, all of which can be
loaded or unloaded individually. The element op[i] providing ot_FilePosition is the offset relative to
the start of the file at which the HUNK_HEADER of the overlay node i is found. The offset ot[i] corresponding
to ot_TrampolineOff is the offset of the first trampoline to a symbol within overlay node i; the offset is
relative to the second segment of the root node, or more precisely, relative to __H1_org.

Finally, os[i], or in memory ot_SymbolOffset, is used by the MANX overlay manager to find the first
symbol descriptor within the second part of the HUNK_OVERLAY, i.e. a MANXSymTab structure. The offset

Overlays 187

is relative to the third long word within this hunk, or as l is not part of the internal memory representation,
relative to &ot_NodeCount+1. The target of this offset is a sequence of oh[s],oc[s] pairs. The first member
of this pair, oh[s], or ot_Segment in memory, is the segment index containing the overlaid symbols; this
clearly cannot be 0 as this would indicate a symbol within root node. The second member of the pair, oc[s] or
ot_Count is the number of symbols within this segment. The symbols for the loaded node terminate with
an oh[s] entry being 0.

The HUNK_OVERLAY hunk does not contain the symbol offsets itself. Rather, they are part of the tram-
poline which is included in the second segment of the root node. The offset to the first trampoline of an
overlay node relative to the start the second segment is provided by ot[i], that is, by ot_TrampolineOff.

Each trampoline looks as follows on disk:

Table 11.17: MANX Overlay Trampoline
Size Code Syntax
16 0x6100 68K Opcode of bsr.w
16 tj Branch offset to overlay manager
8 tn Overlay node number
24 to Offset of the overlay symbol within the

loaded hunk

In memory, this is equivalent to the following structure:

struct MANXTrampoline {
UWORD mt_BSR; /* filled with 0x6100 */
WORD mt_OvMngrOffset; /* Offset to overlay manager */
UBYTE mt_OverlayNode; /* Overlay node, counts from 0 */
UBYTE mt_SymbolOffset[3]; /* Big-endian 24-bit offset */

};

The start of the trampoline is a word-sized relative subroutine jump to the overlay manager. As the
trampoline is typically in the second segment of the root node, but the code of the overlay manager is in
its first segment, this branch goes to another absolute jump to the overlay manager. The element tj , or
mt_OvMngrOffset is the branch distance to this jump. When building an overlaid binary, the MANX
linker resolves all references to overlaid symbols to a trampoline as indicated above, and when the code of
the loaded binary calls through them, the overlay manager fetches from the return stack of the 68K processor
the address of the trampoline.

From tn, or mt_OverlayNode in memory, it finds the entry in the first part of the HUNK_OVERLAY,
namely a triple op[i], ot[i], os[i] of file offset, trampoline offset and symbol offset, that is, an OvNode
structure. This overlay node index is zero-indexed, i.e. the first overlay node is node 0, corresponding to the
first element of the ot_Nodes array. The to offset, or mt_SymbolOffset in memory, is finally the offset
of the symbol within its segment.

When an overlay node is loaded, the overlay manager uses the symbol table consisting of MANXSymTab
structures and relocates from them the trampolines to the symbols; that is, the opcode of the relative branch
in the first word of the trampoline is replaced by an absolute jump5, opcode 0x4ef9. The subsequent long
is filled by the address of the symbol, computed from the start of the hunk oh[s] in HUNK_OVERLAY plus
the offset to stored in the trampoline. The branch offset tj is moved to the last 16 bits of the trampoline to
enable the overlay manager to restore it back when the overlay node is unloaded.

Such a patched trampoline then looks as follows:

5Here the MANX overlay manager fails to clear the instruction cache, causing failure on later members of the 68K family.

188 Rom Kernel Reference Manual: DOS

struct MANXPatchedTrampoline {
UWORD mt_JMP; /* filled with 0x4ef9 */
APTR mt_OVSymbol; /* absolute symbol address */
WORD mt_OvMngrOffset; /* Offset to overlay manager */

};

When unloading an overlay node, the original trampolines have to be restored such that a call to an
overlay symbol triggers again loading the segments containing the symbol from disk. For that, mt_JMP is
replaced by a bsr.w instruction, mt_OvMngrOffset is moved to the next word, and the overlay node
is found by identifying the OvNode that contains the offset to the trampoline that is to be unloaded. As
trampoline offsets are assigned in increasing overlay node order, it is sufficient to find the largest trampoline
offset that is smaller or equal to the trampoline to the symbol to be unloaded. Finally, mt_SymbolOffset
is re-computed by subtracting the base address of the segment from the absolute symbol address.

11.5 Structures within Hunks
While the AmigaDOS loader, i.e. LoadSeg() and related functions, do not care about the contents of the
segments it loaded, some other components of AmigaDOS do actually analyze them.

11.5.1 The Version Cookie
The Version command scans a ROM-resident modules or all segments of an executable for the character
sequence $VER: followed by at least a single blank space.

The syntax of the version cookie is formally specified as follows:

Table 11.18: Version Cookie
Size Data Syntax
40 ’$VER:’ The version cookie identifier
≥8 ’ ’ . . . One or more blank spaces
≥8 name Program name, terminated by ’\0’, ’\n’, ’\r’ or a digit be-

tween ’0’ and ’9’
≥8 version Major version of the program encoded as decimal number in ASCII
8 ’.’ An ASCII dot
≥8 revision Minor revision of the program encoded as decimal number
≥0 ’ ’ . . . Zero or more blank spaces
8 ’(’ An opening bracket
≥8 day Day of the month, between 1 and 31, encoded as decimal number
8 ’.’ A dot
≥8 month Month, between 1 and 12, encoded as decimal number
8 ’.’ A dot
≥8 year Year, either as two or four decimal digits
8 ’)’ Closing bracket
≥0 ’ ’ . . . Zero or more blank spaces
≥8 comment A comment, terminated by ’\0’, ’\n’, or ’\r’

Everything following the version cookie is optional, even the version number may be omitted. However,
the cookie is not particularly useful if the version number is not present. The string is terminated by an ASCII
NUL character, i.e. ’\0’, a line feed ’\n’, or a carriage return ’\r’.

If the number representing the year is below 1900, the Version command assumes a two-digit year and
either adds 2000 if the year is below 78, or 1900 otherwise. The command then re-formats the date according

Structures within Hunks 189

to the currently active locale and prints it to the console, along with the program name and, optionally, the
comment string.

An example for the version cookie is

const char version[] = "$VER: RKRM-Dos 45.3 (12.9.2023) (c) THOR";

Note that the date follows the convention date of the month, month and year, here September 12, 2023.
The version in this example is 45, the revision is 3. The string behind the date is a comment and usually not
printed by the Version command, unless instructed to do so with the FULL command line argument.

11.5.2 The Stack Cookie
The Workbench, the Shell, and also GetDeviceProc() when loading handlers, scan the loaded binary
for the string sequence $STACK:. If this string sequence is found, AmigaDOS attempts to read a following
decimal number, and interprets this as minimum stack size in bytes.

Formally, the stack size cookie looks as follows:

Table 11.19: Stack Size Cookie
Size Data Syntax
56 ’$STACK:’ The stack size cookie identifier
≥0 ’ ’ . . . Zero or more blank spaces
≥8 stack size Required minimum stack size in bytes as ASCII encoded decimal

number
≥0 comment Terminated by ’\0’, ’\n’, or ’\r’

The stack of the program is then increased to the provided size. Note that AmigaDOS also scans alter-
native sources for a stack size: The Stack setting in the icon information window of the Workbench, the
Stack command of the shell, or the STACKSIZE entry in the mountlist provide alternative information
sources. The stack size indicated by the above stack cookie does not override these settings, it can only
increase the stack size. This allows program authors to ensure that the stack of their program has a necessary
minimal size, though still allows users to increase it if necessary.

An example for the stack cookie is

const char stack[] = "$STACK: 8192";

This ensures that the stack size of the program is at least 8192 bytes.

11.5.3 Extending the Stack Size from the Stack Cookie
dos.library provides with the ScanStackToken() an optimized function to quickly scan segments for the
stack cookie and potentially adjust a default stack size to at least the value found in there.

stack = ScanStackToken(segment, defaultstack) /* since V47 */
D0 D1 D2

LONG ScanStackToken(BPTR segment, LONG defaultstack)

This function scans the singly linked segment list starting at segment for a stack cookie, potentially
adjusting the defaultstack size in bytes passed in. If a stack cookie is found, and the minimal stack
size it finds is larger than the default stack argument, the stack size found in the stack cookie is returned in
stack. If no stack cookie is found, or the value in the stack cookie is smaller than the defaultstack
size, the default size is returned.

The segment is a BPTR to a singly linked list of segments, e.g. as returned by LoadSeg() function.

190 Rom Kernel Reference Manual: DOS

11.5.4 Runtime binding of BCPL programs
BCPL programs depend on a Global Vector that contains function entries and data that is made available to
all its program units. AmigaDOS includes a runtime binder functionality that creates the Global Vector of
such BCPL code from data found in the segments of the loaded binary and dos.library public Global Vector.

Even though this mechanism is deprecated and AmigaDOS has long been ported to C and assembler,
some of its components still depend on this legacy mechanism, namely all handlers and file systems mounted
with a GLOBVEC = 0 or GLOBVEC = -3 entry in the mount list, see table 8.2 in chapter 8. While newer
handlers should not use on this mechanism anymore, the Port-Handler mount entry, see section 13.3, is
created in the Kickstart ROM as BCPL handler, beyond control of the user.

The same legacy startup mechanism is also used by the (now deprecated) CLI, or to be more precise,
by the resident segment CLI recorded in dos.library, see section 15.6. The AmigaDOS shell, even though
it is build from the same source code and thus equivalent to the CLI, is represented by a different resident
segment, namely shell and BootShell, and uses the C/Assembler startup mechanism. More details on
this are in sections 15.6 and 15.7.

If the above components — the Port-Handler or the CLI — are attempted to be customized, implementers
need to be aware that their processes are not started from the first byte of the first segment, but through the
Global Vector entry #1, which contains the address of the START function from which the process is run.
All other entries of the vector are of no concern, and should not be used or depend upon anymore.

The Runtime Binder of AmigaDOS, initiated only for BCPL handlers and BCPL processes, scans the
segments of such programs for information on how to populate the Global Vector. The layout of the segments
is as follows:

The first long-word of the segment, usually the entry point of the process for C/Assembler startup, con-
tains instead the long-word offset from the start of the segment to the start of the Global Vector initialization
data. This initialization data is scanned backwards from the given offset towards lower addresses, starting
with the long-word right before the address computed from the offset.

The first long-word of the initialization data is the size of the global vector the program requires, i.e. the
number of entries in the vector. This value is only used to check the following initializers for validity. The
public Global Vector currently requires 150 entries, which is a safe choice.

All following entries consist of pairs of long-words, scanned again towards smaller addresses, where each
pair defines one entry in the global vector. The first (higher address) long-word is the offset of the function
relative to the start of the segment to be filled into the Global Vector, the second (lower) address is the index
of the Global Vector entry to be populated. An offset of 0 terminates the list.

The following assembler stub should be used as initial segment of an (otherwise C-based) handler that
instructs the Runtime Binder to populate the START vector, and then calls into the _main function. BCPL
unfortunately also uses a custom call syntax: register a6 is the address of the BCPL return code which cleans
up the BCPL stack frame and returns to the caller. This register, along with registers a0, a2, a4 and a5 need
to be preserved and restored before exiting the program through the BCPL “return from function” call.

SECTION text,code

XREF _main ; handler or shell main

G_GLOBMAX EQU 150 ; size of GV
G_START EQU 1 ; BCPL START functions

CodeHeader: DC.L (CodeEnd-CodeHeader)/4

* C Startup function, called for GlobVec=-1 or -2

Structures within Hunks 191

* see text below why this works

CStart: sub.l a0,a0 ; no startup message
bsr.w _main ; need to GetMsg() in main
rts

* Align to a long word boundary
CNOP 0,4

* BCPL startup function, called for GlobVec=0 or -3

* and also for the CLI (but not the Shell)

BCPLStart: movem.l a0-a6,-(a7) ; save for BCPL use
lsl.l #2,d1 ; get startup packet
move.l d1,a0 ; move to a0
bsr.w _main ; get the ball rolling
movem.l (a7)+,a0-a6 ; restore everyone
jmp (a6) ; BCPL-style return

* Align to a long word boundary
CNOP 0,4

BCPLTable:
DC.L 0 ; End of global list
DC.L G_START,BCPLStart-CodeHeader
DC.L G_GLOBMAX ; max global used (default)

CodeEnd:
END

Note that there are other differences for BCPL handlers the main() function of the handler needs to take
care of. BCPL handlers do not receive their startup message in the process pr_MsgPort, but rather receive
a BPTR to the startup DosPacket in register d1 (see also sections 12.2.1,13.1.2 and 15.7). Likewise, the
CLI also receives the startup packet in this register rather than in its process port. For convenience, the above
startup code converts it to a C-style pointer and provides it in register a0 to the main() function of the
handler or shell.

The CStart label is not called at all if the handler is mounted with GLOBVEC=0 or GLOBVEC=-3,
and thus would be not required for pure BCPL-type handlers or the CLI. It is included here to demonstrate
another technique, namely dual use handlers that can be mounted both as C and as BCPL handlers. The FFS
makes use of this technique to be able to drive both OFS-mounted floppy disks requesting the BCPL startup
mechanism, as well as hard disk partitions mounting the FFS with parameters signaling C startup.

In such a case, i.e. if GLOBVEC=-1 or GLOBVEC=-2 is indicated in the mountlist, the code is started
from the first byte of the first segment, which is in this case actually the long-word offset to the BCPL
initializer list. This still works because the offset represents the 68K opcode of a harmless ORI instruction as
long as it is small enough, i.e. below 64K. To signal the C startup mechanism, the main() function is now
invoked with a NULL argument in register a0, indicating that the handler or CLI implementation shall wait
for the startup package to arrive in the pr_MsgPort of its process instead. A corresponding handler main
program for this startup code is provided as example in section 13.1.2.

The Shell — or rather its BPCL incarnation as CLI — is also started through the G_START entry of
the Global Vector and thus the above code may be used as universal “BCPL kludge” for both the CLI and
handlers that depend on the legacy BCPL binding and startup mechanisms.

192 Rom Kernel Reference Manual: DOS

11.6 Object File Format
Object files are intermediate output files of a compiler or assembler, generated from one translation unit, i.e.
typically one source code file along with all the files included by it. Such object files can still contain ref-
erences to symbols that could not be resolved within the translation unit because the corresponding symbol
is defined in another unit. In assembler, such symbols are defined by xref, in the C language they corre-
spond to functions or objects declared by the extern keyword. The linker then combines multiple object
codes, potentially along with static linker libraries (see section 11.7), resolves all unreferenced symbols, and
generates an executable binary file as output.

The overall structure of an object file is depicted in table 11.20:

Table 11.20: Object File Format
Size Code Syntax
? HUNK_UNIT Defines the start of a translation

unit, see 11.6.1
do { Multiple segments follow

? HUNK_NAME Name of the segment, defines seg-
ments to merge, see 11.2.8

2 mt Read the memory type of the next
segment

30 h Read the next hunk type
if (h == HUNK_CODE)

parse_CODE
Code and constant data, see 11.2.2

else if (h == HUNK_DATA)
parse_DATA

Data, see 11.2.3

else if (h == HUNK_BSS)
parse_BSS

Zero-initialized data, see 11.2.4

else if (mt != 0) ERROR_BAD_HUNK Upper bits shall be 0 for all other
hunks

else do { Loop over auxiliary information
if (h == HUNK_RELOC32)
parse_RELOC32

32-bit relocation, see 11.2.5

else if (h == HUNK_RELOC32SHORT)
parse_RELOC32SHORT

32-bit relocation, see 11.2.6

else if (h == HUNK_RELRELOC32)
parse_RELRELOC32

32-bit PC-relative relocation,
see 11.2.7

else if (h == HUNK_RELOC16)
parse_RELOC16

16-bit PC-relative relocation,
see 11.6.3

else if (h == HUNK_RELOC8)
parse_RELOC8

8-bit PC-relative relocation,
see 11.6.3

else if (h == HUNK_DRELOC32)
parse_RELOC32

32-bit base-relative relocation,
see 11.6.5

else if (h == HUNK_DRELOC16)
parse_RELOC16

16-bit base-relative relocation,
see 11.6.6

else if (h == HUNK_DRELOC8)
parse_RELOC8

8-bit base-relative relocation,
see 11.6.7

else if (h == HUNK_EXT)
parse_EXT

External symbol definition,
see 11.6.8

else if (h == HUNK_SYMBOL)
parse_SYMBOL

Symbol definition, see 11.2.9

Object File Format 193

else if (h == HUNK_DEBUG)
parse_DEBUG

Debug information, see 11.2.10

else if (h == HUNK_END)
break

abort this segment

else ERROR_BAD_HUNK an error
32 h Read next hunk type

} while(true) Repeated until HUNK_END
} while(!EOF) Repeated with the next hunk until

the file ends

Since there is no HUNK_HEADER in object files, the memory attributes for the segment are instead
stored in the topmost two bits of the hunk type itself. The memory type is then derived from mt as in
HUNK_HEADER, see table 11.2 in section 11.2.1:

µt = (mt << 1) | MEMF_PUBLIC

That is, the bit combinations 00, 01 and 10 correspond to MEMF_ANY, MEMF_CHIP and MEMF_FAST.
Unlike in HUNK_HEADER, there is no documented way how to indicate a memory type explicitly, and the bit
combination 11 does not have a documented meaning. As the interpretation of object files is up to the linker,
it is suggested to store for mt = 3 the memory type explicitly in the next long word, before the size of the
hunk, similar to the layout of HUNK_HEADER.

11.6.1 HUNK_UNIT
This hunk identifies a translation unit and assigns a name to it. This hunk shall be the first hunk of an object
file. A translation unit typically refers to one source code file that has been processed by the compiler or
assembler, and it is an indivisible unit of the object file as references between segments of a unit are usually
already resolved. That is, upon linking, entire units are pulled into the final executable file. Typically, the
name of the unit is ignored by linkers, and unless the name is defined by other means, it is usually set to the
file name that was compiled to the object file.

The structure of this hunk is as follows:

Table 11.21: Hunk Unit Syntax

Size Code Syntax
HUNK_UNIT [0x3e7] A hunk identifying a translation unit

32 l Size of the name in long-words
32 × l hn Unit name

The size of the name is not given in characters, but in 32-bit units. The name is possibly zero-padded to
the next 32-bit boundary to fill an integer number of long-words. If the name fills an entire number of long
words already, it is not zero-terminated.

11.6.2 HUNK_NAME
While the HUNK_NAME hunk is already specified in section 11.2.8, it does not have a particular meaning in
executable files. In object files and libraries, however, the name of the segment determines which segments
of the input files are merged together by the linker: if the names of two segments in two object files are
identical, they will be merged to a single segment by the linker.

By convention, some segment names also have a special meaning:
Segments named __MERGED contain data or blank space (BSS) that is addressed relative to a base reg-

ister. Typically, the startup code of the compiler loads one address register, usually a4, with the address of

194 Rom Kernel Reference Manual: DOS

the load address of the merged segment, or with an address 32K into the segment. The code then addresses
all data within this segment relative to the base register. Offsets relative to this base register are relocated by
HUNK_DRELOC32, HUNK_DRELOC16 and HUNK_DRELOC8, see sections 11.6.5 and following. A 32K
offset is added to the data register if the total size of the base-register addressed data exceeds 32K; this makes
both positive and negative offsets relative to the base register available, and thus allows to address 64K of
data in total. Segments of this type are typically created by compilers in the small data model. The name
stems for the limitation to 64K as the 68000 processor allows only 16-bit for base-relative addressing.

Segments named _NOMERGE are never merged to any other segment, under no circumstances, even in
the small code or small data model.

The segment named NTRYHUNK always becomes the first segment of the created executable and thus
should be the name of a code segment. This, for example, can be used to ensure that the overlay manager
(see section 11.4.9) is always placed at the beginning of the executable file, regardless of the link order.

Executable code and constant data typically ends up in segments named text. This name has, however,
no further implications to the linking process.

Non-constant data in the large data model typically ends up in segments of the name data. In this
model, data is addressed using absolute addressing, without a base register. Similar to the above, the name
has no further implications on linking.

Uninitialized data in the large data model, that is, BSS segments, end up in segments named udata.
The name has no further implications on the linking process.

Data that is placed in MEMF_CHIP memory typically ends up in data segments of the name chip. The
name itself does not instruct the linker to request any special memory type, however, only the memory type
mt of the hunk does, see table 11.20 in section 11.6. The name is only a convention.

In assembler, the segment name can be set by the section directive, compilers sometimes offer com-
mand line options to set the segment name, or select it according to their configuration.

11.6.3 HUNK_RELOC16
This hunk defines relocation information of one segment into another segment, and its format is identical
to HUNK_RELRELOC32, see section 11.2.7 and table 11.8. Relocation offsets are therefore 32 bits long,
though the elements to relocate at offset ro within the segment are only 16 bits in size, and refer to PC-
relative addressing modes, including PC-relative 16-bit wide branches.

Table 11.22: Hunk Reloc16 Syntax

Size Code Syntax
HUNK_RELOC16 [0x3ed] 16-bit PC-relative relocation informa-

tion
... See table 11.8 in 11.2.7

This restricts possible displacements to 16 bits. As the loading address of hunks is not under control of
the linker, the only way how to ensure that the branch distance is within bounds is to merge the referencing
segment and the target segment of the reference together. In the notation of table 11.8, the hunks representing
segments i and j must be merged. To ensure that this happens, their names as provided by HUNK_NAME shall
be identical.

However, even if target and referencing segments are merged, it may still happen that the joined segment
generated by merging two or more segments together is too long to allow 16-bit displacements. In such a
case, the relocation cannot be performed. Then linkers either abort with a failure, or generate an automatic
link vector. The PC-relative branch or jump to an out-of-range target symbol is then replaced by the linker
with a branch or PC-relative jump to an intermediate “automatic” vector that performs a 32-bit absolute jump
to the intended target.

Object File Format 195

While such automatic link vectors, or short ALVs, solve the problem of changing the program flow by
16-bit displacements over distances exceeding 16 bits, ALVs do not work correctly for data that is addressed
by 16-bit PC relative modes. Instead of referencing the intended data, the executing code would then see the
ALV as data.

Thus, authors of compilers or assemblers should disallow data references across translation unit bound-
aries with 16-bit PC-relative addressing modes as those can trigger linkers to incorrectly generate ALVs.
Linkers should also generate a warning when creating ALVs.

11.6.4 HUNK_RELOC8

This hunk defines relocation information of one segment into another segment, and its format is identical
to HUNK_RELRELOC32, see section 11.2.7 and table 11.8. Relocation offsets are therefore 32 bits long,
though the elements to relocate at offset ro within the current segment are only 8 bits in size, and thus refer
to short branches.

The same restrictions as for HUNK_RELOC16 applies, i.e. the segment within which the relocation offset
is to be adjusted and the target segment shall be merged to a single segment as the AmigaDOS loader cannot
resolve 8-bit relocations. This can be arranged by giving the two segments the same name.

Table 11.23: Hunk Reloc8 Syntax

Size Code Syntax
HUNK_RELOC8 [0x3ee] 8-bit PC-relative relocation infor-

mation
... See table 11.8 in 11.2.7

As for HUNK_RELOC16, the linker can generate ALVs in case the target offset is not reachable with an
8-bit offset. However, as the possible range for displacement is quite short, it is quite likely that the generated
ALV itself is not reachable, and thus relocation during the linking phase is not possible at all. Thus, short
branches between translation units should be avoided.

Otherwise, the same precautions as for HUNK_RELOC16 should be taken, i.e. short displacements to data
over translation unit boundaries should be avoided as proper linkage cannot be ensured.

11.6.5 HUNK_DRELOC32

This hunk defines relocation of 32-bit data elements within a segment that is addressed relative to a base
register. The name of such a segment shall be __MERGED. Such segments contain data and zero-initialized
elements in the small data model, see also section 11.6.2.

The format of the HUNK_DRELOC32 hunk is identical to the HUNK_RELOC32 hunk, see section 11.2.5
and table 11.6, where each 32-bit wide relocation offset ro points to a long-word within the preceding code
hunk. The long word at this offset is then adjusted by the position of the first byte of this segment relative to
the start of the __MERGED segment in the final executable into which it is merged. In case the target segment
becomes larger than 32K, the base register points 32K into the segment, and then linkers need to subtract the
additional 32K displacement from the ro offsets when performing relocation.

Table 11.24: Hunk DReloc32 Syntax

Size Code Syntax
HUNK_DRELOC32 [0x3f7] 32-bit base-relative relocation informa-

tion
... See table 11.6 in 11.2.5

196 Rom Kernel Reference Manual: DOS

11.6.6 HUNK_DRELOC16
This hunk defines relocation of 16-bit data elements within a segment that is addressed relative to a base
register, i.e. __MERGED hunks in the small data memory model.

The format of the HUNK_DRELOC16 hunk is identical to the HUNK_RELOC32 hunk, see section 11.2.5
and table 11.6, where each 32-bit wide relocation offset ro points to a signed 16-bit word within the preceding
code hunk. The word at this offset is then adjusted by the position of the first byte of this segment relative to
the start of the __MERGED segment in the final executable into which it is merged.

Table 11.25: Hunk DReloc16 Syntax

Size Code Syntax
HUNK_DRELOC16 [0x3f8] 16-bit base-relative relocation informa-

tion
... See table 11.6 in 11.2.5

Similar to the comments made in section 11.6.5, this hunk is typically used to resolve symbols that are
reached relative through a base register, e.g a4. As base-relative addressing is restricted to 16-bit displace-
ments for the 68000, linkers typically adjust the base register to point 32K into the __MERGED segment if
the total amount of base-relative addressed data exceeds 32K in size. In such a case, they need to include an
additional (negative) offset of -32K in r0 when performing relocation.

11.6.7 HUNK_DRELOC8
This hunk defines relocation of 8-bit data elements within a segment that is addressed relative to a base
register, i.e. __MERGED segments in the small data memory model.

The format of the HUNK_DRELOC8 hunk is identical to the HUNK_RELOC32 hunk, see section 11.2.5
and table 11.6, where each 32-bit wide relocation offset ro points to a byte within the preceding code hunk.
The byte at this offset is then adjusted by the position of the first byte of this segment relative to the start of
the __MERGED segment in the final executable.

Table 11.26: Hunk DReloc8 Syntax

Size Code Syntax
HUNK_DRELOC8 [0x3f9] 8-bit base-relative relocation informa-

tion
... See table 11.6 in 11.2.5

11.6.8 HUNK_EXT
This hunk defines symbol names and corresponding symbol offsets or values within the current segment.
It is quite similar to HUNK_SYMBOL except that it not only includes symbol definitions, but also symbol
references. The linker uses this hunk to resolve symbols with external linkage.

The syntax of this hunk reads as follows:

Table 11.27: Hunk EXT Syntax
Size Code Syntax

HUNK_EXT [0x3ef] A hunk assigning symbols to positions
within a segment

do { Repeat . . .
8 st Symbol type
24 sl Symbol name length in long-words

Object File Format 197

if (sl == 0) break Terminate the hunk
32 × sl sn Symbol name, potentially zero-padded

if (st < 0x80) { Symbol definition?
32 sv Symbol value

} else { Symbol reference
if (st == 0x82 || st == 0x89) A common block?

32 sc Size of the common block in bytes
} End of common block

32 sn Number of references of this symbol
while(--sn ≥ 0) { Repeat over the references

32 so[sn] Offset into the hunk of the reference
} End of loop over symbols

} while(true) until zero-sized symbol

The length of the symbol name is encoded in long-words, not in characters. If it does not fill an integer
number of long-words, it is zero-padded; the name is not zero-terminated if it does fill an integer number of
long-words, though.

The symbol type st defines the nature of the symbol. The types are defined in dos/doshunks.h and
shared with the HUNK_SYMBOL hunk, see section 11.2.9.

The symbol type can be roughly classified into two classes: If bit 7 of the type is clear, it is a symbol
definition. Such definitions can be referenced by another object file, or they can be used for debugging
purposes. Symbol definitions do not have a bit size, they either represent an address or a value that is
substituted into a reference of the symbol. If bit 7 is set, the symbol is referenced and requires resolution by
a symbol definition (i.e. a corresponding symbol with bit 7 cleared) upon linking. References are sized, and
an attempt to fit a symbol value too large for a reference either results in a linker error, or the creation of an
automatic link vector.

In the following table ma[i] is the address of the first data byte of the segment that corresponds to the
current segment once loaded, i.e. &Data[0] of the SegmentList structure (see chapter 11 and table 11.2
in section 11.2.1):

Table 11.28: Symbol types in HUNK_EXT
EXT_SYMB [0x00] Definition of a symbol, sv +ma[i] is the address of the symbol. This

type only exists in HUNK_SYMBOL hunks.
EXT_DEF [0x01] Relocation definition, sv +ma[i] is the address of the symbol. Ref-

erences to this symbol are converted into a relocation information to
the offset sv in segment i.

EXT_ABS [0x02] Absolute value, sv is the value of the symbol which is substituted
into the executable by the linker when it is referenced. No relocation
information is created, the absolute value is only substituted.

EXT_RES [0x03] Not longer supported as it is part of the obsolete dynamic library run-
time binding protocol, see [7] for more details.

EXT_REF32 [0x81] Reference to a 32-bit symbol that is resolved by a corresponding
EXT_ABS definition to an absolute value or by an EXT_DEF defi-
nition to relocation information.

EXT_COMMON [0x82] Reference to a 32-bit symbol that may be resolved by a EXT_ABS
or EXT_DEF definition, but if no such definition is found, an object
in a BSS hunk of the maximal size of all references to the symbol is
created by the linker. Thus, this reference generates a zero-initialized
object if no definition is found. Not all linkers support this type.

198 Rom Kernel Reference Manual: DOS

EXT_REF16 [0x83] Reference to a 16-bit PC relative offset, requiring that the defining
and referencing segments are merged together.

EXT_REF8 [0x84] Reference to a 8-bit PC relative offset within the same segment.
EXT_DREF32 [0x85] Reference to a 32-bit offset relative to a base register (typically a4),

resolved by a EXT_DEF definition in a __MERGED segment. This
and the next two types are not supported by all linkers.

EXT_DREF16 [0x86] Reference to a 16-bit offset relative to a base register, resolved by a
definition in a __MERGED segment.

EXT_DREF8 [0x87] Reference to an 8-bit offset relative to a base register.
EXT_RELREF32 [0x88] 32-bit PC-relative reference for 32-bit address, this is resolved by an

EXT_DEF definition into an entry into a HUNK_RELRELOC32 hunk
by the linker. Not supported by all linkers.

EXT_RELCOMMON [0x89] 32-bit PC relative common reference for a 32-bit address. Sim-
ilar to a EXT_COMMON definition, this will be resolved into an
HUNK_RELRELOC32 entry where space for the object will be al-
located in a BSS segment if no corresponding definition is found.

EXT_ABSREF16 [0x8a] 16-bit absolute reference, resolved by the linker to a 16-bit absolute
value by an EXT_ABS definition.

EXT_ABSREF8 [0x8b] 8-bit absolute reference, resolved by the linker to an 8-bit absolute
value through an EXT_ABS definition.

For references, sn identifies the number of times the symbol is referenced, while the so[] array defines
the offsets into the current segment where the symbol is used and into which the symbol definition will be
resolved during linking.

EXT_DREF32, EXT_DREF16 and EXT_DREF8 are references to symbols in a __MERGED segment
defined somewhere outside of the current HUNK_UNIT by an EXT_DEF entry there. Thus, in the C language,
they represent objects declared through extern, but defined in another translation unit. Upon linking, they
become 32, 16 or 8 bit offsets relative to a compiler-specific base register pointing to or into the __MERGED
segment. The offset to the symbols is computed by the linker and written to the byte offsets defined by the
so[] array.

This is quite similar to the HUNK_DRELOC32, HUNK_DRELOC16 and HUNK_DRELOC8 hunks, ex-
cept that the latter define base-register relative references into the __MERGED segment that is part of the
same HUNK_UNIT, and thus correspond in the C language to symbols defined in the same translation unit.
Yet, as all __MERGED segments of all translation units are joined into one common segment, offsets into
this segment need to be adjusted upon linking; the positions that require adjustment are provided by the
HUNK_DRELOC hunks.

Typically, only 16-bit wide offsets are used, i.e. the EXT_DREF16 references and HUNK_DRELOC16
hunks for external or internal symbols. This is due to the 16-bit wide base-relative addressing mode of the
68000 processor limiting the size of the __MERGED segment to 64K. While 32-bit wide relative offsets would
be possible on later members of the 68K processor family, the author is not aware of a compiler that makes
use of this possibility. 8-bit references, even though representable as references or hunks, are too limited to
be of practical value.

Common symbols are symbols that are referenced in multiple translation units but potentially nowhere
defined. The size of the referenced object is given by sc. If no corresponding symbol definition is found,
the linker allocates space of a size that is determined by the maximum of all sc values referencing the
same symbol. Space for the object is then allocated within a BSS hunk by the linker without requiring an
explicit symbol definition, and thus creates an object that is zero-initialized by the AmigaDOS loader. This
mechanism is mostly required by FORTRAN and is therefore rarely used, and not all linkers support this
mechanism. However, the SAS/C compiler can also be configured to emit such common symbols to resolve

Object File Format 199

zero-initialized objects defined (i.e. without an extern keyword) in a header file included from multiple
translation units. This would otherwise generate multiple conflicting symbols of the same name.

11.7 Link Library File Format
Link Library files are collections of small compiled or assembled program units that provide multiple com-
monly used symbols or functions. Unlike AmigaOs libraries which are loaded at run time and shared between
programs, link libraries resolve undefined symbols at link time; functions or symbols within them become a
permanent part of the generated executable.

amiga.lib is a typical example of a link library. It contains small frequently used service functions such as
CreateExtIO(). While newer versions of exec.library include with CreateIORequest() a similar
function, some manual work was required for creating an IORequest structure in exec versions prior 36.
To ease development, the former function was made available in a (static) library whose functions are merged
with the compiled code.

Link libraries come in two forms: Non-indexed (old style) link libraries, and indexed libraries that are
faster to process. Non-indexed link libraries are simply a concatenation of object files in the form presented
in section 11.6 and table 11.20. Then, of course, one translation unit as introduced by HUNK_UNIT 11.6.1
is not necessarily terminated by an EOF as specified in table 11.20, but possibly followed by a subsequent
program unit, starting with another HUNK_UNIT.

Non-indexed link libraries do not require any tools beyond a compiler or assembler for building them.
The AmigaDOS Join command is sufficient to create them. The drawback of such libraries is that they are
slow to process as the linker needs to scan the entire library to find a specific symbol.

Indexed libraries are faster to parse as they contain a compressed index of all symbols defined in the
library. It consists at its topmost level of two hunks: one containing the program units, and second hunk
containing a symbol table with an index that are repeated until the end of the file.

The overall format of indexed libraries is depicted in table 11.29.

Table 11.29: Indexed Library

Size Code Syntax
do { Multiple repetitions of the following

? HUNK_LIB [0x3fa] Object code modules, see section 11.7.1
? HUNK_INDEX [0x3fb] Indices into HUNK_LIB, see section 11.7.2

} while(!EOF) Until the end of the file

11.7.1 HUNK_LIB
The HUNK_LIB hunk contains the actual payload in the form of multiple code, data or BSS hunks along with
their relocation, symbol and debug information. It looks almost like the contents of a HUNK_UNIT hunk,
with a couple of changes noted below.

Table 11.30 depicts the syntax of this hunk.

Table 11.30: Hunk LIB Format
Size Code Syntax
? HUNK_LIB [0x3fa] Identifies the start of an indexed li-

brary
32 l Length of this hunk in long-words

not including the header and this
length field

200 Rom Kernel Reference Manual: DOS

do { Multiple segments follow
2 mt Read the memory type of the next

hunk
30 h Read the next hunk type

if (h == HUNK_CODE)
parse_CODE

Code and constant data, see 11.2.2

else if (h == HUNK_DATA)
parse_DATA

Data, see 11.2.3

else if (h == HUNK_BSS)
parse_BSS

Zero-initialized data, see 11.2.4

else if (mt != 0) ERROR_BAD_HUNK Upper bits shall be 0 for all other
hunks

else do { Loop over auxiliary information
if (h == HUNK_RELOC32)
parse_RELOC32

32-bit relocation,
see 11.2.5

else if (h == HUNK_RELOC32SHORT)
parse_RELOC32SHORT

32-bit relocation,
see 11.2.6

else if (h == HUNK_RELRELOC32)
parse_RELRELOC32

32-bit PC-relative relocation,
see 11.2.7

else if (h == HUNK_RELOC16)
parse_RELOC16

16-bit PC-relative relocation,
see 11.6.3

else if (h == HUNK_RELOC8)
parse_RELOC8

8-bit PC-relative relocation,
see 11.6.3

else if (h == HUNK_DRELOC32)
parse_RELOC32

32-bit base-relative relocation,
see 11.6.5

else if (h == HUNK_DRELOC16)
parse_RELOC16

16-bit base-relative relocation,
see 11.6.6

else if (h == HUNK_DRELOC8)
parse_RELOC8

8-bit base-relative relocation,
see 11.6.7

else if (h == HUNK_EXT)
parse_EXT

External symbol definition,
see 11.6.8

else if (h == HUNK_SYMBOL)
parse_SYMBOL

Symbol definition, see 11.2.9

else if (h == HUNK_DEBUG)
parse_DEBUG

Debug information, see 11.2.10

else if (h == HUNK_END) break abort this segment
else ERROR_BAD_HUNK an error

32 h Read next hunk type
} while(true) Repeated until HUNK_END

} while(!EOF) Repeated with the next hunk until
the file ends

The memory type for data, code and BSS segments is derived from mt in the same way as in object files,
see section 11.6.

Additional restrictions arise for the HUNK_EXT hunk. Since symbol definitions are now included in the
HUNK_INDEX hunk, they shall be removed from HUNK_EXT hunks. The corresponding symbol types to be
removed are those with st < 128 listed in table 11.28 in section 11.6.8. Unlike symbol definitions, symbol
references corresponding to st ≥ 128 shall be retained because only the reference name, but not the type
of the reference is included in HUNK_INDEX. The translation unit name and the hunk names shall also be
stripped, that is, neither HUNK_UNIT nor HUNK_NAME shall be included in HUNK_LIB. The corresponding

Link Library File Format 201

names are also defined in HUNK_INDEX by means of the string table included there.
Due to restrictions of HUNK_INDEX, the size of a HUNK_LIB shall not exceed 216 long-words and shall

be split over multiple HUNK_LIB, HUNK_INDEX pairs otherwise.

11.7.2 HUNK_INDEX
The HUNK_INDEX hunk contains a string table and indices into the preceding HUNK_LIB.

Table 11.31 depicts the syntax of this hunk.

Table 11.31: Hunk Index Format
Size Code Syntax
32 HUNK_INDEX [0x3fb] Defines symbols and references into the library
32 l Length of this hunk in long-words
16 sl Length of the string table in bytes, shall be even

i=0 Start with the first symbol
do { Repeat over the strings

? sy[i] A NUL-terminated (C-style) string
sl -= strlen(sy[i++])+1 Remove from the length of the symbol table

} while(sl > 0) Repeat until all sl bytes are parsed
do { Loop over translation units

16 uo Offset in bytes of the unit name into the string table
16 ho Offset in long words of the first hunk of the unit

within HUNK_LIB
16 hc Number of hunks within the unit

for(j=0;j<hc;j++) { Loop over all hunks
16 hn Offset in bytes of the hunk name into the string table
2 mt Memory type of the hunk
14 ĥ Abbreviated hunk type
16 xc Number of references in the hunk

for(k=0;k<xc;k++) { Loop over references
16 xn Offset of the reference name into the string table

}
16 dc Number of definitions in the hunk

for(k=0;k<dc;k++) { Loop over definitions
16 dn Offset of the defined name into the string table
16 ŝv Abbreviated symbol value
8 au Bits 23-16 of EXT_ABS definition
1 0 This bit shall be 0 to identify a definition
1 as Sign bit and bits 30 to 24 of an EXT_ABS definition
6 ŝt Abbreviated symbol type

}
}

} while(!end) Repeated until the end of hunk is found

The initial part, the string table, contains all strings that can be used by the rest of the hunk. Strings within
this table are indexed as byte offset from the start of the string table, i.e. the first string has offset 0. To enable
unnamed hunks, the first entry in a string table shall be the empty string, that is, an isolated 0-byte. The string
table is potentially zero-padded to make its length even. To keep the string table as short as possible, it is
desirable to keep only unique strings and avoid duplicates.

The rest of HUNK_INDEX contains the offsets into the hunks along with symbols referenced and defined

202 Rom Kernel Reference Manual: DOS

within them. The first loop runs over all units in the library; there, u0 provides the name of a unit that
would be contained in the stripped HUNK_UNIT hunk, though as byte offset from the start of the string table.
The element ho is the number of long words from the start of the HUNK_LIB hunk to the mt element in
table 11.30 of the first hunk of the translation unit whose name is provided through u0. The number of hunks
in this unit is given by hc. The subsequent loop iterates over all hunks in this unit.

The next following element, hn, defines the name of the hunk, representing the contents of a stripped
HUNK_NAME hunk, again as byte offset from the start of the string table. The memory type of the hunk mt

is expressed in two bits, and the value here shall be identical to mt in the HUNK_LIB hunk, see table 11.30
in section 11.7.1. The hunk type ĥ itself is abbreviated, i.e. only the lower 14 bits of the hunk type h in the
HUNK_LIB hunk are stored. Otherwise, ĥ shall be identical to h.

The first part of the subsequent data defines references, that is, symbols that are used but not defined
within the hunk. The number of references is provided by xc. The xn values define the names of these
symbols as byte offsets from the start of the string table. The reference type st, see table 11.28, section 11.6.8,
of the symbols is then found in an HUNK_EXT hunk as part of the preceding HUNK_LIB hunk. It is not
included in the HUNK_INDEX hunk.

Symbol definitions follow; unlike references, they are represented completely in the HUNK_INDEX hunk
and stripped from the HUNK_LIB hunk. The dc element provides their number and the dn values identify
the names of the symbols as byte offset into the string table. The ŝv values are the 16 least significant bits
of the full symbol value sv otherwise contained in the HUNK_EXT hunk, see table 11.27 in section 11.6.8.
The abbreviated symbol type ŝt contains the 6 least significant bits of the full symbol type st defined in
table 11.28. Bits 6 and 7 of st are not represented and are always inferred to be 0 as this part of HUNK_INDEX
only contains symbol definitions.

In case ŝt indicates a symbol of type EXT_ABS, the elements au and as provide additional bits of its
(absolute) value. These elements are ignored for all other symbol types. The element au stores then bits 23
to 16 of the absolute symbol value, and the bit as is replicated into bits 31 to 24 of the symbol, allowing
negative values.

As seen from this definition, symbols representing addresses in hunks are limited to 16 bits in size, and
thus restricted to 64K within a hunk. This is typically not a problem as link libraries usually contain short
service functions. Symbols representing absolute values are limited to values from −224 + 1 to 224 − 1, and
thus, for example, addresses of Amiga custom chips can be expressed. They are split over ŝv , au and as.
Symbols of type EXT_COMMON or EXT_RELCOMMON cannot represented at all in indexed link libraries.

Link Library File Format 203

204 Rom Kernel Reference Manual: DOS

Chapter 12

Direct Packet Communication

dos.library communicates with handlers or file systems via DosPackets or short Packets — more on this
structure in section 12.2.1 — which ride on top of exec messages. The message-based inter-process commu-
nication system of the exec kernel is described in more detail in [4]. DosPackets are send to a MsgPort of
a handler or file system to request a particular action, such as to open a file or read data. The port is typically
the process port pr_MsgPort of the handler process. Chapter 10 provides more details on processes and
the Process structure containing this port. Once the handler has performed the requested action, it replies
the packet and delivers through it also a primary and a secondary result code. The primary result code in the
packet is typically delivered as result code of a corresponding function of dos.library, whereas the secondary
result code is often the error code that can be retrieved by IoErr().

While it is in many cases more practical to interact with handlers through the functions of dos.library
listed so far, it is also possible and sometimes even necessary to communicate with the handler on a lower
level directly; this becomes necessary if the desired activity is not exposed as function in the library.

The functions and structures in this chapter perform direct communication with handlers through packets
and thus form the lower level interface between dos.library and its handlers. Many of the higher level
functions such as Open() or Read() call through the functions in this section.

While most functions of dos.library are synchronous, i.e. wait for the handler to complete the requested
action, the direct packet interface also allows asynchronous input and output. This keeps the process initiating
an operation running while the handler is working on the requested operation in parallel. The result of the
operation is then delivered to a MsgPort of the originating process at a later time.

12.1 Request an Action from a Handler and Wait for Reply
The DoPkt() function requests an activity from a handler, including arguments, waits for the handler to
perform this activity and returns the result. This is the generic synchronous input/output request function
through which dos.library routes most of its function1.

result1 = DoPkt(port,action,arg1,arg2,arg3,arg4,arg5) /* since V36 */
D0 D1 D2 D3 D4 D5 D6 D7

LONG DoPkt(struct MsgPort *,LONG,LONG,LONG,LONG,LONG,LONG)

This function performs low-level communication to a target message port. The port is the MsgPort of
the handler to contact. Depending on the context, this port should be taken from various sources. If low-level
file I/O is to be performed, the best source for the port is the fh_Type pointer in the FileHandle structure.

1Unfortunately, the functions of the library do not call through the DoPkt() library vector. This is probably a defect.

Request an Action from a Handler and Wait for Reply 205

If the communication is related to a lock, the fl_Task element of the FileLock is the recommended
source. Notification requests carry in nr_Handler a pointer to the port to be used. For activities unrelated
to locks, files or notification requests, the dol_Task element of the DosList structure is yet another
source. To obtain such a structure from a path, use the GetDeviceProc() function, see section 8.2.1.

action identifies the activity to be performed by the handler or file system. Chapter 14 lists the packet
types and how they relate to the functions of dos.library.

arg1 through arg5 are arguments to the handler. Even though the packet interface supports up to 7
arguments, only up to 5 can be provided through this function. If more arguments become necessary, the
packet interface needs to be used manually, see section 12.2.1 for the raw packet interface.

This function returns the primary result code of the handler, and installs the secondary result code in
IoErr(), see also section 12.2.1. In particular, IoErr() is always set, even if the handler does not deliver
a meaningful secondary result code.

If the caller is a process and the pr_PktWait pointer in the Process structure is set, DoPkt()
calls through it to wait for the packet (or rather the message carrying it) to return, see chapter 10 for its
prototype. Otherwise, DoPkt() waits on pr_MsgPort with WaitPort() and removes the message
through GetMsg(). If the caller is a task, the function builds an exec MsgPort on the fly and waits on this
temporary port — unlike many other functions of dos.library, this function is even callable from tasks.

If the return MsgPort contains a message different from the one carrying the issued packet, DoPkt()
aborts with a dead-end alert of type AN_QPktFail, defined in exec/alerts.h. Note that this is quite
different from exec style communications with (exec) devices through DoIO(); the latter function is able
to extract the send IORequest from the port without creating a conflict if another message is still pending
in the port. This problem of packet communication manifests, for example, when attempting to perform I/O
operations through dos.library while the Workbench startup message is still queued in the process message
port.

Because packets typically require less than 5 arguments, additional function prototypes are supplied
that take less arguments. They all access the same vector within dos.library, the only difference is that the
function prototypes do not enforce initialization of the data registers carrying the unneeded arguments. These
functions are named DoPkt0() to DoPkt5() and carry 2 to 7 arguments: The target port, the requested
action and 0 to 5 additional arguments.

12.2 Asynchronous Packet Interface
The functions in this section implement the asynchronous packet interface of dos.library and reassemble
to a large degree the device interface of exec.library (see also [5]), though the functions and structures are
somewhat different2.

To trigger an asynchronous input or output operation, the caller first needs to create a DosPacket,
see section 12.2.1, fill this packet with the action requested from the handler and zero or more additional
arguments, and then send the packet to the handler with SendPkt(), see section 12.2.2. The sending
process keeps running after the packet has been submitted to the handler, and is then free to perform other
activities, for example initiating another operation from a second handler.

The WaitPkt() function in section 12.2.3 waits for the packet to return and make it accessible to the
initiator again. Unfortunately, dos.library does not provide a function to abort an issued packet, even though
the AbortPkt() function of section 12.2.4 suggests otherwise. It is currently non-functional. Also, the
library neither provides a function to test whether a packet has already been replied and is thus completed.
To do so, the initiator of a packet needs to check its MsgPort manually for such a packet. Unfortunately,
WaitPkt() is not able to test multiple ports for incoming packets or test the status of a packet.

2Historically, it seems plausible that the exec design is a copy of the Tripos design and not vice versa.

206 Rom Kernel Reference Manual: DOS

12.2.1 The DosPacket Structure

Communication with handlers is based on packets. For example, the DoPkt() function creates a packet
on the fly on the stack, submits it to the handler via the given port, and waits for it to return. This section
describes the packet structure and its elements.

A packet is represented by a DosPacket structure documented in dos/dosextens.h:

struct DosPacket {
struct Message *dp_Link;
struct MsgPort *dp_Port;
LONG dp_Type;
LONG dp_Res1;
LONG dp_Res2;
LONG dp_Arg1;
LONG dp_Arg2;
LONG dp_Arg3;
LONG dp_Arg4;
LONG dp_Arg5;
LONG dp_Arg6;
LONG dp_Arg7;

};

Packets ride on top of exec messages, see [4] and exec/ports.h, but they do not extend the Message
structure as it would be usually the case. Instead, mn_Node.ln_Name of the exec message is (mis-)used to
point to the DosPacket and its dp_Link element points back to the message, thus establishing a two-way
linkage between packet and message. The reply port of the message in mn_ReplyPort is not used; instead,
the message carrying the packet is send back to dp_Port once the handler is done.

Members of the DosPacket structure shall be initialized as follows:

dp_Link shall point to the message which is used for transmitting the DosPacket. The message node
name in mn_Node.ln_Name shall be initialized to point back to the DosPacket.

dp_Port shall point to the MsgPort structure to which the packet shall be send back after the handler
has completed the requested activity. This is typically, but not necessary the pr_MsgPort of the process
sending the packet. See chapter 10 for the definition of the Process structure. DoPkt() uses the process
message port of the caller as reply port for the packet if the caller is a process, otherwise a temporary port is
created just for the purpose of sending a packet.

dp_Type identifies the action requested from the handler. It shall be filled by the process requesting an
activity from a handler and is interpreted by the handler. Chapter 14 lists the documented packet types. This
element corresponds to the action argument of DoPkt().

dp_Res1 is the primary result code of the requested activity and filled by the handler before returning
the packet. For many, but not for all packet types, this is a Boolean result code that is 0 for failure and
non-zero for success. Many packet-based functions of dos.library including DoPkt() return dp_Res1 as
their (primary) result.

dp_Res2 is the secondary result code filled by the handler and is typically an error code on failure.
Many functions of dos.library install this error code into IoErr(), and so does DoPkt(). Section 10.2.9
lists the error codes defined by dos.library handlers should use to communicate error conditions.

dp_Arg1 to dp_Arg7 provide additional arguments to the handler. They shall be filled by the issuer of
a packet; which and how many arguments are required depends on the packet type encoded by dp_Type.
Most packet types do not require all 7 possible arguments; in such a case, only the necessary arguments need
to be initialized. The first 5 arguments correspond to arg1 to arg5 of the DoPkt() function.

Asynchronous Packet Interface 207

12.2.2 Send a Packet to a Handler Asynchronously
The SendPkt() function transmits a packet to a target message port of a handler without waiting for it to
return. Instead, a reply port is provided to which the packet will be returned once the handler acted upon it.

SendPkt(packet, port, replyport) /* since V36 */
D1 D2 D3

void SendPkt(struct DosPacket *,struct MsgPort *,struct MsgPort *)

This function transmits packet to the handler port, requesting to return it to replyport. The
function returns immediately without waiting for the completion of the requested action.

The packet shall be partially initialized; in particular, dp_Link shall point to an exec Message
whose mn_Node.ln_Name element points back to packet. SendPkt() does not supply or initialize
such a message. It is recommended to create packets through AllocDosObject() which also initializes
them properly, see below and section 16.1.1.

dp_Type shall be filled with the requested action, i.e. an identifier specifying the type of activity re-
quested from the handler, see chapter 14. Depending on this type, a subset of the packet arguments dp_Arg1
through dp_Arg7 carry additional information for the requested action and shall be initialized accordingly.

DosPackets can be constructed in multiple ways: AllocDosObject(DOS_STDPKT,NULL) al-
locates a packet along with a message and initializes the linkage between the structures, see 16.1.1 for the
full description of this function. It creates a StandardPacket which contains both a Message and a
DosPacket. This structure is defined in dos/dosextens.h and looks as follows:

struct StandardPacket {
struct Message sp_Msg;
struct DosPacket sp_Pkt;

};

AllocDosObject() returns a pointer to a DosPacket structure, i.e. the address of the sp_Pkt element,
and not a pointer to a StandardPacket, see also section 16.1.1.

Another option is to allocate memory for the packet from the heap and initialize the linkage between the
structures manually:

struct StandardPacket *CreatePacket(void)
{

struct StandardPacket *sp;

sp = AllocMem(sizeof(struct StandardPacket),MEMF_PUBLIC);

sp->sp_Msg.mn_Node.ln_Name = (UBYTE *)&(sp->sp_Pkt);
sp->sp_Pkt.dp_Link = &(sp->sp_Msg);

return sp;
}

At least the DosPacket structure shall be aligned to a long word boundary to make it and its elements
accessible to BCPL handlers. As the Message structure occupies an integer number of long words, the
above code is sufficient to ensure this requirement.

Even though it is in principle possible to allocate the packet on the stack with the D_S() macro from
section 2.4, this idea is discouraged. It only works if the same function or one of its callees also wait for the
packet to return, which is hard to enforce in a design based on asynchronous packet communication. Other-
wise, the stack frame containing the packet would be destroyed upon returning from the packet constructing
function.

208 Rom Kernel Reference Manual: DOS

12.2.3 Waiting for a Packet to Return

The WaitPkt() function waits on the pr_MsgPort of the calling process (see chapter 10) for a packet to
return and returns a pointer to the received packet.

packet = WaitPkt() /* since V36 */
D0

struct DosPacket *WaitPkt(void);

This function receives a packet returning from a handler; it is also implicitly called by DoPkt() after
sending the messages to the handler3.

If the pr_PktWait pointer in the Process structure is set, WaitPkt() calls through this function
to wait for the arrival of a message, see chapter 10 for details. Otherwise, the WaitPkt() function calls
WaitPort() to wait for the arrival of a message on pr_MsgPort of the calling process, and then calls
GetMsg() to remove it from the port. The function then returns mn_Node.ln_Name of the received
message, i.e. the packet linked to the message.

This function does not test whether the received message does, actually, belong to a packet. The caller
shall ensure that only messages corresponding to DosPackets can arrive at the process message port, and
shall remove all other messages from this port upfront.

As WaitPkt() always waits on the process message port of the caller, this only works if the packet was
send with the replyport argument of SendPkt() set to pr_MsgPort of the calling process.

12.2.4 Aborting a Packet

The purpose of the AbortPkt() function is to attempt to abort a packet already send to a handler. However,
as of the current Os release, it does nothing and is not functional.

AbortPkt(port, pkt) /* since V36 */
D1 D2

void AbortPkt(struct MsgPort *, struct DosPacket *)

What this function should do is to scan port, presumably the MsgPort of the handler to which pkt
was send, and dequeue it there if the handler is not yet working on it. Then, it would be placed back into the
port of its initiator. However, as of V47, this function does nothing.

12.3 Reply a Packet to its Sender

The ReplyPkt() function returns a packet to its initiator, filling the primary and secondary result codes.
This function is intended to be used by handlers and file systems.

ReplyPkt(packet, result1, result2) /* since V36 */
D1 D2 D3

void ReplyPkt(struct DosPacket *, LONG, LONG)

3Unfortunately, DoPkt() and the rest of dos.library does not call through the WaitPkt() function vector. This is probably a
defect.

Reply a Packet to its Sender 209

This function fills dp_Res1 and dp_Res2 of the packet with result1 and result2, and sends
the packet back to the port pointed to by the dp_Port element of the packet, i.e. the initiating port. Note
that mn_ReplyPort of the message pointed to by dp_Link is ignored, i.e. packet communication does
not follow the exec protocol for replying messages.

The pkt argument may be NULL in which case this function does nothing.
The result1 argument is the primary result code and identical to the return code of many dos.library

functions. dp_Res2 is the secondary result code and typically accessible through IoErr() if the packet is
received by DoPkt(), see section 12.1.

210 Rom Kernel Reference Manual: DOS

Chapter 13

Handlers, Devices and File Systems

dos.library does not implement most of its functions itself; operations that are related to files, locks, notifi-
cation requests and many others are off-loaded to file systems or handlers. Thus, dos.library establishes a
virtual file system that provides a common API for its clients, but depends on handlers and file systems to
implement its functions.

This chapter provides insight into the interface between dos.library and its handlers, and also lists the
features of the handlers included in AmigaDOS.

13.1 The Handler Interface
A handler or a file system is an Amiga process that retrieves commands in the form of DosPacket struc-
tures; this structure is defined and discussed in section 12.2.1. The main loop of a handler is conceptually
similar to a program implementing a graphical user interface, except that the latter retrieves messages via the
intuition IDCMP port and reacts on the messages whereas handlers receive packets from the pr_MsgPort
of their processes, or any other port they indicated to their clients.

To interface with a handler, dos.library first needs to find a MsgPort of the handler, either from a path
or from an already existing object such as a lock or a file handle. For locks, the fl_Task element of the
FileLock structure contains the port, and for files the fh_Type element is the pointer to the port, see
sections 6.4 and 5.7.1. Notification requests carry the pointer in nr_Handler. If only a path is given, then
section 13.1.1 describes how a port and thus a handler responsible for a path is identified.

13.1.1 Locating a Handler from a Path
Handlers are located by the dos.library function GetDeviceProc(). This function receives an absolute
or relative path, and from this path it determines a MsgPort through which the handler responsible for the
path can be contacted; the function itself is specified in section 8.2.1. All other functions of dos.library
requiring to resolve a path to a handler also call through GetDeviceProc()1, e.g. so does Lock()
and also DeviceProc() as legacy function. While Open() also calls through GetDeviceProc(), it
processes a couple of special cases itself.

For a relative path, i.e. a path not containing a colon (“:”), pr_CurrentDir of the calling process
is checked. If non-ZERO, the fl_Task element of the FileLock kept there is a pointer to a MsgPort
through which packets are send to the handler. If it is ZERO, then pr_FileSystemTask provides the
MsgPort to contact. More on this in section 6.4 and chapter 10.

If an absolute path to the (pseudo-)device CONSOLE provided, the MsgPort in pr_ConsoleTask
is contacted. This port belongs to the current console the calling process is running in. While CONSOLE

1Unfortunately, they do not call it through the vector of the library, which is probably a defect.

The Handler Interface 211

is handled within GetDeviceProc(), the “*”, CONSOLE: and NIL: are filtered out by Open(). If a
path relative to the pseudo-assign PROGDIR has been passed, the lock in pr_HomeDir is used to identify a
handler2.

If the path is relative to NIL:, no handler exists and the result is NULL. This is not a failure, but rather
an indicator to higher level functions that a dummy handler is requested that does nothing. As for paths
identifying the console, this case is already filtered out by Open().

For every other absolute path, dos.library walks the device list (see chapter 8 and 8.2.1) to find a suitable
MsgPort through which to contact a handler. For this, it compares the string upfront the colon with the
dol_Name element of each DosList entry in the device list.

Once a suitable entry has been found, GetDeviceProc() tests dol_Type which contains the type of
the entry as given by table 8.1 in chapter 8. For volumes, dol_Task is non-NULL if the volume is currently
inserted; it is then the pointer to the port of the responsible handler. If it is NULL, the volume is currently not
available and then requested from the user if pr_WindowPtr allows to do so. If this requester is aborted or
disabled, path resolution fails.

For regular assigns or multi-assigns, dol_Task is a pointer to the port of the handler responsible for the
first directory in the assign, and dol_Lock provides the lock to this directory. The same port can also be
found in the fl_Type element of this lock. All additional directories in a multi-assign are represented by
locks in the AssignList structure, and the port can taken from the corresponding fl_Type element, see
chapter 8 for a detailed discussion of this structure.

Late and non-binding assigns do not resolve to a port immediately. Instead, the DosList provides in
dol_AssignName a path to the target directory which is resolved recursively into a lock relative to which
the provided path is interpreted. The lock from this target directory then contains a suitable handler port. The
only difference between late binding and non-binding assigns is that the former decay into regular assigns
once a suitable lock has been found.

Finally, if dol_Type is DLT_DEVICE indicating an entry of a handler or file system, dol_Task is a
pointer to a MsgPort through which the handler can be contacted, provided it is non-NULL.

13.1.2 Starting a a Handler
If the dol_Task element of a handler entry is NULL, this is an indicator that GetDeviceProc() needs to
start a new handler process for the provided path. It first checks whether dol_SegList is ZERO. If it is, the
handler code is not yet resident in memory and will be loaded from the file name indicated in dol_Handler
through LoadSeg(), see section 11.3.1, and dol_SegList will be filled with the loaded segment list.

Next, a new process is created; details depend on the dol_GlobVec element of the device list entry, see
Table 8.2 in chapter 8. For C or assembler handlers with a dol_GlobVec value of−1 or −2, the process is
started from the first byte of dol_SegList. For all other values of dol_GlobVec, i.e. BCPL handlers, it
is run from the START entry of the Global Vector, see also section 11.5.4. To further initialize the handler, a
startup package is delivered: for C or assembler handlers, the startup packet is send to the pr_MsgPort of
the handler process; for BCPL handlers, the startup packet becomes the first argument of the START function
at index 1 of the Global Vector. If the “fake” BCPL startup code from section 11.5.4 is used, this packet is
either delivered in register a0 of the handler main function, or shall be retrieved from pr_MsgPort if a0
is NULL.

While the handler is starting, GetDeviceProc() waits for the startup packet to return and keeps the
device list locked. This is an exclusive lock if dol_GlobVec is larger or equal than −1 and otherwise
a shared lock. This implies that attempting to gain access to the device list within the handler startup by
LockDosList() can deadlock. Even if such a lock is not requested explicitly, dos.library functions can

2Unfortunately, GetDeviceProc() has issues in both handling CONSOLE and PROGDIR correctly if no handler or no lock
representing these elements is available. Instead, it attempts then to find a device, volume or assign of the name CONSOLE or PROGDIR.
It is unclear whether this is intentional or a defect.

212 Rom Kernel Reference Manual: DOS

require implicitly such a lock, and thus attempting to access files or locks from the handler process should be
avoided, not only during startup.

The startup packet consists of a DosPacket structure as it is also used to submit requests to the handler,
see section 12.2.1 for its definition. For the purpose of handler startup, its elements are populated as follows:

Table 13.1: Handler Startup Packet

DosPacket Element Value
dp_Type ACTION_STARTUP (0)

dp_Arg1 BPTR to BSTR of path
dp_Arg2 Copy of dol_Startup
dp_Arg3 BPTR to DosList
dp_Res1 Success indicator
dp_Res2 0 or error code
dp_Arg4 APTR to MsgPort or NULL

dp_Type is set to ACTION_STARTUP, which is defined to be 0. As the startup packet is always received
first, there is no need to test for this particular type. In an alternative implementation strategy, it may be
processed as ACTION_NIL packet within the main handle loop, noting that the encoding of ACTION_NIL
is also 0.

dp_Arg1 is set to a BPTR to a BSTR representing the path under which the client of dos.library at-
tempted to access the handler. Note that this is not a NUL-terminated C string, but a BSTR whose first
element is the size of the string. This is the full path which triggered the request for the handler, not only the
device name. For the CON-Handler for example, this is the window specification that informs the handler on
the position, size and title of the console; this handler does not take window parameters from the subsequent
DosPacket send for opening a file, see also section 13.2.

dp_Arg2 is a copy of the dol_Startup element of the DosList structure, see chapter 8. It is
used to configure the properties of the handler. The type that is placed here is depends on the mountlist.
While its use is handler specific, it is typically, but not necessarily, a BPTR to a FileSysStartupMsg
structure for file systems. Other possibilities for dol_Startup are a BPTR to a BSTR or an integer. What
exactly the handler will receive depends on the mountlist and is discussed in more detail in section 8.1.1 and
section 8.1.2. There is no algorithm in the Mount command nor in the handlers that checks whether the type
deposited in dol_Startup matches the expectations of the handler.

dp_Arg3 is a BPTR to the DosList structure through which the handler was identified and which the
handler may modify according to its needs.

dp_Arg4 may be set by the handler when replying to the startup packet; it is initialized to NULL
by dos.library. If it remains NULL, then GetDeviceProc() delivers in dvp_Port the process port
pr_MsgPort of the handler as destination port for packets, see section 8.2.1. A handler may instruct
dos.library, however, to send packets to an alternative port by providing its pointer in dp_Arg4, which is
then copied into dvp_Port instead. Thus, this argument is used as an optional output value rather than an
input argument.

During startup, the handler may or may not initialize dol_Task. GetDeviceProc() does not ini-
tialize it and leaves at NULL. A file system process would typically handle multiple files by the same process.
To ensure that dos.library sends all requests to the process just started, the file system places a pointer to a
MsgPort in dol_Task of the DosList structure received in dp_Arg3. This is typically, but not nec-
essarily, the pr_MsgPort of the handler process; if it is not, the alternative port shall also be provided in
dp_Arg43. The Fast File System and file systems in general initialize dol_Task with their process port.

3Unlike what [7] claims, dp_Arg4 defines dvp_Port during file system startup even if also dol_Task of the DosList structure
is populated.

The Handler Interface 213

A handler such as the CON-Handler requires a separate process for each window it manages. In such a
case, dol_Task remains NULL and GetDeviceProc() will initiate a new process for each path request-
ing the handler. This does not imply that the handler process only receives a single request to open a file in
its lifetime, though. Any attempt to open a file named “*” or a using a file name relative to the (pseudo-) de-
vice CONSOLE will create a request through the port stored in pr_ConsoleTask of the initiating process
without creating a new instance of a handler. CONSOLE: and “*” are not exclusive to the CON-Handler.
They (maybe surprisingly) apply to any handler whose port is stored in pr_ConsoleTask.

Many (non file-system) handlers leave dol_Task uninitialized, though some exceptions exist, e.g. the
Queue-Handler serves all requests from a single process to allow inter-process communication. Concluding,
handlers decide whether they require a new process on an attempt to access them through leaving dol_Task
uninitialized.

Once the handler or file system initiated itself from the startup packet, this packet shall be replied. If
startup failed, the primary result code shall be DOSFALSE and the secondary result code shall be an error
code suitable for reporting through IoErr(), see section 10.2.9 for a list of common error codes. Then, on
error, the handler shall release all resources acquired so far and terminate.

On success, the main processing loop of the handler is entered processing requests through DosPackets
it receives through its port(s).

13.1.3 Handler Main Processing Loop
Once started up, handlers or file systems shall wait for incoming packets. The main loop of a handler then
checks its own process port, or all ports it provided for incoming packets. Chapter 14 provides information on
all packets documented in AmigaDOS, though third-party handlers may implement additional packet types.

When opening files through the packets documented in section 14.1.1 and following, the handler or file
system receives a BPTR to a FileHandle structure whose fh_Arg1 element may be initialized to serve
as an identifier of the file and associated resources. It is delivered back to the handler on all further operations
on the file, such as reading from or writing to it. At this point, the handler may also update the fh_Type
element of the file handle to have packets related to the file delivered to an alternative port. Section 14.1 lists
all packets interacting with files.

Unlike file handles, locks and the FileLock structure shall be build by the file system itself when
receiving one of the packets in section 14.2.1 and following, e.g. when locking a file system object. The
fl_Task element of this structure, in particular, shall be initialized to point to a MsgPort clients will
contact for interacting with the file system on a lock. While this is typically the pr_MsgPort of the file
system process, it may also provide a custom port instead. Section 14.2 lists all packet types that interact
with locks.

The following code is a sketch of a (non-filesystem) handler implementation, expecting linkage with the
assembler code from section 11.5.4:

#include <dos/dos.h>
#include <dos/dosextens.h>
#include <proto/exec.h>
#include <proto/dos.h>

#ifndef ACTION_FORCE
define ACTION_FORCE 2001
#endif

#ifndef ACTION_STACK
define ACTION_STACK 2002
#endif

214 Rom Kernel Reference Manual: DOS

#ifndef ACTION_QUEUE
define ACTION_QUEUE 2003
#endif

struct ExecBase *SysBase;
struct DosLibrary *DOSBase;

LONG __asm __saveds main(register __a0 struct DosPacket *pkt)
{

struct Process *proc;
struct Message *msg;
const UBYTE *path;
ULONG startup;
struct DosList *dlist;
LONG error = 0;
BOOL open = 0;

SysBase = *((struct ExecBase **)(4L));
proc = (struct Process *)FindTask(NULL);
/*
** if NULL, this was a C startup, retrieve

** the packet manually

*/
if (pkt == NULL) {

/* Wait and retrieve the startup message */
WaitPort(&proc->pr_MsgPort);
msg = GetMsg(&proc->pr_MsgPort);
pkt = (struct DosPacket *)msg->mn_Node.ln_Name;

}
path = (const UBYTE *)BADDR(pkt->dp_Arg1);
startup = pkt->dp_Arg2;
dlist = (struct DosList *)BADDR(pkt->dp_Arg3);
DOSBase = (struct DosLibrary *)OpenLibrary("dos.library",37);

if (DOSBase == NULL)
error = ERROR_INVALID_RESIDENT_LIBRARY;

if (error) {
/* Reply packet manually - dos did not open */
pkt->dp_Res1 = DOSFALSE;
pkt->dp_Res2 = error;
PutMsg(pkt->dp_Port,pkt->dp_Link);
return;

}

/*
** Potentially initialize dol_Task

** Uncomment for single-instance handlers.

** dlist->dol_Task = &proc->pr_MsgPort;

*/

The Handler Interface 215

ReplyPkt(pkt,DOSTRUE,0);
/* main program loop */
do {

LONG res1 = DOSFALSE;
LONG res2 = ERROR_ACTION_NOT_KNOWN;
WaitPort(&proc->pr_MsgPort);
msg = GetMsg(&proc->pr_MsgPort);
pkt = (struct DosPacket *)(msg->mn_Node.ln_Name);
switch(pkt->dp_Type) {
case ACTION_FINDINPUT:
case ACTION_FINDUPDATE:
case ACTION_FINDOUTPUT:

open++;
res1 = DOSTRUE;
res2 = 0;
break;

case ACTION_END:
open--;
break;

case ACTION_READ:
res1 = -1; /* EOF */
res2 = 0;
break;

case ACTION_WRITE:
res1 = pkt->dp_Arg3;
res2 = 0;
break;

case ACTION_SEEK:
case ACTION_SET_FILE_SIZE:
case ACTION_STACK:
case ACTION_QUEUE:
case ACTION_FORCE:

res1 = -1;
break;

default:
break;

}
ReplyPkt(pkt,res1,res2);

} while(open);

CloseLibrary((struct Library *)DOSBase);

}

This example handler first checks whether it received a startup packet through the BCPL binder, and if
not, retrieves it from its process port. It then allocates its resources, in this case it only opens dos.library. If
that fails, the startup packet is replied with an error code, though without having the library available, this is
a manual step. Otherwise, it is replied indicating success.

The main processing loop follows: The handler receives packets from this process port, and checks for
the type. For each request to open a file, a use counter is incremented, and for each request to close one, the
counter is decremented. In this simple example, no other activity is performed as this dummy handler serves
no purpose. Read and write requests are answered with an EOF condition or success indicating that all bytes

216 Rom Kernel Reference Manual: DOS

had been written.
The remaining cases implement error handling: A handler or file system receiving a packet it does not

implement shall set the dp_Res2 element of the packet to ERROR_ACTION_NOT_KNOWN. The primary
result code dp_Res1 shall be set for non-implemented packets according to the packet type as shown in the
following table:

Table 13.2: Primary Result Code for Unimplemented Packets

dp_Type dp_Res1
ACTION_READ -1
ACTION_WRITE -1
ACTION_SEEK -1
ACTION_SET_FILE_SIZE -1
ACTION_STACK -1
ACTION_QUEUE -1
ACTION_FORCE -1
all others 0

The packet shall then be replied. This ensures that clients of the handler or file system will receive a
result that is an indication of an error.

Once the use counter reaches zero again, the handler releases all its resources and terminates processing.
The handler shutdown is discussed in more detail in section 13.1.4.

13.1.4 Handler Shutdown
A handler that does not initialize the dol_Task element of its DosList structure should keep a counter
that is incremented for each object it creates, and decremented for each object deleted. For example, if
the handler supports opening files, then the initialization of each file handle should increment the counter,
and each file handle closed through ACTION_END should decrement the counter. Similarly, if locks or
notification requests are supported, every lock or request created should increment it, and every lock unlocked
and every request canceled should decrement it. Once the use counter reaches 0, the handler process should
die by releasing all of its resources and falling off its main function. This ensures that AmigaDOS is not
congested by creating more and more processes of the same handler that, effectively, cannot be contacted
anymore because its process port is not referenced anymore.

A typical example for such a handler is the CON-Handler that requires a new process for each window
opened. Even though there is only one window per console, it can be referenced by multiple files as the
console can also be reached through “*” and “CONSOLE:”. The window will be closed when each of these
files had been closed4.

File systems such as the FFS, however, typically do initialize dol_Task and thus can be reached even
if all files, locks or notification requests on the volumes they manage have been released. Thus, in addition to
tracking these resources, file systems should check for incoming packets of the type ACTION_DIE. If the file
system is aware that any of its resources are still in use, e.g. some files or locks are still open, ACTION_DIE
shall fail. Otherwise, the file system may reply to this packet with success and should attempt to shutdown.

The pr_MsgPort or any other ports of such a handler can still contain packets that have not yet been
worked on after ACTION_DIE has been received and replied. In order to avoid a deadlock, the packets
pending in the input queue still need to be replied, for example using the default return codes from table 13.2
in section 13.1.3.

Despite such precautions, ACTION_DIE cannot be implemented in a fully reliable way as some of the
MsgPort(s) of the file system could still be cached by client programs even without having access to any of
its resources. Section 14.9.5 contains further details on ACTION_DIE.

4This is a simplification, ignoring AUTO and WAIT parameters, see section 13.2 for details

The Handler Interface 217

13.2 The CON-Handler
The CON-Handler implements the console of AmigaDOS, which hosts for example the shell. It not only
serves the graphical console based on an intuition window, but also consoles on the serial port or other
devices. The AUX-Handler is only a minimal disk-based wrapper that locates the CON-Handler in the
Kickstart and launches it with a suitable startup packet. The CON-Handler therefore implements the CON,
RAW and AUX devices.

Even though the AmigaDOS Shell is the most prominent user of the console, the two components are
otherwise completely separate. The Shell can be run on any AmigaDOS device — and in fact is, when
executing scripts — and the console can be used by any other program, for example by Ed.

Quite similar to file systems, the CON-Handler does not implement all of its functionality itself. It rather
depends on services of exec devices. For the graphical console, it creates an intuition window and initializes
console.device to run within it. For the serial console, i.e. AUX, it operates on top of serial.device, but can be
made to use any other interface device with proper mount parameters, see also section 13.2.3 for examples
how to mount a customized AUX handler.

13.2.1 CON-Handler Path for Graphical Consoles
The path through which a stream to the CON and RAW devices is opened determines the size and position
of the window, and defines features of the console that runs in this window; for the AUX device, it defines
connection parameters such as the baud rate and the parity.

This section discusses the parameters for the graphical console, section 13.2.2 lists the options for AUX.
Angle brackets “< >” name the options for the purpose of referencing them, they are not part of the actual
parameter string supplied to the handler.

CON:<left>/<top>/<width>/<height>/<title>[/<options>]

The <left> parameter determines the left edge of the window within which the console appears; it is
measured in pixels. If this parameter is not present or negative, intuition is instructed to pick a default, which
itself defaults to a window position under the mouse pointer.

The <top> parameter is the top edge of the window, also measured in pixels. If this parameter is not
present or negative, intuition is instructed to pick a default.

The <width> parameter is the width of the window, including all window decorations. If this is not
present or negative, the handler instructs intuition to pick a default, which is the width of the screen. If no
parameters are present at all, i.e. the path is just CON or RAWwithout any parameters, the width of the window
is set to 640 pixels for legacy reasons.

The <height> parameter is the height of the window, including all window decorations. If this param-
eter is not present, the window height is set to 100 pixels for legacy reasons. If this parameter is negative,
the window height will be the height of the screen. Width and height are not handled symmetrically, this is
intentional.

The <title> parameter is the string that is put into the drag bar of the window. To insert the forward
slash (“/”) into the string, it is escaped with a backslash, i.e. “\/” creates a single forwards slash that does
not act as a parameter separator5, the backslash is escaped by itself, i.e. “\\” creates a single backslash in
the title.

All following path components configure options for the graphical console; multiple of these parameters
may be combined, separated by forwards slashes (“/”) from each other:

CLOSE adds a close gadget to the window. What happens if the user presses on this gadget depends on
the mode the console is operating in, see section 13.2.4, whether any file handles are open to the console,

5Given the overall syntax of AmigaDOS, the asterisk * would have been a more logical choice.

218 Rom Kernel Reference Manual: DOS

and whether any read requests are pending. In particular, the options AUTO and WAIT also impact how this
gadget works.

NOCLOSE is the negative form of the above option and removes a potentially added close gadget from
the window.

AUTO delays opening the window to the point where an attempt is made to read data from the console or
print text into it. If neither read nor write requests are pending, the close gadget will also close the window
without queuing an end-of-file condition to read requests; the window will pop open again as soon as read
or write requests are received. Unfortunately, an ACTION_DISK_INFO will lock the window open, thus
disabling this parameter, see section 14.8.3 for alternatives to this packet or how to regain the AUTO feature.
AUTO does not work for the RAW device or in the raw mode for reasons explained below.

WAIT waits for the user to close the window. With this option present, the window stays open even
though the last file handle has been closed, and it will only close when explicitly requested by pressing the
close gadget. This option does not work for the RAW device or in raw mode either. The purpose of this
option is to leave the output of a program in a window visible even after the program creating the window
terminated.

If read requests are waiting on the console, it depends on the console mode, see section 13.2.4, how the
console reacts on the close gadget, but it will not close the window by itself. If the console is operating in
raw mode and a process has requested to receive window close events with the CSI 11{ sequence, then a
CSI raw event will be send to the next reading stream, thus indicating to an application — such as an editor
— the request to close the window. The raw event interface for requesting and delivering input events in the
form of CSI sequences is not implemented by the CON-Handler, but rather inherited from console.device
and therefore documented in [5].

That the options AUTO and WAIT do not work for RAW is also a side-effect of the above: These options
require interpretation of the raw events send by console.device, but in raw mode the console only forwards
all received data to its clients directly.

In the cooked and medium mode, an EOF condition is generated if the window close gadget is pressed
and the console is still in use by at least one file handle. It is again up to the receiving process how to react
on an end of file. If the process then closes its file handle to the console, and this handle was the last open
handle, the CON-Handler will either shut down directly and thus as part of its shutdown code will also close
the window, or will stay open if the WAIT option is present and wait for the user to press the close gadget —
probably once more.

If the console is not in raw mode, the keyboard combination Ctrl+\ also triggers an EOF condition.
As for the close gadget, this keyboard combination is not functional in raw mode and there sends the ASCII
FS control character, i.e. the code 0x1c. The same keyboard combination also closes a console whose file
handles have all been closed and which only stays open due to the WAIT option.

SMART enforces smart refresh of the window. If this is enabled, more RAM is required for saving console
graphics hidden behind other windows, and it is then not necessary to re-render the contents of the console if
it is moved upfront another window. In most cases, rendering speed improves only insignificantly, but at the
price of a larger RAM footprint.

SIMPLE enforces simple refresh of the window. If a partially hidden console window is moved upfront
and made visible again, its contents will be reprinted. This does usually not cost a lot of time, saves RAM
and is also the default.

INACTIVE prevents that the window is receiving the input focus automatically when it is opened. The
user has to click into it to activate it and thus to be able to type into it.

BACKDROP instructs intuition to place the window behind all other windows on a screen. This works
best in conjunction with NOBORDER, an empty window title, the NOSIZE, NODRAG and NODEPTH options
and a console redirected to a public screen. If the window is made as large as the screen, this results in a
full-screen console.

The CON-Handler 219

NOBORDER removes the window decorations; if a title is present, the drag bar will still appear. Thus, this
option is ideally combined with an empty title string.

NOSIZE removes the size gadget of the console on the bottom right edge of the window and thus creates
a fixed-size window.

NODRAG removes the dragbar at the top of the window and makes the window non-movable. A potential
application is to create a non-movable console as screen background.

NODEPTH removes the depth arrangement gadget from the top right border of the window such that the
console window can no longer be depth arranged.

WINDOW instructs the console to hijack an already open window and run the console within it. This
window will also be closed if the console closes, i.e. the console owns the window from this point on and
controls its life-time. The address of the Window structure is provided in hexadecimal behind the parameter,
optionally separated by spaces, e.g. WINDOW 200AFC0. An optional “0x” string may appear upfront the
hexadecimal window address. This parameter replaces a legacy startup mechanism by which the console
could also be placed into an already opened window, see also 13.2.3. The window structure is documented
in [4] and defined in intuition/intuition.h.

SCREEN provides a name of a public screen on which the console shall appear. The public screen name
follows the path component, optionally separated by spaces, e.g. SCREEN myProgram.1. If the screen
name is *, then the front-most public screen will be used as host for the console.

ALT provides an alternative window position and dimension to which the window can be toggled by its
top-right zoom gadget. The alternative window placement provides left edge, top edge, width and height,
similar to the main window placement, though numerical arguments are separated by comma (“,”) and not
by the forwards slash. The alternative position and size shall follow directly behind the ALT keyword, for
example ALT 0,0,320,200.

ICONIFY equips the window with an iconification gadget. This requires that the ConCip program
is running as it loads the console icon. If the iconification gadget is pressed, this icon will appear on the
Workbench, and the window will disappear. The window will be forced open when a incoming read or write
request requires interaction with the console, or when the icon on the Workbench is double-clicked. Similar
to the AUTO option, windows will loose the ability to become iconified if a program requests the window
pointer through ACTION_DISK_INFO, see again section 14.8.3 for details.

Similar to AUTO, ICONIFY also works not quite as expected in raw mode. As reaction to a click on the
iconification gadget, console.device will send a raw event CSI sequence the CON-Handler will not interpret,
but instead forward blindly to its clients. Thus, iconification is to be performed by the process reading from
a console operating in raw mode, and not by the console itself.

13.2.2 CON-Handler Path for Serial Consoles
The following section covers the AUX device which is also managed by the CON-Handler in AmigaDOS
version 47. In earlier versions, the device was operated by an independent handler implemented in BCPL
that was phased out. Therefore, the description in this section only applies to AmigaDOS 47 and beyond.

If the console is a serial console, e.g. mounted as AUX-Handler, another set of parameters in its path
becomes available that configures the serial connection; if the console is run on any other than serial.device
because it was mounted with custom parameters as described in section 13.2.3, the underlying exec device
shall support the SDCMD_SETPARAMS command through which the parameters in the path are forwarded.

Parameters for the handler come from three sources: First, from the Serial preferences of the system.
These default parameters are overridden by the mountlist for AUX, described separately in section 13.2.3.
Third, the parameters from the mountlist can be overridden by the path from which AUX: is opened.

The syntax of the path is as follows:

AUX:<baud>/<control>[/<options>]

220 Rom Kernel Reference Manual: DOS

baud defines the baud rate of the serial console, e.g. 9600. If this parameter is not provided, it is taken
from the BAUD keyword in the mountlist, and if it is not provided there either, the settings come from the
Serial preferences, see also section 8.1.3.

control defines the number of data bits, the parity and the number of stop bits, all concatenated into a
string of 3 characters. The number of data bits is a digit between “5” and “8” and does not include the parity
bit. The parity is either “N” for no parity, “E” for even and “O” for odd parity, or “M” for mark and “S” for
space parity. The number of stop bits is either the digit “0”, “1” or “2”. A rather typical setting is 8N1, i.e.
8 data bits, no parity, one stop bit. This is also the optimal configuration for serial.device. If the control
parameter is not present in the path, it is taken — with identical encoding — from the CONTROL parameter
of the mountlist, and if it is not present there, from the Serial preferences editor.

As for the graphical console, several optional parameters follow that may be combined:

RAW forces the console into the raw mode by which input characters are not echoed and no line buffering
takes place. If AUX is mounted as HANDLER and not as EHANDLER, setting the STARTUP mount parameter
to 1 also switches to this mode, but makes all other options in the mountlist unavailable. Section 8.1.2
provides more details on these two keywords in the mountlist.

UNIT defines the unit of the device over which the connection shall be made if multiple units exist.
serial.device only provides unit 0, but third party handlers may offer additional units. The unit follows the
keyword as decimal number, optionally separated by spaces, e.g. UNIT 1. The unit can also be configured
through the mountlist UNIT keyword.

AUTO indicates that the serial connection shall not be opened immediately, but only after the first attempt
is made to write data to it or to read data from it. This is similar to the AUTO keyword for the graphical
console.

WAIT indicates that the serial connection stays open even after every file handle to the console was
closed. To shut down the serial connection, an ASCII FS character = Hex 0x1c needs to be send by the user.
This character is created on the Amiga keyboard with Ctrl+\. This also mirrors the WAIT keyword of the
graphical console.

13.2.3 CON-Handler Startup and Mount Parameters
In addition to the parameters communicated in the path by which a console is opened, the console is also
configured through the handler startup mechanism and thus by the mountlist. It provides defaults for the
serial console, including the line buffer mode described in section 13.2.4.

The mount parameters for CON and RAW are hard-coded into the Kickstart ROM, though the mountlist
for AUX is available in the DEVS:DosDrivers directory and can be altered there; users can create custom
mountlists for additional devices based on the CON-Handler by specifying L:AUX-Handler either as
HANDLER or EHANDLER. All the AUX-Handler does is to collect startup parameters and forward them
directly to the CON-Handler, making it customizable.

The following example mountlist creates a serial console on top of a device named duart.device
unit 0; in order to supply a custom device and a baud rate, the mount entry needs to be an EHANDLER:

EHandler = L:Aux-Handler
Device = duart.device
Unit = 0
Baud = 9600
Control = "8N1"

If mounted with the HANDLER keyword instead, it will operate on top of the serial.device, and
the STARTUP value then specifies the console mode, see section 13.2.4. Unfortunately, due to the way
how Mount operates, STARTUP is not available for mount lists based on the EHANDLER keyword, and

The CON-Handler 221

the DEVICE, UNIT, BAUD and CONTROL parameters are not available with the HANDLER keyword. Sec-
tion 8.1.1 and following provide more information on the keywords.

The GLOBVEC entry in the mountlist is irrelevant, due to a startup code similar to that listed in sec-
tion 11.5.4. The AUX-Handler can operate both as a C/Assembler or as a BCPL handler.

The handler startup mechanism in general is specified in section 13.1.2. As described there, dp_Arg2
of the startup packet is a copy of the dol_Startup entry of the DosList created from the mountlist. The
string from which the CON-Handler receives the path described in sections 13.2.1 and 13.2.2 is taken from
dp_Arg1 of the startup packet, and not — as one might expect — from the packets opening file handles.

The following table specifies the values of dol_Startup the CON-Handler recognizes:

Table 13.3: CON-Handler Startup Code

dol_Startup Description
< 0 RAW: raw mode, within a window pointed to by dp_Arg1
0 CON: cooked mode, create a new window
1 RAW: raw mode, create a new window
2 CON: medium mode, create a new window
3 RAW: reserved for future extensions
BPTR with bit 30 cleared raw mode open on a device specified by a FileSysStartupMsg
BPTR with bit 30 set cooked mode open on a device specified by a FileSysStartupMsg

The values 0 to 3 configure the line buffer mode and correspond to the mode selected by SetMode(),
compare also with section 5.5.4. The buffer mode 3 is currently not used and reserved for future exten-
sions. Mode 2 is a new mode introduced in AmigaDOS 47. Its primary purpose is to support the Shell with
additional features. It is described along with all other modes in section 13.2.4.

The case of a negative dol_Startup value is a legacy startup mechanism of the console. In this
configuration, dp_Arg1 of the startup packet, see section 13.1.2, is not a BPTR to a path as usual, but instead
a pointer (not a BPTR) to an intuition Window structure; the CON-Handler then creates a graphical console
within this window. It is quite hard to make practical use of this startup mechanism and it is thus discouraged,
but [7] provides example code how to trigger it. It should be considered deprecated. A better mechanism to
run a console in an already opened window is by the WINDOW argument described in section 13.2.1.

In all other cases, dol_Startup is a BPTR to a FileSysStartupMsg described in more detail
in section 8.1.2. The fssm_Device and fssm_Unit elements of this structure provide a device and
unit the console shall run on. While the CON device does not use this startup mechanism, the CON-Handler
receives such a startup message through the AUX-Handler if it is mounted as EHANDLER, and it then contains
the DEVICE and UNIT parameters from its mountlist. Thus, a console can be run on any kind of device
provided it supports CMD_WRITE to print text, CMD_READ to receive keystrokes and SDCMD_SETPARAMS
to configure it.

As BPTRs are upshifted by two bits to gain a regular pointer, the otherwise unused bit 30 of the BPTR is
used for mode selection. If this bit is 1, the console will be a cooked console with line buffer, and if this bit
is 0, the console is raw.

13.2.4 CON-Handler Buffer Modes
In addition to the window or serial parameters communicated in the path, the console can also be config-
ured through the SetMode() function, see section 5.5.4 and table 5.3 in that section, allowing to alter its
properties after opening it. The above function sets the buffer mode of the console, regardless of whether the
console runs in a window or over the serial interface. SetMode() allows to convert a CON: window into a
RAW: window or create an equivalent of a RAW: handle from an AUX: connection, just that it operates over
the serial interface.

222 Rom Kernel Reference Manual: DOS

The console buffer mode determine how and at which time user input is provided to a process reading
from the console. The CON-Handler supports in total three buffer modes.

The buffer mode 0 corresponds to a regular CON: window and also to the AUX: console. In this so
called cooked mode, the console echoes every keystroke on the window, and provides elementary line editing
functions such as cursor movements. Only when the user presses Return, an entire line of data enters the
output buffer, and then becomes available for an ACTION_READ request. Thus, programs can only read
entire lines from the console, they do not receive individual keystrokes.

In the cooked mode, the CON-Handler interprets the following keystrokes:

Table 13.4: Keystrokes Interpreted in Cooked Mode
Keystroke Function
Cursor left Move left one character
Cursor right Move right one character
Cursor up Do nothing∗

Cursor down Do nothing∗

Shift+Cursor up Do nothing∗

Shift+Cursor down Do nothing∗

Shift+Cursor left Move to the start of line
Shift+Cursor right Move to the end of line
Shift+Cursor up Move to the start of line∗

Shift+Cursor down Erase line∗

TAB Inserts a TAB control code∗

Shift+TAB Do nothing∗

Return Complete line and send it to clients
Ctrl+A Move to the start of line
Ctrl+B Erase entire line
Ctrl+C Sends signal 12
Ctrl+D Sends signal 13
Ctrl+E Sends signal 14
Ctrl+F Sends signal 15
Ctrl+H Identical to Backspace
Ctrl+J Insert a Line Feed
Ctrl+K Kill characters into yank buffer
Ctrl+M Identical to Return
Ctrl+Q Resume output
Ctrl+R Do nothing∗

Ctrl+S Suspend output
Ctrl+U Delete beginning of line
Ctrl+W Delete word
Ctrl+X Erase entire line
Ctrl+Y Paste characters from yank buffer
Ctrl+Z Move to end of line
Ctrl+\ Signal an end-of-file
Backspace Delete character upfront cursor
Del Delete character under cursor
∗ Interpreted differently in medium mode, see table 13.5

The yank buffer keeps characters that have been cut out with Ctrl+K. Its contents can be reinserted into
the console with Ctrl+Y. It operates independently of the clipboard and is local to each console window.

The CON-Handler 223

The line feed inserted by Ctrl+J splits the current line at the cursor position and keeps editing the lower
line, that is, it inserts a line feed into the output buffer at the cursor position. If finally Return is pressed,
then all lines combined, including the line feeds between them, are transmitted to processes reading from the
console. In case the Shell is reading from the console, its interpreter splits input at line feed characters and
therefore executes the commands on each line separately.

Ctrl+W erases the characters to the left of the cursor position up to the previous blank space, i.e. it erases
the word to the left of the cursor. Ctrl+U erases all characters to the left of the cursor position.

Ctrl+S suspends the output and blocks any program from outputting text on the console. Output is
resumed with Ctrl+Q.

Ctrl+\ creates a end-of-file condition for reading programs, i.e. the console will respond to pending
read requests by returning zero bytes.

The keys Ctrl+C through Ctrl+F are special in the sense as they signal SIGBREAKB_CTRL_C to
SIGBREAKB_CTRL_F to the most recent process that printed to the console or requested data from it. This
is usually an indicator to the receiving program to interrupt processing or interrupt a script. If the most
recent reading and writing processes are different, the corresponding signal will be send twice; a program
can also explicitly request receiving signals instead of the most recently reading program by the DosPacket
ACTION_CHANGE_SIGNAL, see section 14.8.10.

Unlike other operating systems, AmigaDOS does not have the ability to asynchronously terminate pro-
cesses; thus, programs should check for the above signals periodically, e.g. by CheckSignal() as de-
scribed in section 15.2.4, and interrupt their program flow when one of them has been received. By conven-
tion, Ctrl+C is supposed to interrupt a program, while Ctrl+D interrupts a shell script and is thus tested
by the Shell. Ctrl+E is currently unassigned. Ctrl+F makes the control window of Commodities visible.
The pattern matching functions from chapter 9 offer the option check such signals while scanning a directory
tree, but dos.library is otherwise ignorant to the signals.

One particular difference between the V47 console and its predecessors is that the console no longer
offers a history. Rather, the history functions are now part of the Shell which operates in buffer mode 2
described below. The history is not the only change, some keystrokes operate differently in this medium
mode. As for the history, they request a particular function from the shell, or any other program that operates
the console in this mode, see below.

The buffer mode 1 corresponds to a RAW: window and is denoted the raw mode. In this mode, the
console reports every keystroke individually to its clients, without interpreting them. Read requests pending
in the console are satisfied for every single keystroke, even if they request more bytes than generated by the
keystroke. Keystrokes are not even echoed on the console, this is up to the program receiving them. Thus,
for example, cursor movements are reported as multi-byte control sequences, but do not actually move the
cursor. The only exception are the keystrokes Ctrl+C to Ctrl+F which are always interpreted and send
break signals instead of their ASCII codes. All other keys remain uninterpreted, even Ctrl+\ does not
create an EOF condition in raw mode, but rather generates the control code 0x1c (ASCII FS).

The control sequences are either single bytes from the ASCII control character set between 0x00 and
0x1f, or ECMA-48 control sequences [9] with some additions from AmigaDOS, starting with a CSI con-
trol sequence introducer character, code 0x9b. The sequences are generated by console.device, or to be
more specific, by the keymap that is currently active. [5] and [9] provide details and specify the sequences.
console.device is also able to generate CSI sequences when it receives intuition events such as resizing the
window or attempting to close the window. In order to receive such events, they need to be requested by
CSI <n> {, and they are unsubscribed by CSI <n> }, where <n> indicates the event type, for details see
again [5]. It is noteworthy that a console starting in raw mode does not subscribe to the window close event,
though consoles opening in cooked mode do, in order to react on the close gadget. The CON-Handler only
forwards such events from console.device or any other device it is connected to if operating in the raw mode,
but it interprets them in the cooked and medium mode, and, for that reason, cannot react on close window
events or any other events in raw mode.

224 Rom Kernel Reference Manual: DOS

Similar to creating control sequences, console.device also interprets control sequences and reacts ac-
cordingly, e.g. by moving the cursor or erasing its window. Such functions are not implemented by the
CON-Handler which only passively forwards them to the device to which it is connected. Thus, in particular,
if the console is connected to a terminal via a serial connection, then it is up to the connected terminal to
interpret them.

The buffer mode 2 is not available under a device name, even though one could in principle create a
suitable mountlist for it. It is called the medium mode. The mode is reserved for shells and forwards TAB
expansion requests and history functions to them. While the console continues to provide line editing features
for the keys listed in table 13.4, some of the keys marked with an asterisk in this table are in the medium
mode reported immediately to programs reading from the console without waiting for the Return key to be
pressed. They create TAB Report CSI sequences that are interpreted by the Shell and trigger there functions
such as expanding a pattern into a list of files, or iterating through the command history.

A TAB Report sequence looks as follows:

CSI <m>;<s>;<c>U <line>

Here CSI is again the control sequence introducer of the byte value 0x9b. The <m> value is a decimal
number that identifies the keystroke and also the function the Shell is requested to perform. Such functions
browse in the history or expand a file name pattern. The Shell re-inserts the result of such a function back
into the console with an ACTION_FORCE packet, see section 14.8.7.

The parameters <s> and <c> provide the length of the current line input buffer of the console the user
is editing, and the (1-based, i.e. cursor at the left edge corresponds to <c> = 1) cursor position within this
buffer. Both <s> and <c> are also encoded as ASCII decimal numbers.

The U is a literal character and identifies this sequence as TAB Report. <line> is a copy of the current
line that is being edited by the user. For many sequences, this input is used as a template the Shell interprets
as part of the requested action, e.g. for a TAB expansion: there, the command line argument within which the
cursor is positioned, as reported by the <c> parameter of the CSI sequence, is used to generate a wildcard
the Shell uses to find possible candidates for the expansion of the file name template the cursor is located in.

The keystrokes that trigger such TAB Report sequences, along with their purpose, are as follows:

Table 13.5: TAB Report CSI Sequences

Keystroke Sequence
Cursor up <m>=2, move upwards in the history
Cursor down <m>=3, move downwards in the history
Shift+Cursor up <m>=4, search history upwards
Shift+Cursor down <m>=5, search history downwards
Ctrl+R <m>=6, search history upwards, partial pattern
Ctrl+B <m>=10, rewind history
TAB <m>=12, iterate forwards through expansion
Shift+TAB <m>=13, iterate backwards through expansion

The only difference between the cases <m>=6 and <m>=4 is that the former only uses the line input buffer
up to the cursor position as search pattern and ignores everything beyond it. All remaining values for <m>
are currently reserved, even though some third-party implementations assign meanings to them.

Thus, the flow of operations if a user presses the Cursor up key in the console is as follows: First,
the console delivers a CSI U TAB Report sequence to the Shell. The Shell will then check its history for
the previously issued command, and will insert the line from the history with ACTION_FORCE back into
the console. The latter is a special DosPacket that emulates keystrokes, i.e. the Shell types the previous
command from the history into the console. The advantage of this construction is that the command history

The CON-Handler 225

becomes available to programs operating in the Shell, and can be retrieved or modified from there, see
section 15.2.5.

Before executing programs, the Shell switches the console back to the regular cooked mode for backwards
compatibility, and re-enables the medium mode as soon as it regains control6.

13.3 The Port-Handler
The Port-Handler is responsible for the PAR, SER and PRT devices and thus represents the Amiga hardware
interfaces as AmigaDOS devices. Clearly, PAR interfaces to parallel.device, PRT to printer.device and SER
to serial.device. The difference between SER and AUX is that the former processes raw streams of bytes
transmitted over a serial connection, whereas AUX provides line buffering and line editing capabilities and
thus implements a console7.

13.3.1 Port-Handler Path
Access to the Port-Handler is configurable through the mountlist and the path through which it is opened.
In this section, configuration through the path is discussed. While the Port-Handler was not configurable in
AmigaDOS versions 40 and below, AmigaDOS 45 upgraded it. The path, depending on how the handler is
mounted, looks as follows:

SER:[[BAUD=]<baud>/][[CONTROL=]<control>/][NOWAIT/][UNIT=<n>]
PAR:[UNIT=<n>]
PRT:[TRANSPARENT/][RAW/][UNIT=<n>]

The brackets are not part of the path and shall not be included. Square brackets indicate optional elements,
angle brackets parameters that shall be substituted by a value.

The Port-Handler parses the following parameters from its path:
BAUD sets the baud rate, which is only relevant for serial connections and thus SER:. It specifies the

number of bits per second transmitted over a serial connection. If this parameter is not present, the default
from the mountlist is used, see section 13.3.2, and if not present there, the Serial preferences provide the
baud rate. Optionally, this parameter may be introduced with the keyword BAUD which shall be separated
from the decimal baud rate by spaces or an equals sign, e.g. BAUD 9600. Without the keyword, it shall be
the first parameter in the path.

CONTROL specifies additional parameters of the serial connection such as number of data bits, parity and
number of stop bits, represented as 3 letter string. It is also only relevant for the SER device. If this parameter
is not present, the CONTROL parameter of the mountlist provides a control string of identical encoding, and
if not present there, the settings from the Serial preferences are used.

The argument of CONTROL follows the same convention as the one for the AUX terminal. The first digit
between “5” and “8”, specifies the number of data bits; the second letter is the parity, which is either N, E, O,
M or S, indicating no parity, even or odd parity, or mark or space parity. The last digit is the number of stop
bits and is a number between “0” and “2”. A typical control string is 8N1 indicating 8 data bits, no parity
and 1 stop bit, which is also the optimal setting for serial.device.

The CONTROL parameter is either matched by position as second component of the path, or by its key-
word, which shall be separated by a blank space or an equals-sign from its value, e.g. CONTROL 8N1.

TRANSPARENT is a Boolean switch only relevant to the PRT device. If present, it indicates that CSI
sequences written over this device will not be translated to the printer, but will be send untranslated (as-is).

6This has the side effect that the Shell can also operate in a console opened as RAW:.
7Even in the raw mode, AUX is different from SER; for example, the former creates a signal on Ctrl+C, the latter sends the byte

0x03.

226 Rom Kernel Reference Manual: DOS

By default, the PRT device accepts the ECMA-48 (see [9]) and AmigaDOS defined CSI sequences (see [5])
that are device independent and translates them to printer specific sequences by printer.device. With this
option, PRT: expects raw control sequences that are printer and model specific. This option matches by
keyword, its position in the path is irrelevant.

RAW is a Boolean switch that, if present, disables translation of the AmigaDOS newline character 0x0a
to 0x0a 0x0d pairs, i.e. a line feed followed by carriage return. This switch only applies to the PRT device
and is not used otherwise. It matches by keyword, its position is irrelevant.

UNIT takes a numeric argument and provides the unit of the device that shall be used. This makes most
sense for PRT: as printer.device supports multiple units. While the ROM-based serial or parallel.device only
support a single unit each, the Port-Handler can also be mounted on a third-party devices provided through a
custom mountlist, see section 13.3.2 for details. The unit number is represented as decimal number separated
from the keyword by spaces or an equals-sign, e.g. UNIT 1. This option applies to all devices mounted on
the Port-Handler, and matches by keyword.

NOWAIT is Boolean switch that, if present, avoids blocking when reading from a connection, and only
applies to SER:. If no data is available at the serial port, a connection configured with NOWAIT will report
an end-of-file condition. Otherwise, the stream blocks until data becomes available. This option matches by
keyword.

Another possibility to implement non-blocking reading from the serial port is to use WaitForChar(),
see section 5.5.3. This function blocks until either the specified time has elapsed, or input is available on the
port. Support for this function in the Port-Handler was introduced in AmigaDOS 45.

13.3.2 Port-Handler Startup and Mount Parameters
The Port-Handler is also configurable through its mountlist, though mount parameters for PAR, SER and PRT
are hard-coded into the Kickstart ROM and thus cannot be customized. However, users may create custom
mountlists and mount the handler under a custom device name.

As most handlers, the Port-Handler is parametrized through dol_Startup, transmitted in dp_Arg2
in the handler startup packet, see also section 13.1.2. The following values are recognized:

Table 13.6: Port Handler Startup Code

dol_Startup Description
0 SER: serial input and output through the serial.device
1 PAR: parallel output through the parallel.device
2 PRT: printer output through the printer.device
BPTR serial input/output with parameters from the FileSysStartupMsg

The values 0 to 2 represent the handlers SER, PAR and PRT mounted by the Kickstart, and are supported
by all AmigaDOS versions. They can be recreated by a mountlist as follows:

Handler = L:Port-Handler
Startup = <n>
GlobVec = 0

where <n> is one of the values above. Unfortunately, the STARTUP keyword is mutually exclusive to a
device and unit specification, and thus the Port-Handler in the above configuration always uses the unit 0 of
the default devices according to table 13.6, unless the unit is set explicitly in the path, see section 13.3.1. As
seen in the above mountlist, the Port-Handler relies for legacy reasons on the BCPL startup mechanism and
cannot be run as C/Assembler handler, even though it is nowadays implemented in C.

The last option in table 13.6 corresponds to a custom mountlist based on the EHANDLER keyword, see
also section 8.1.2. This requires AmigaDOS version 45 or better. The DEVICE and UNIT keywords then

The Port-Handler 227

provide the name of the device and the unit the handler runs on. If the mountlist includes in addition a BAUD
value, it is used as default value for the baud rate which can be overridden by the BAUD parameter in the path
described in section 13.3.1. The CONTROL parameter in the mountlist, if present, controls the serial settings.
Its encoding is identical to the CONTROL parameter in the path, see section 13.3.1.

The following mountlist creates a device similar to SER that operates on top of the (third-party provided)
duart.device unit 1, and configures it by default to 19200 baud, 8 bits, no parity and 1 stop bit:

EHandler = L:Port-Handler
Device = duart.device
Unit = 1
Baud = 19200
Control = "8N1"
GlobVec = 0

In the absence of additional sources of information, such a mountlist creates a SER style device and
assumes the device to accept the command set of serial.device. However, the Port-Handler uses the Ami-
gaDOS 43 extension NSCMD_DEVICEQUERY to identify devices that operate similar to parallel.device or
printer.device and then adjusts its mode of operation accordingly. In such a case, the BAUD and CONTROL
parameters in the mountlist are irrelevant and ignored, and the device becomes a lookalike of either PAR or
PRT, which also accepts those parameters listed in 13.3.1 in their path that correspond to the nature of the
device.

13.4 The Queue-Handler
The Queue-Handler provides inter-process communication on the basis of AmigaDOS file handles. It is used
by the Shell to implement pipes; they collect the output of one command and provide it as input to another,
without requiring to store the output in a temporary file. The reading end of a pipe blocks as long as no data
becomes available at the writing end, and the writing end blocks if the reading end is not able to consume
data fast enough. If the reading end closes the pipe, the Queue-Handler attempts to abort the writing end by
sending a SIGBREAKF_CTRL_C signal to it.

Even though the Queue-Handler is disk-based, AmigaDOS 47 already mounts it during its startup under
the name PIPE. While a handler of the same name and a similar purpose already existed in prior versions of
AmigaDOS, it had to be mounted manually and lacked some of the features of the most recent version.

13.4.1 Queue-Handler Path
Pipes are created and identified by a unique name; reading and writing ends of the same name are connected
together. The name itself does not matter; the Shell constructs a pipe name from the process indicator and
a second unique number that is incremented for each pipe used. The Queue handler can be either opened
in MODE_OLDFILE, which represents the reading end of the pipe, or MODE_NEWFILE, which corresponds
to the writing end. The third mode, MODE_READWRITE, is not supported. For Open() and its modes see
section 5.3.1.

The empty file name establishes the special case of the anonymous pipe. The empty name represents the
pipe that is already connected to the standard input or standard output of the process contacting the Queue-
Handler. If the open mode is MODE_OLDFILE, it will attempt to reuse the pipe connected to the standard
input of the process, or on MODE_NEWFILE the pipe connected to the standard output. If the file handle in
the standard input or standard output does not belong to the Queue-Handler, opening the anonymous pipe
fails. Its purpose is in Shell command lines such as

Join A B to PIPE: | More

228 Rom Kernel Reference Manual: DOS

where the writing end of the pipe is explicitly addressed as anonymous pipe as PIPE:. The Shell connected
the standard output of the Join command to a named pipe created for the purpose of the | operator, see
also section 15.1.2, and the file name PIPE: connects to this named pipe. This construction is necessary
here because the command line syntax of Join does not offer to write to its output stream as prepared by
the Shell but only to an explicit file name. Anonymous pipes were introduced in AmigaDOS 45.

The path of the Queue-Handler may include options configuring it; the complete specification is as fol-
lows:

PIPE:name[/quantumsize[/buffercount]]

The name is the name of the pipe and serves as its identifier, see above.
The quantumsize is the size of a block the Queue-Handler uses to buffer data between the writing and

the reading end. It is encoded as an ASCII decimal number and measured in bytes. Written data is is queued
up until either a buffer is full or the writing end is closed, and the full block is then made available to the
reading end. This minimizes the communication overhead as the reading process does not need to wake up
for every single byte. The default quantum size is 1024 bytes.

The buffercount configures the number of buffers the Queue-Handler makes available to the writing
end until it blocks. It is also encoded as decimal number. If the configured number of buffers, all sized
according to the quantumsize, are full without being retrieved by the reading end, the writing end blocks.
This avoids that a fast writing process floods the memory of the system. The special value of 0 indicates that
system memory may be filled up to a safety margin of 64K. The default buffer count is 8, i.e. for a quantum
size of 1024 bytes at most 8K of data can be waiting in a pipe.

13.4.2 Queue-Handler Startup and Mount Parameters
The Queue-Handler can also be configured through a mountlist, though as it is already mounted by the
ROM, the name of a custom mounted device cannot be PIPE. The mount parameters used by the Kickstart
correspond to the following mountlist:

Handler = L:Queue-Handler
Startup = 0
GlobVec = -1

which mounts the Queue-Handler with its default parameter described in 13.4.1. The handler is implemented
in C and thus does not require a Global Vector, thus GlobVec shall be set to −1. To customize the Queue-
Handler, a mountlist such as the following can be used:

EHandler = L:Queue-Handler
Device = no.device
BlockSize = 1024
Buffers = 8
GlobVec = -1

The BLOCKSIZE keyword sets the quantum size, that is the size of a single buffer in bytes, and the
BUFFERS keyword the number of buffers. The argument of the DEVICE parameter is irrelevant, but shall
be present as the Mount command requires it.

The above mountlist creates a FileSysStartupMsg as specified in section 8.1.2 and places it into the
dol_Startup element in its DosList structure. The device and unit found there are irrelevant, though
the environment vector in fssm_Environ discussed in section 8.1.3 contains two relevant entries:

de_SizeBlock set the quantum size, and thus corresponds to the default of the first optional argument
in the path and the BLOCKSIZE parameter in the mountlist.

de_NumBuffers sets the number of such buffers for each pipe and corresponds to the second optional
argument of the path or the BUFFERS parameter in the mountlist.

The Queue-Handler 229

13.5 The RAM-Handler
The RAM-Handler is a ROM-based file system that places its data in available RAM of the system. It
implements almost all of the file system packets listed in chapter 14, with the exception of packets specific
to interactive handlers in section 14.8 and ACTION_SET_OWNER, see 14.5.6.

Starting with version 47, the RAM-Handler provides one extended feature, namely external links, also
explained in section 7.4. Such a link points to a target outside of the RAM-Disk; while external links are
initially empty, they will be filled with the contents of the link target as soon as they are accessed. The RAM-
Handler then copies the link target into RAM, making it accessible under the link origin, or an object within
the link origin. The link source is from that point on independent from the link target and can be modified
without affecting the linked object.

This feature is used within AmigaDOS for the ENV directory containing the currently active system
preferences; the ENV assign points to it. This allows to save RAM by copying only those files to ENV: that
are actually accessed. A separate handler is not necessary.

The RAM-Handler does not interpret any arguments in its startup packet and cannot be configured
through it. The STARTUP value prepared by AmigaDOS is 0 and not interpreted by the RAM-Handler.
As the RAM-Handler is not represented as file nor registered as file system in FileSystem.resource, it cannot
be mounted through a custom mountlist.

The RAM-Handler is not responsible for the reset-resident RAD device. The latter is driven by the Fast
File System described in section 13.6, mounted on ramdrive.device, which is a ROM-resident device that
makes part of the system RAM available as a block device, and unlike the RAM-Handler, not as a file system.
Even though ramdrive.device could in principle carry any other file system, it initializes its contents such that
it reassembles the structure of an empty FFS volume and thus does not require a separate initialization step
after mounting.

13.6 The Fast File System
The Fast File System (FFS) is the standard Amiga file system and as such included in the ROM. However,
the bootstrap code of Amiga host adapters are typically able to load an updated version of this (and other)
file systems from the Rigid Disk Block (RDB) of the boot disk and make it available to the system. The
System-Startup module described in section 17.4 makes updates also available for all other devices, see there
for more details.

The FFS serves from the same code multiple variants or flavors of the file system that differ slightly in
the structure and organization of data on disk, all listed in table 8.3 of section 8.1.3. Here the disk structure
for all variants is described. The FFS is configured by a mountlist through the keywords and structures listed
in section 8.1.1. Section 13.6.1 provides further details.

As a hierarchical file system, the FFS supports all file-system relevant packets listed from section 14.1
onward; packets specific to interactive handlers listed in section 14.8 are an exception and not implemented.
The FFS does support record locking, soft- and hard links and notification requests. External links remain
currently exclusive to the RAM-Handler and are not supported. Latest versions of the FFS can also be shut
down by ACTION_DIE described in section 14.9.5.

13.6.1 FFS Startup and Mount Parameters
The FFS is customized through multiple sources. First of all, by the DosList, the FileSysStartupMsg
pointed to by dol_Startup discussed in section 8.1.2, which again contains a pointer to the environment
vector, the DosEnvec structure, which is specified in section 8.1.3. These structures are setup by the ROM
for the floppy drives, the auto-booting host adapter reading options from the RDB or the Mount command
parsing them from a mountlist. Section 8.1 provides a list of the configurable options and the corresponding

230 Rom Kernel Reference Manual: DOS

entries in the mountlist. Actually, the environment vector is historically the configuration vector of the
AmigaDOS file system which became the de-facto configuration mechanism for many other handlers and
file systems.

In some situations, however, the FFS will override the parameters found in the above sources, and there-
fore ignore parameters in the mountlist. In case the device name is either “trackdisk.device” or
“carddisk.device”, the FFS will instead request the disk geometry from the underlying exec device.
For this, it issues a TD_GETGEOMETRY command when a medium is inserted, the FFS starts up or access to
the volume granted by Inhibit(. . .,DOSFALSE), see section 8.7.4.

Adjusting to the device geometry can also be enabled for FFS version 45 and up for all other devices
by the mountlist parameter SUPERFLOPPY, which corresponds to the ENVF_SUPERFLOPPY flag in the
de_Interleave element of the environment vector. This flag, along with the environment vector is de-
fined in the file dos/filehandler.h and also introduced in section 8.1.3.

When reinitializing, the FFS updates from the DriveGeometry structure filled by TD_GETGEOMETRY
its environment vector. The following algorithm is used to adjust the data in the environment vector from the
DriveGeometry structure documented in devices/trackdisk.h:

void AdjustEnv(struct DosEnvec *env,
const struct DriveGeometry *dg) {

env->de_SizeBlock = dg->dg_SectorSize >> 2;
env->de_HighCyl = dg->dg_Cylinders - 1;
env->de_Surfaces = dg->dg_Heads;
env->de_BlocksPerTrack = dg->dg_TrackSectors;

}

All other entries of the environment vector remain untouched. The right-shift for the sector size is nec-
essary because the environment vector measures it in long words rather than bytes as provided by the drive
geometry, and dg_Cylinders is a count, whereas de_HighCyl is an inclusive upper bound. In partic-
ular, dg_BufMemType is not copied over, and therefore de_BufMemType shall be setup correctly by the
mountlist or the Rigid Disk Block.

In case the ENVF_SCSIDIRECT flag is set in addition to ENVF_SUPERFLOPPY, the FFS does not
use TD_GETGEOMETRY, but collects the parameters for the drive geometry using the SCSI MODE_SENSE
command (see for example [10]) requesting all mode pages. The number of sectors and the sector size is
taken from the SCSI block descriptor in the mode page header; additionally a SCSI READ_CAPACITY is
issued and if successful, the data returned by it overrides the information from the previous step.

The number of heads and the number of blocks per track is obtained through a second MODE_SENSE
command reading the SCSI Rigid Disk Page. If this fails or the result is not sensible, the FFS attempts to find
some suitable values for the number of heads and the track size by testing values from 16 downwards for the
number of heads and stopping whenever it finds a value that divides the total sector count.

The algorithm by which the FFS attempts to obtain the disk geometry through SCSI is not necessarily
identical to the algorithm the underlying exec device would use to compute geometry information for the
DriveGeometry structure, and thus super floppies mounted with the ENVF_SCSIDIRECT flag set are
not necessarily compatible to those mounted without them.

A second configurable parameter is the number of blocks kept in the file system cache. It is originally
read from de_NumBuffers in the environment vector, but the AddBuffers() function described in
section 8.7.1 or the ACTION_MORE_CACHE packet, see section 14.9.1, can be used to adjust this parameter
anytime.

13.6.2 The Boot Block
The FFS flavor is initially read from de_DosType element of the environment vector, see section 8.1.3.
However, the initial choice is overridden either by formatting (initializing) a volume, or during the (quick)

The Fast File System 231

validation that is triggered if a volume becomes available to the FFS, i.e. if a medium is inserted, the FFS is
starting up with the medium inserted or is un-inhibited.

During formatting, the flavor is taken from dp_Arg2 of the ACTION_FORMAT packet, see 14.7.5. If
dp_Arg2 is none of known FFS flavors from table 8.3 in 8.1.3, the currently active flavor remains in force
and is used to initialize the disk structure.

During disk insertion, or if a volume becomes accessible to the FFS by other means such as mounting
it or uninhibiting a volume through the Inhibit() function (see 8.7.4), the FFS reads the flavor from the
first long-word of the boot block, even if this block is placed on a hard disk and not actually used for booting.
It is found at sector

BootBlock = de_LowCyl× de_Surfaces× de_BlocksPerTrack

of the device. Note that this is not necessarily the sector 0 if the volume is a partition of a hard disk. The
remaining data of the boot block is not used by the FFS but for bootblock booting, namely for floppy disks
and for those partitions whose de_BootBlocks element (see 8.1.3) in the environment vector is larger
than 0.

The boot block does not only identify the FFS flavor, it is also a component of the Kickstart boot process
implemented by the strap module of the Kickstart ROM. In short, the Kickstart supports two boot mech-
anisms, boot block booting described here and boot point booting, which depends on an Autoconfig ROM
implementing the boot procedure, [5] contains the details. For hard disks, the latter boot protocol is most
relevant and typically used, though in principle boot block booting as for floppy disks is also supported.

The structure of the boot block is follows:

Table 13.7: Boot Block
Long-word Offset Content Notes
0 DosType Encodes the flavor of the FFS
1 Chksum Checksum over this block
2 RootBlk Sector of the Root Block
3 Code Boot code

DosType contains the file system identifier (or the flavor) of the FFS. It is one of the constants from
table 8.3 in section 8.1.3, or the special value ’BOOT’ which also indicates a bootable (non-FFS) partition.
All other values are rejected by the strap module, it does not allow bootblock booting from them.

The DosType entry does not, in general, define the file system type, i.e. other file systems do not
(necessarily) install their identifier here. It is only read by the FFS to configure itself. That the Info()
function of section 6.3 returns DosType in id_DiskType is a side effect of the FFS implementation;
it reads the type, and from that decides whether it is able to interpret the disk structure. If DosType is
none of the constants in table 8.3, it does not touch the partition, but leaves the identifier from DosType in
id_DiskType for other programs to observe.

The special value −1 in DosType currently puts the FFS into a state where it assumes that there is no
disk present. This is, however, only a side effect of its implementation and shall not be relied upon.

Chksum is the checksum over the bootblock. It is computed in a somewhat different way from the
checksum the FFS defines for all other block types as it is the strap module that implements the boot
mechanism, and not the file system. It is computed over all long words of de_BootBlocks blocks read
by strap for booting, including the carry which is added into the sum as well. The entire sum over all boot
blocks, including the Chksum, must be −1 in order to enable execution of the boot code.

The following small assembler code verifies the checksum and expects in register a0 the pointer to the

232 Rom Kernel Reference Manual: DOS

loaded boot blocks, and in register d0 the total byte size of the boot block as computed by

d0 = de_BootBlocks× de_SizeBlock× 4

It returns a non-zero result code in case the boot code is suitable for booting, and zero in case the checksum
is not valid:

CheckBootBlock:
move.l d0,d1
lsr.l #2,d1
moveq #0,d0
bra.s smbbSumDBF

smbbSumLoop:
add.l (a0)+,d0
bcc.s smbbSumDBF
addq.l #1,d0

smbbSumDBF:
dbf d1,smbbSumLoop
not.l d0
seq.b d0
ext.w d0
ext.l d0
rts

RootBlk is the sector number of the root block, see section 13.6.4, or at least it should be. However,
nothing in the system depends on its value, and the FFS does not take the position of the root block from
here. Instead, the FFS computes it from the disk geometry as specified in 13.6.4. Actually, RootBlk is
deposited by the Install command, which does not even attempt to adjust its value depending on whether
a double or high density floppy disk is made bootable. Thus, program code cannot rely on this value being
correct.

Code is the boot code in 68000 machine code that is executed if strap accepts the DosType and the
Chksum is valid. All the default boot code does is that it locates dos.library resident module and initializes
it. Under AmigaDOS 36 and later, it also sets the EBF_SILENTSTART flag in expansion.library to prevent
the System-Startup component from opening the boot console, see section 17.4 for additional details.

13.6.3 Disk Keys and Sectors
The FFS does not address sectors through their physical sector number, but through their key which is relative
to the start of the partition, and measured in units of blocks, not in units of sectors. The relation between the
physical sector S and the key K is given by the following equation:

S = de_LowCyl× de_Surfaces× de_BlocksPerTrack+K × de_SectorPerBlock

In particular, the boot block has the key 0. The sector number S is used directly for SCSI transfer which
is enabled by the ENVF_SCSIDIRECT flag in the de_Interleave element of the environment vector.

For trackdisk style commands, e.g. TD_READ or TD_READ64 that are used otherwise, exec device
drivers address data by a byte offset instead of a sector number. It is computed by multiplying S by
de_SizeBlock × 4. The additional factor of 4 is required because de_SizeBlock is in units of long-
words and not a byte count.

Even though de_SizeBlock and de_SectorsPerBlock could be any number, the FFS, and likely
many other file systems only accept powers of 2 here. Thus, any multiplication or division by these numbers
are easily implementable as shifts.

The Fast File System 233

13.6.4 The Root Block
The Root Block represents the root directory of a volume and contains the objects in the root directory, the
creation date of the volume and its name. It corresponds to the path “:” and the ZERO lock.

The root block is placed in the middle of the volume at key8:de_Reserved+
⌊
(de_HighCyl−de_LowCyl+1)×de_Surfaces×de_BlocksPerTrack

de_SectorsPerBlock

⌋
− 1

2

Note that the element name de_BlocksPerTrack is actually misleading as it is the size of a track in

(physical) sectors and not in (logical) blocks or keys. The brackets b·c indicate rounding down to the next
integer.

The structure of the root block is as follows:

Table 13.8: FFS Root Block
Long-word Offset Content Notes
0 Type shall be 2, this is the BCPL constant T.SHORT
1 0 header key, always 0 in root
2 0 highest sequence number, always 0 in root
3 HTSize entries in the hash table = Block size - 56
4 0 reserved for future use
5 Chksum LW sum over block is 0
6 Hash hash chains for objects in the root

L-50 BMFlag -1 if Bitmap is valid
L-49 BMKeys keys of the bitmap

L-24 BMExt key of the bitmap extension block
L-23 Days

timestamp of last directory changeL-22 Mins
L-21 Ticks
L-20 Name volume name as BSTR

L-12 0 reserved for future use
L-11 0 reserved for future use
L-10 Days

timestamp of last volume changeL-9 Mins
L-8 Ticks
L-7 Days

volume creation timeL-6 Mins
L-5 Ticks
L-4 0 reserved for future use
L-3 0 reserved for future use
L-2 DCache key of directory cache block if used
L-1 SecType shall be 1, this is the BCPL constant ST.ROOT

Each entry in the above table is 4 bytes, i.e. one long word large. As the FFS supports multiple block
sizes, some elements of this structure are placed relative to the end of the block. Such element are indicated

8In [7], the number of sectors per block is not included as earlier FFS versions did not support this parameter.

234 Rom Kernel Reference Manual: DOS

in the above table as L− x where L is the block size in long works, i.e.

L = de_SizeBlock× de_SectorsPerBlock

Dashed table boundaries indicate that the corresponding elements extend over multiple long words. In
particular, the list of hash-keys is a variably sized number of long words large, namely L− 56 long words.

The block type is indicated by Type and SecType. For the root block, these elements are 2 and 1,
respectively.

HTSize is the number of hash keys stored in the root block. The FFS stores in the root block L − 56
hash keys, from offset 6 to L− 51.

Chksum is a checksum over the block. Its value is computed such that the long word sum over all long
words, including the checksum, is zero.

Hash stores the hash-chain of all objects in the root directory. The FFS computes for each file system
object a hash that is derived from its name. As multiple objects can have the same hash and thus hash
conflicts can arise, all objects of the same hash are kept in a singly linked list. The head of each list is kept
in the Hash array, and the end of a hash list is indicated by key 0. This is actually the key of the bootblock
(see 13.6.2), which shall be included in the de_Reserved blocks at the start of the partition that cannot be
allocated for disk objects.

How the FFS computes the hash from the name depends on the FFS flavor. The following algorithm
computes the hash key from the object name, represented as a BSTR, i.e. the first character is the length of
the string:

ULONG ComputeHash(UBYTE *name, BOOL isInternational)
{

ULONG size = *name++; /* String size, this is a BSTR */
ULONG hash = size; /* Initial hash is string length */

while(size) {
ULONG c = *name++;
/* Is this an international flavour? */
if (isInternational) {
if (c != 0xf7 && ((c >= 0xe0 && c <= 0xfe) ||

(c >= 0x61 && c <= 0x7a))) {
c -= 0x20; /* make upper case */

}
} else if (c >= 0x61 && c <= 0x7a) {

c -= 0x20; /* make upper case */
}
hash = (hash * 13 + c) & 0x7ff;

}
return hash % HTSize;

}

In the above, HTSize is the value of the field of the same name in the disk root block. As seen from
the code, the non-international versions of the FFS only convert the ASCII characters between ’a’ and ’z’
to upper case, whereas the international version performs this conversion also for all letters in the Latin-1
supplement set. The FFS does not use utility.library for the upper-case conversion and thus hashing does
not depend on the selected locale. However, it depends on the Latin-1 encoding and will not map characters
correctly for many other encodings. Latin-15 only replaces the international currency symbol with the Euro-
sign which is outside the range of characters that are converted to upper case. The algorithm above therefore
also works correctly for Latin-15.

The Fast File System 235

BMFlag is DOSTRUE in case the bitmap is valid. The bitmap keeps information on which blocks of
the volume are allocated and which are free. More on this block is found in section 13.6.12. If the quick
validation on disk insertion finds that this field is 0, then the disk status is set to non-validated. The FFS then
recomputes the bitmap by a complete directory scan, recursively locating all objects on disks and marking
the blocks they reside in as occupied.

BMKeys is an array containing the keys of the bitmap blocks. How many bitmap blocks are required to
represent the bitmap depends on the size of the volume and the size of a bitmap block. Unused keys are 0.

BMExt is the key of a bitmap extension block if the above bitmap array is not sufficient to represent all
blocks of the volume. This block is described in section 13.6.13.

The fields at offsets L − 23 to L − 21 form a DateStamp structure as specified in chapter 3. The date
and time there indicate the last change within the root directory.

Name is the volume name, encoded as BSTR; the first byte is therefore the size of the name. This field is
8 long words large. While this is sufficient space for 31 characters, one extra character is reserved, limiting
the volume name to 30 characters.

The fields at offsets L − 10 to L − 8 form a DateStamp structure that is updated on every change of
the volume.

The fields at offsets L − 7 to L − 5 are also a DateStamp structure that represent the time and date at
which the volume was initialized. The packet ACTION_SERIALIZE_DISK updates this date, too, but it
remains otherwise unchanged even if objects in the root directory change.

DCache is the key of the directory cache list of blocks. It is only used for the flavors of the FFS that
utilize such a cache. This block is described in section 13.6.10.

Unlike user directories, the root block lacks a list of hard links that point to it. This has the consequence
that the FFS does not allow to create hard links to the root directory of a volume.

13.6.5 The User Directory Block
The user directory block represents a sub-directory of the volume root or another user directory. It is en-
queued in the hash-chain corresponding to its name within its parent block.

The user directory block exists in multiple variants, depending on the flavor of the FFS. Table 13.9 applies
to all FFS variants except the long file name variants DOS\06 and DOS\07.

Table 13.9: FFS User Directory Block
Long-word Offset Content Notes
0 Type shall be 2, this is the BCPL constant T.SHORT
1 OwnKey key of this block (self-reference)
2 0 reserved for future use
3 0 reserved for future use
4 0 reserved for future use
5 Chksum LW sum over block is 0
6 Hash hash chains for objects in the directory

L-50 0 reserved for future use
L-49 Owner reserved for owner ID
L-48 PrtBits protection bits as in section 7.1
L-47 0 reserved for future use
L-46 Comment directory comment as BSTR

236 Rom Kernel Reference Manual: DOS

L-26 0 reserved for future use

L-23 Days
timestamp of last directory changeL-22 Mins

L-21 Ticks
L-20 Name directory name as BSTR

L-12 NameX1 name extension for DOS\08
L-11 0 reserved for future use
L-10 BckLink key of first hard link to this object
L-9 NameX2 name extension for DOS\08

L-4 NxtHash next key of the same hash
L-3 Parent key of the parent directory
L-2 DCache key of directory cache block if used
L-1 SecType shall be 2, this is the BCPL constant ST.USERDIR

Type is the primary type of this block. It is always 2, which is the BCPL constant T.SHORT
OwnKey is the key of this object, i.e. it is the key of the block itself.
Chksum is the checksum over the entire block. It is chosen such that the long word sum over the entire

block, including this field, is zero.
Hash contains for user directories all the hashes of the file system objects contained within.
OwnerID is reserved for the owner ID of this directory that can be set with SetOwner(), see sec-

tion 7.2.6. As the FFS has no means to validate the directory owner, this field does not bear any practical
meaning.

PrtBits are the protection bits of this directory. The FFS actually ignores the protection bits on direc-
tories, but stores the value here anyhow. The protection bits are explained in section 7.1.

Comment contains a potential comment for this directory. The comment is represented as a BSTR with
the comment length in the first character. There is room for 80 bytes, i.e. the maximum comment size is 79
characters.

The fields at offset L − 23 to L − 21 form a DateStamp structure, see chapter 3, that identifies the
timestamp of the last change of this directory.

Name is the name of this directory encoded as BSTR with the name length in the first byte; even though 32
bytes are available, the FFS reserves one character, thus limiting the maximal directory name size to 30.

NameX1 and NameX2 are name extensions that are used by the DOS\08 flavor of the FFS. They add
additional 24 bytes of storage for the directory name. Again, one character is reserved, limiting the maximum
directory name size in this variant to 54. The directory name extends from Name, then overflows into
NameX1 and from there to NameX2.

BckLink is the key of the first hard link to this directory. The link of this key replaces the original
directory header block in case the directory itself is deleted, and the link is converted to a directory.

NxtHash is the key of the next object using the same hash as this directory itself.
Parent is the key of the parent directory, or the key of the root block in case this directory is located

within the volume root.
DCache is the key of the first directory cache block. This key is only used for FFS flavors with directory

caching enabled. Otherwise, it stays 0.
SecType along with Type identifies the type of this block. The value of this field shall be 2, identifying

this as a user directory block.

The Fast File System 237

For the long file name enabled flavors of the FFS, namely DOS\06 and DOS\07, this block looks some-
what different:

Table 13.10: Long-Filename FFS Directory User Header Block
Long-word Offset Content Notes
0 Type shall be 2, this is the BCPL constant T.SHORT
1 OwnKey key of this block (self-reference)
2 0 reserved for future use
3 0 reserved for future use
4 0 reserved for future use
5 Chksum LW sum over block is 0
6 Hash hash chains for objects in the directory

L-50 0 reserved for future use
L-49 Owner reserved for owner ID
L-48 PrtBits protection bits as in section 7.1
L-47 0 reserved for future use
L-46 NaC name and comment BSTR

L-18 CmtBlk key of comment block if necessary
L-17 0 reserved for future use
L-16 0 reserved for future use
L-15 Days

timestamp of last directory changeL-14 Mins
L-13 Ticks
L-12 0 reserved for future use
L-11 0 reserved for future use
L-10 BckLink key of first hard link to this object
L-9 0 reserved for future use

L-4 NxtHash next key of the same hash
L-3 Parent key of the parent directory
L-2 0 reserved for future use
L-1 SecType shall be 2, this is the BCPL constant ST.USERDIR

Compared to the regular directory header block, the time stamp of the last modification date is relocated
to offsets L−15 and following, and the name and comment fields are replaced by a new field at offset L−46.
All other fields remain unchanged.

As this flavor of the flavor of the FFS does not offer a directory cache, the field at L− 2 remains unused
and thus always contains the key 0.

NaC contains both the file name and file comment of the directory as two BSTRs, directly placed next to
each other. The file name comes first, followed by the comment, if any. This field is capable of storing 112
bytes, but the FFS reserves one byte making in total 110 bytes available. In case the total size required for
file and comment is too large and they cannot be hosted by this field, an additional comment block is created
keeping only the comment, and this field then only keeps the file name.

CmtBlk is the key of the comment block, keeping the file comment if the NaC field is too short. If no
comment block is needed, this field is 0. The comment block is described in section 13.6.9.

238 Rom Kernel Reference Manual: DOS

13.6.6 The File Header Block
The file header block represents a file in a directory or the volume root. It is enqueued in one of the hash-
chains of the root block or its parent user directory block. This block exists in multiple variants, depending
on the flavor of the FFS. Table 13.11 applies to all FFS variants except the long file name variants DOS\06
and DOS\07.

Table 13.11: FFS File Header Block
Long-word Offset Content Notes
0 Type shall be 2, this is the BCPL constant T.SHORT
1 OwnKey key of this block (self-reference)
2 BlkCnt number of data block keys included
3 0 reserved for future use
4 Data1st first data block of the file
5 Chksum LW sum over block is 0
6 DataBlk first L− 56 data blocks of the file

L-50 0 reserved for future use
L-49 Owner reserved for owner ID
L-48 PrtBits protection bits as in section 7.1
L-47 Size size of the file in bytes
L-46 Comment file comment as BSTR

L-26 0 reserved for future use

L-23 Days
timestamp of last file changeL-22 Mins

L-21 Ticks
L-20 Name file name as BSTR

L-12 NameX1 name extension for DOS\08
L-11 0 reserved for future use
L-10 BckLink key of first hard link to this object
L-9 NameX2 name extension for DOS\08

L-4 NxtHash next key of the same hash
L-3 Parent key of the parent directory
L-2 FileExt key of first file extension block
L-1 SecType shall be -3, this is the BCPL constant ST.FILE

Type is the primary type of this block. It is always 2, which is the BCPL constant T.SHORT

OwnKey is the key of this object, i.e. it is the key of this block itself.

BlkCnt is the number of occupied data block keys included in this block. Due to the limited number of
slots, this number is smaller or equal than L− 56.

Data1st is the key of the first data block of the file. This data block is actually made available twice,
once here, and once again at offset L−51. Probably the key at this offset was historically used for sequential
access into the file, whereas the block list at offset L− 6 and following was used for random access.

Chksum is the checksum over the entire block. It is chosen such that the long word sum over the entire
block, including this field, is zero.

The Fast File System 239

DataBlk is an array containing the first L − 56 data blocks of the file. The array is filled from its
bottom-end, i.e. L − 51 contains the key of first data block, L − 52 the second key and so on. If this array
overflows, additional blocks are in one or more file extension blocks chained at L − 2. This block type is
defined in section 13.6.8.

OwnerID is reserved for the owner ID of this file that can be set with SetOwner(), see section 7.2.6.
As the FFS has no means to validate the file owner, this field does not bear any practical meaning.

PrtBits are the protection bits of the file, encoded as in section 7.1. The four least-significant bits
corresponding to the readable, writable, executable and deletable features are stored inverted, i.e. a bit being 0
indicates that the corresponding feature is available. This is the same encoding as in the FileInfoBlock
structure.

Comment contains a potential comment for this file. The comment is represented as a BSTR with the
comment length in the first character. There is room for 80 bytes, i.e. the maximum comment size is 79
characters.

The fields at offset L − 23 to L − 21 form a DateStamp structure that identifies the timestamp of the
last change to this file.

Name is the name of this file encoded as BSTR with the name length in the first byte; even though 32
bytes are available here, the FFS reserves one character, thus limiting the maximal file name size to 30
characters.

NameX1 and NameX2 are name extensions that are used by the DOS\08 flavor of the FFS. They add
additional 24 bytes of storage for the file name. Again, one character is reserved, limiting the maximum file
name size for this variant to 54. The file name extends from Name, then overflows into NameX1 and from
there to NameX2.

BckLink is the key of the first hard link to this file. The link of this key replaces the original directory
header block in case the file itself is deleted, and then is converted from a link to a file.

NxtHash is the key of the next object using the same hash as this file.
Parent is the key of the directory containing this file, or the key of the root block in case this file is

located in the volume root.
FileExt is the key of the first file extension block. This key is only used if the file requires more than

L− 56 blocks. Otherwise, it stays 0.
SecType along with Type identifies the type of this block. The value of this field shall be -3, identifying

this as file header block.

For the long file name enabled flavors of the FFS, namely DOS\06 and DOS\07, this block looks some-
what different:

Table 13.12: Long-Filename FFS File Header Block
Long-word Offset Content Notes
0 Type shall be 2, this is the BCPL constant T.SHORT
1 OwnKey key of this block (self-reference)
2 HighSeq total number of blocks occupied
3 0 reserved for future use
4 Data1st first data block of the file
5 Chksum LW sum over block is 0
6 DataBlk first L− 56 keys of data blocks

L-50 0 reserved for future use
L-49 Owner reserved for owner ID
L-48 PrtBits protection bits as in section 7.1

240 Rom Kernel Reference Manual: DOS

L-47 0 reserved for future use
L-46 NaC name and comment BSTR

L-18 CmtBlk key of comment block if necessary
L-17 0 reserved for future use
L-16 0 reserved for future use
L-15 Days

timestamp of last file changeL-14 Mins
L-13 Ticks
L-12 0 reserved for future use
L-11 0 reserved for future use
L-10 BckLink key of first hard link to this object
L-9 0 reserved for future use

L-4 NxtHash next key of the same hash
L-3 Parent key of the parent directory
L-2 FileExt key of first file extension block
L-1 SecType shall be -3, this is the BCPL constant ST.FILE

Compared to the regular file header block, the time stamp of the last modification date is relocated to
offsets L− 15 and following, and the name and comment fields are replaced by a new field at offset L− 46.

NaC contains both the file name and file comment as two BSTRs, directly placed next to each other.
The file name comes first, followed by the comment. This field is capable of storing 112 bytes, but the FFS
reserves one byte making in total 110 bytes available. In case the comment is too long and cannot be placed
in this field, an additional comment block is created keeping only the comment, and this field then only keeps
the file name.

CmtBlk is the key of the comment block, keeping the file comment if the NaC field is too short. If no
comment block is needed, this field is 0. The comment block is described in section 13.6.9.

13.6.7 The Soft and Hard Link Block
The soft- and hard link block represent a soft link or a hard link to another file system object. Similar to the
file header and user directory blocks, this block exists in two variants, depending on the flavor of the FFS.
Table 13.13 applies to all FFS variants except the long file name variants DOS\06 and DOS\07.

Table 13.13: FFS Link Block
Long-word Offset Content Notes
0 Type shall be 2, this is the BCPL constant T.SHORT
1 OwnKey key of this block (self-reference)
2 0 reserved for future use
3 0 reserved for future use
4 0 reserved for future use
5 Chksum LW sum over block is 0
6 Target link target for soft links

L-50 0 reserved for future use
L-49 Owner reserved for owner ID
L-48 PrtBits protection bits as in section 7.1
L-47 0 reserved for future use

The Fast File System 241

L-46 Comment link comment as BSTR

L-26 0 reserved for future use

L-23 Days
timestamp of link creationL-22 Mins

L-21 Ticks
L-20 Name link name as BSTR

L-12 NameX1 name extension for DOS\08
L-11 Link key of link target for hard links
L-10 BckLink key of next hard link to the same object
L-9 NameX2 name extension for DOS\08

L-4 NxtHash next key of the same hash
L-3 Parent key of the parent directory
L-2 0 reserved for future use
L-1 SecType identifies the type of the link

Type is the primary type of this block. It is always 2, which is the BCPL constant T.SHORT
OwnKey is the key of this object, i.e. it is the key of this block itself.
Chksum is the checksum over the entire block. It is chosen such that the long word sum over the entire

block, including this field, is zero.
Target is the path of the link target for soft links. This is stored as NUL-terminated C-string, not as

BSTR9. The maximum path name that can be stored here is (L− 56)× 4− 1 characters long. Unfortunately,
all versions of the FFS currently do not check the maximum link name and damage the file system structure
if an attempt is made to create a soft link to a path that is too long. For a default floppy with 512 bytes per
sector, this field leaves room for paths of up to 287 characters.

OwnerID is reserved for the owner ID of this link that can be set with SetOwner(), see section 7.2.6.
As the FFS has no means to validate the link owner, this field does not bear any practical meaning.

PrtBits are the protection bits of the link, encoded as in section 7.1. However, the practical value of
these protection bits is close to zero as locking a link provides a lock to the linked object, and thus the protec-
tion bits stored here are not actually checked and neither accessible, except by walking a directory through
ExNext() or ExAll(), see section 7.1.3 and following. For hard links, the FFS keeps the protection bits
of the link and the link target synchronized, but clearly cannot do so for soft links.

Comment contains a potential comment for this link. The comment is represented as a BSTR with the
comment length in the first character. The block has room for 80 bytes, i.e. the maximum comment size is
79 characters. Comments of links can be set with SetComment() as the FFS does not attempt to follow
links when setting comments. Thus link and link target have separate comments.

The fields at offset L − 23 to L − 21 form a DateStamp structure that identifies the timestamp of
the creation of the link. For hard links, this field bears no practical meaning as a SetFileDate() (see
section 7.2.5) will update the date of the link target and not the date of the link itself. An attempt to change
the date of a soft link creates an ERROR_IS_SOFT_LINK and thus instructs the client of the FFS to rather
redirect the request to the link target. Thus, this date can be seen when walking a directory, but it cannot be
changed.

Name is the name of the link encoded as BSTR with the name length in the first byte; even though 32
bytes are available here, the FFS reserves one character, thus limiting the maximal size to 30 characters.

9The information in [1] that this is a BSTR is incorrect

242 Rom Kernel Reference Manual: DOS

NameX1 and NameX2 are name extensions that are used by the DOS\08 flavor of the FFS. They add
additional 24 bytes of storage for the directory name. Again, one character is reserved, limiting the maximum
size for this variant to 54. The link name extends from Name, then overflows into NameX1 and from there
to NameX2.

Link is the key of the file header or user directory key for hard links, that is, the key of the link target.
For soft links, this field is not used and set to 0.

BckLink is the key to the next hard link to the same link target, or 0 if there is no further hard link to the
same target. Thus, all links to the same target are chained through BckLink. This field is 0 for soft links.

NxtHash is the key of the next object using the same hash as this directory entry.
Parent is the key of the directory containing this link, or the key of the root block in case this link is

directly in the volume root.
SecType along with Type identifies the type of this block. It can be either −4, that is ST.LINKFILE

for a hard link to a file, or 4, which is ST.LINKDIR, for a hard link to a directory. This field is 3, corre-
sponding to ST.SOFTLINK, for soft links.

For the long file name enabled flavors of the FFS, namely DOS\06 and DOS\07, this block looks some-
what different:

Table 13.14: Long-Filename FFS Link Block
Long-word Offset Content Notes
0 Type shall be 2, this is the BCPL constant T.SHORT
1 OwnKey key of this block (self-reference)
2 0 reserved for future use
3 0 reserved for future use
4 0 reserved for future use
5 Chksum LW sum over block is 0
6 Target link target for soft links

L-50 0 reserved for future use
L-49 Owner reserved for owner ID
L-48 PrtBits protection bits as in section 7.1
L-47 0 reserved for future use
L-46 NaC name and comment BSTR

L-18 CmtBlk key of comment block if necessary
L-17 0 reserved for future use
L-16 0 reserved for future use
L-15 Days

timestamp of last directory changeL-14 Mins
L-13 Ticks
L-12 0 reserved for future use
L-11 Link key of link target for hard links
L-10 BckLink key of next hard link to the same object
L-9 0 reserved for future use

L-4 NxtHash next key of the same hash
L-3 Parent key of the parent directory
L-2 0 reserved for future use
L-1 SecType identifies the type of the link

The Fast File System 243

Compared to the regular link block, the time stamp of the last modification date is relocated to offsets
L− 15 and following, and the name and comment fields are replaced by a new field at offset L− 46.

NaC contains both the link name and comment as two BSTRs, directly placed next to each other. The link
name comes first, followed by the comment. This field is capable of storing 112 bytes, but the FFS reserves
one byte making in total 110 bytes available. In case the comment is too long and cannot be placed in this
field, an additional comment block is created keeping only the comment, and this field then only keeps the
file name.

CmtBlk is the key of the comment block, keeping the file comment if the NaC field is too short. If no
comment block is needed, this field is 0. The comment block is described in section 13.6.9.

13.6.8 The File Extension Block
The file extension block keeps keys of additional file data blocks in case the L − 56 keys in the file header
block are not sufficient to keep all keys. It looks as follows:

Table 13.15: File Extension Block
Long-word Offset Content Notes
0 Type shall be 16, this is the BCPL constant T.LIST
1 OwnKey key of this block (self-reference)
2 BlkCnt number of data block keys included
3 0 reserved for future use
4 0 reserved for future use
5 Chksum LW sum over block is 0
6 DataBlk next L− 56 keys of data blocks

L-50 0 reserved for future use

L-3 Parent key of the file header block
L-2 NextExt key of next file extension block
L-1 SecType shall be -3, this is the BCPL constant ST.FILE

Type is the primary type of this block. It is always 16, which is the BCPL constant T.LIST

OwnKey is the key of this block itself.

BlkCnt is the number of data block keys included in this block. Due to the limited number of slots, this
number is smaller or equal than L− 56.

Chksum is the checksum over the entire block. It is chosen such that the long-word sum over the entire
block, including this field, is zero.

DataBlk is an array containing the next L−56 data blocks of the file. The array is filled from its bottom
end, i.e. L− 51 contains the key of first data block referenced in this extension block, L− 52 the second key
and so on. If this array overflows, additional blocks are provided in another file extension block whose key
is provided at offset L− 2.

Parent is the key of the file header block of the file whose data block keys are extended by this block.

NextExt is the key of the next file extension block if this block is not sufficient to keep all data block
keys. Otherwise, if this list the last file extension block, it is 0.

SecType along with Type identifies the type of this block. The value of this field shall be -3, that is
ST.FILE, identifying this block as belonging to a file.

244 Rom Kernel Reference Manual: DOS

13.6.9 The Comment Block
This block keeps a file comment for the long file name FFS flavors DOS\06 and DOS\07 in case the file
header, user directory or link block does not provide sufficient room to keep both the file name and the
comment.

Table 13.16: Comment Block
Long-word Offset Content Notes
0 Type shall be 64, this is T.COMMENT
1 OwnKey key of this block (self-reference)
2 Parent key of the header block
3 0 reserved for future use
4 0 reserved for future use
5 Chksum LW sum over block is 0
6 Comment object comment as BSTR

26 0 reserved for future use

Type identifies the type of this block. The value placed here shall be 64, corresponding to the constant
T.COMMENT.

OwnKey is the key of this block itself.
Parent is the key of the file header, user directory or link block to which the comment in this block

applies and which is extended by this block.
Chksum is the checksum over the entire block. It is chosen such that the long-word sum over the entire

block, including this field, is zero.
Comment is the comment, stored as a BSTR with the first character containing its size. This field is 80

bytes large, sufficient for comments of 79 characters.
The remaining bytes of this block shall be 0 and remain available for future extension.

13.6.10 The Directory Cache Block
This block type is only used by the directory cache flavors of the FFS, namely DOS\04 and DOS\05. It
keeps, in a more compact form, the contents of directories. This block looks as follows:

Table 13.17: Directory Cache Block
Long-word Offset Content Notes
0 Type shall be 33, this is T.DIRLIST
1 OwnKey key of this block (self-reference)
2 Parent key of the user directory block
3 NumNtry number of entries in this block
4 NextBlk key of the next directory cache block
5 Chksum LW sum over block is 0
6 Entries Directory content (see below)

Type identifies the type of this block; the constant put here is actually T.DIRLIST_KEY = 32 or’d with
the version of the directory cache data, which is currently 1.

OwnKey is the key of this block itself.

The Fast File System 245

Parent is the key of the directory header block of the user directory cached here, or the key of the root
block if this is the cache of the volume root directory.

NumNtry is the number of directory entries cached in this block. Each entry has a structure as indicated
in table 13.18. Such entries cannot extend over block boundaries; if a new entry does not fit entirely into a
block, another directory cache block is allocated. A directory cache block may also contain 0 entries as these
blocks are never released. Thus, directory caches can grow very large, and they are only rebuild when the
disk requires full validation, i.e. its bitmap becomes invalid.

NextBlk is the key of the next directory cache block for the same directory, or 0 in case this is the last
block.

Chksum is the checksum over the entire block. It is chosen such that the long word sum over the entire
block, including this field, is zero.

Entries contains the payload data of the directory cache. It consists of zero or more entries of the
following variably sized structure:

Table 13.18: Directory Cache Entry
Size (bits) Content Notes
32 Key key of the referenced object
32 Size size of the object in bytes
32 PrtBits protection bits of the object
32 OwnerID owner ID of the object
16 Days

timestamp of last change16 Mins
16 Ticks
8 SecType secondary type of the object
variable Name object name as BSTR
variable Comment object comment as BSTR
pad(16) padding padding to 16-bit boundary

The fields of this structure are as follows:

Key is the key of the file header block, the user directory block or the link block of this directory entry,
depending on the type of the file system object stored here.

Size is the byte size of the object, or 0 for links and directories.

PrtBits are the protection bits as represented in the FileInfoBlock structure.

OwnerID is reserved for a 32-bit group and owner ID that can be set by the SetOwner() function
(see 7.2.6). However, as the FFS has no means to verify access rights to an object, this field bears no
practical meaning.

Days, Mins and Ticks are the timestamp of the last time the corresponding object was modified and
a copy from the corresponding header block provided by Key. However, unlike there, only 16 bits are
available for each field. This is sufficient if the DateStamp structure is normalized, i.e. each field is as
small as possible.

SecType is a copy from the SecType field of the file, user directory or link block indexed by Key. All
possible values can be represented by a signed byte and are thus abbreviated here in an 8-bit field.

Name is a copy of the Name field of the file, user directory or link, though only the minimal number of
bytes are copied, i.e. N + 1 bytes for a file name of size N . The first byte of Name is its length, i.e. it is a
BSTR without NUL-termination.

Comment follows directly after the last byte of Name and is a copy of the Comment field of the file,
user directory or link block; again, only the minimal amount of bytes are copied to the directory cache, i.e.

246 Rom Kernel Reference Manual: DOS

the length byte and the comment itself. This forms again a BSTR without any NUL termination, and not a C
string.

padding is an optional padding byte to make the entire structure an even number of bytes large such
that the key of the next directory entry is on an even address in memory.

The directory cache does not store the targets of hard links or soft links; in particular, if the contents
of a directory of a cache-enabled file system is listed, this information is gained from the regular directory
structure.

Within a directory cache block, zero or more directory cache entries follow each other; their count is
provided by the NumNtry field in the directory cache block. If the FFS has to delete entries from the
directory, it moves entries within the current block upwards over the released entry. In worst case, no entries
remain in a directory cache block. Such blocks are not released, but remain available to accept new entries.

While the directory cache increases the performance of listing directory contents, keeping the directory
cache in sync with the regular directory structure requires additional overhead as directory cache blocks need
to be allocated, filled, and entries be moved within the blocks. Thus, while performance for listing directory
contents can improve, the performance for creating and deleting file system objects decreases. Usage of the
directory cache is therefore discouraged.

13.6.11 The Data Block
Data blocks contain the payload data of files. It comes in two variants: The OFS flavors of the FFS, namely
DOS\00, DOS\02, DOS\04 and DOS\06 keep redundant information in the data block that makes the file
system structure very robust against media corruption; however, as this information needs to be stripped off
before the payload data is delivered to FFS clients, and thus the block contents cannot be moved by DMA
into client supplied buffers, these variants are slow.

All remaining variants, including DOS\08, only keep payload data in the data blocks. This enables
the FFS to directly transmit data from the medium to the target buffer of the client if the de_Mask allows
it. Section 8.1.3 provides more information on DMA and its pitfalls. If the host adapter offers DMA, the
CPU is not involved in copying the data and thus these variants of the FFS are faster, though also less robust.
However, modern media rarely corrupt data, unlike floppy disks, and therefore these FFS flavors are generally
recommended. The OFS flavors are only useful for slow and unreliable data carriers.

The following table describes the structure of an OFS data block:

Table 13.19: OFS Data Block
Long-word Offset Content Notes
0 Type shall be 8, this is T.DATA
1 Header key of the file header
2 SeqNum sequence number of this block
3 Size data bytes in this block
4 NxtBlk next data block of this file
5 Chksum LW sum over block is 0
6 Data payload data

Type is the primary type of this block. It is always 8, which is the constant T.DATA
Header is the key of the file header block this file belongs to.
SeqNum is the sequential number of this block within the file. The first data block of the file has the

sequential number 1, the next one 2 and so on.
Size is the number of valid bytes within this data block. Valid data does not necessarily extend to the

The Fast File System 247

end of the block.
Chksum is the checksum over the entire block. It is chosen such that the long word sum over the entire

block, including this field, is zero.
Data is the actual payload data of the block. It consists of Size bytes forming the contents of the file.

The FFS data block does not have any structure, it contains only payload data. This has the consequence
that a disk scan, e.g. by a disk salvage tool, cannot safely identify whether a block carries administration
information of the disk, or is rather a data block that, by pure coincidence, reassembles an administration
block of one of the types listed in this section. Various disk salvage tools fell into this pitfall identifying
blocks as administration blocks that were, actually, data blocks allocated for a file.

13.6.12 The Bitmap Block
Bitmap blocks keep a bitmap — one bit per key — describing which keys are already occupied for adminis-
tration or payload data, and which keys are still available. Depending on the size of the volume, one or many
bitmap blocks exist. If the 25 keys available in the root block are not sufficient, bitmap extension blocks
described in section 13.6.13 are needed.

The structure of a bitmap block is as follows:

Table 13.20: Bitmap Block
Long-word Offset Content Notes
0 Chksum LW sum over block is 0
1 Bitmap bitmap of available blocks

Chksum is the checksum over the entire block. It is chosen such that the long word sum over the entire
block, including this field, is zero.

Bitmap holds for every available key administrated by this bitmap a bit that indicates whether that key
is available or not. If the bit is 1, the key is free, and if 0, the key is released.

Bits are addressed in groups of long words such that the least significant bit of each long word corresponds
to the lowest key and the most significant bit of a long word to the highest key within this long word. The
least significant bit of the long word at offset 1 of the first bitmap of a volume corresponds to the key
de_Reserved, i.e. the reserved blocks at the start of a volume are not represented in the bitmap. As
key 0 corresponds to the boot block and this block keeps the flavor of the FFS, and potentially boot code,
de_Reserved cannot be 0 as otherwise the FFS could allocate it as key, and thus overwrite parts of its
administration information. While the FFS could, in principle, always reserve key 0 for such purpose in the
bitmap, no such provisions are made.

Identifying whether a particular key is allocated is demonstrated by the following algorithm: It takes the
number of long words per block (e.g. 128 for a standard floppy disk, i.e. 512 bytes per block), the number
of reserved blocks, the key to investigate and the key of the root block. It assumes that readKey() brings
the key provided by its argument to memory, and that this function returns a pointer to an array of ULONGs
representing the block contents:

/* Bring key to memory */
ULONG *readKey(ULONG key);

/* Offsets of block fields */
#define BMKeys 49
#define BMNext 1
#define BMExt 24

248 Rom Kernel Reference Manual: DOS

/* Check whether a particular key is allocated */
LONG isKeyAllocated(ULONG longsperblock,ULONG reservedblocks,

ULONG key,ULONG rootkey)
{
ULONG keysperbitmap;
ULONG bitmap;
ULONG keyinbitmap;
ULONG longoffset;
ULONG *block;
ULONG bitinlong;

/* compute the number of keys per bitmap */
keysperbitmap = (longsperblock - 1) * 32;
/* compute the bitmap index in all bitmaps */
bitmap = (key - reservedblocks) / keysperbitmap;
/* compute the key within the bitmap */
keyinbitmap = (key - reservedblocks) % keysperbitmap;
/* compute the LW offset within the bitmap */
longoffset = keyinbitmap / 32 + 1;
/* compute the bit within the long */
bitinlong = keyinbitmap % 32;
/* read the root block */
block = readKey(rootkey);

/* Check whether the bitmap is linked in the root

** block or not. The first 25 are.

*/
if (bitmap < 25) {

/* Bring the proper keymap into memory */
block = readKey(block[bitmap + longsperblock - BMKeys]);

} else {
LONG extension,keyoffset;

/* Compute the extension block required,

** and key offset within the extension block

** to the bitmap block.

*/
extension = (bitmap - 25) / (longsperblock - 1);
keyoffset = (bitmap - 25) % (longsperblock - 1);
/* read the first extension block */
block = readKey(block[longsperblock - BMExt]);
/* Follow the link chain of extension

** blocks to find the right one

*/
while(extension > 0) {

block = readKey(block[longsperblock - BMNext]);
extension--;

}
/* Now read the right bitmap */
block = readKey(block[keyoffset]);

The Fast File System 249

}

/* check the bit corresponding to the key */
if (block[longoffset] & (1UL << bitinlong)) {

return DOSTRUE; /* is allocated */
} else {

return DOSFALSE; /* is free */
}

}

13.6.13 The Bitmap Extension Block
The bitmap extension block keeps the keys of additional bitmap blocks in case the number of bitmap keys in
the root block (25, namely) are not sufficient. This block has the following structure:

Table 13.21: Bitmap Extension Block
Long-word Offset Content Notes
0 BMKeys additional L− 1 bitmap keys

L-1 BMNext key of another bitmap extension block

This block, along with the bitmap, does not carry the usual block identifiers, i.e. a primary and a secondary
type. This is probably because bitmaps are disposable and can be recreated by a validation process if the FFS
needs them.

BMKeys is an array of L−1 keys, each of which contains a bitmap for the subsequent part of the volume.
The slots in this block are allocated top to bottom, with non-used entries set to 0.

BMNext is the key of another extension block if this extension block is not sufficient. It is 0 in case this
is the last bitmap extension block.

13.6.14 The Deleted Block
The FFS also marks unused administration blocks as deleted to ensure that a disk scan does not confuse them
with a used block. This change of the block type does not happen to data blocks of deleted files.

Table 13.22: Deleted Block
Long-word Offset Content Notes
0 Type shall be 1, this is T.DELETED
1 junk whatever remained here

This makes it particularly easy for disk salvage tools to identify which keys are actually still in active use
and which have been scratched on purpose.

250 Rom Kernel Reference Manual: DOS

Chapter 14

Packet Documentation

Packets — or DosPackets by the name of the structure — are the mechanism by which dos.library commu-
nicates with file systems and handlers, and by which the library delegates function to them. Many functions
of the library are only a thin wrapper around this packet interface, and run internally into the DoPkt()
function which creates and transmits such packets, then waits for the response of the handler and retrieves
the result codes. Chapter 12 introduces this function, and also specifies in section 12.2.1 the structure of such
packets.

When a handler receives a packet, it checks its dp_Type element for the requested action, retrieves the
parameters from it, executes the requested function, then fills the packet with the results of this function and
replies it to the originating process. Section 13.1.3 provides more details and also includes a minimal handler
as an example.

This chapter documents the possible values of dp_Type and thus the possible requests dos.library and
the users of the direct packet interface can submit. It is most relevant for implementers of handlers and
file systems that want to learn which packet types a handler is required to support. However, the list is also
interesting for authors of application programs as they will find here packet types triggering functions that are
only available through the direct packet interface, i.e. DoPkt() (or in general the functions of chapter 12)
and not through any other function of dos.library.

While this list covers all packets currently defined by AmigaDOS, third party handlers may support
additional packets; section 14.11 lists some generally known packets that are not part of AmigaDOS but have
been used in the past, though this list is not necessarily complete. In general, dp_Type values between 2050
and 2999 are reserved for private purposes.

14.1 Packets for File Interactions

The packet types listed in this section implement functions of dos.library that operate on or with files, such
as the library functions listed in chapter 5. They open and close files, read data from files or write data to
files, or set the position of the file pointer. These packets shall be supported by almost any handler and are
not exclusive to file systems. This section also list the packets implementing the record locking interface of
section 5.9, which is an extension made by AmigaDOS 36.

The arguments of the packets usually mirror the arguments of the corresponding dos.library functions
closely, though are often represented by their BCPL equivalents, i.e. BPTRs instead of regular pointers
or BSTRs instead of NUL-terminated C strings. The conversion of the C strings to BSTRs are performed
transparently within dos.library. Unfortunately, it means that even handlers written in Assembler or C need
to deal with legacy BCPL data types.

Packets for File Interactions 251

14.1.1 Opening a File for Shared Access
The packet ACTION_FINDINPUT initializes a FileHandle structure for shared access to a file.

Table 14.1: ACTION_FINDINPUT
DosPacket Element Value
dp_Type ACTION_FINDINPUT (1005)
dp_Arg1 BPTR to FileHandle
dp_Arg2 BPTR to FileLock
dp_Arg3 BPTR to BSTR of the path
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is used by the Open() function of dos.library which copies the packet type from its second
argument, namely accessMode. The macro ACTION_FINDINPUT therefore expands to the same value
as MODE_OLDFILE, see table 5.1 of section 5.3.1.

dp_Arg1 is a BPTR to a FileHandle structure whose fh_Arg1 handle should be initialized to a
value the handler or file system may use later on to identify the file opened by this packet, see also sec-
tion 5.7.1 for the specification of the file handle. All other packets that operate on files do not include the
FileHandle as one of their arguments, but instead the value placed in fh_Arg1. Interactive handlers, i.e.
handlers that implement ACTION_WAIT_CHAR, shall also set the fh_Port element of the FileHandle
to DOSTRUE to announce that they are interactive.

A handler or file system may also replace the fh_Type element of the FileHandle structure by
a pointer to an alternative port subsequent requests related to this file will be delivered to. This is a second
mechanism by which a file system or handler may disambiguate files. Otherwise, fh_Type keeps its original
value, namely the port to which the request to open the file was delivered.

dp_Arg2 contains a BPTR to a FileLock structure identifying the directory from which the file system
starts searching for the file to be opened. If this lock is ZERO, then the file system shall assume that the
provided path is relative to the root directory of the currently inserted volume. Handlers that do not implement
locks, in particular interactive handlers, ignore this argument. The Open() function obtains this lock through
GetDeviceProc(), and it is typically the current directory of the calling process, or the lock of an assign
taken from the file name argument, section 13.1.2 documents the details.

dp_Arg3 contains a BPTR to a BSTR providing the path including the name of the file to open. The
path is relative to the directory in dp_Arg2, and the part beyond the colon (“:”) if it exists, or all of the
path, shall be used by the handler to determine the file to open. For interactive handlers, its interpretation is
up to the handler, see sections 13.2 or 13.3 for examples. The same holds for file systems, but it is advisable
to follow the conventions of section 4.6, namely to separate path components by forward slashes (“/”), and
that the last component is the name of the file to open.

All other arguments of the packet shall be ignored. On success, the handler shall set dp_Res1 to
DOSTRUE, otherwise to DOSFALSE for error. On error, dp_Res2 shall be set to an error code from
dos/dos.h, see also section 10.2.9 for the list, or shall be set to 0 on success.

The purpose of this packet is to prepare a FileHandle structure for shared access, allowing both read
and write operations. If a file system cannot locate the requested file, this packet shall not create it but rather
fail with the error code ERROR_OBJECT_NOT_FOUND.

Handlers such as the Port-Handler or the CON-Handler may already open their resources as part of the
startup-packet handling and thus may not need to perform a lot of activities here, except incrementing a use
counter, see also section 13.1.3; the lock in dp_Arg2 is irrelevant for them, and if the path was already
interpreted during the handler startup, see section 13.1.2, then dp_Arg3 may also be ignored. Interactive
handlers shall be prepared to receive in dp_Arg3 the file name “*” or a path relative to CONSOLE: in which

252 Rom Kernel Reference Manual: DOS

case the newly created file shall use the resources of the already running handler process. In particular, the
above paths create duplicates of an already open file, see also section 5.7.3.

Because the CON-Handler does not initialize dol_Task of the DosList structure, each attempt to
open a file through its device name, i.e. “CON:”, “RAW:” or “AUX:”, will request a new handler process;
attempting to re-open the console by “*” or relative to “CONSOLE:” will instead re-use an already running
handler.

This is different for file systems which do initialize dol_Task and thus operate from a single process. In
this case fh_Arg1 in the FileHandle structure shall be initialized as it is delivered to subsequent packets
that operate on the file, and thus allows the file system to identify the file to work with. For file systems, both
the lock provided in dp_Arg2 and the path in dp_Arg3 are required for locating the file to open. The path
from dp_Arg3 is logically appended to the path locked by dp_Arg2, i.e. the file system starts interpreting
the former by scanning the directory hierarchy at the position given by dp_Arg2, or the root directory of
the inserted volume if dp_Arg2 is ZERO.

A special case arises if dp_Arg3 is the empty string; in such a case, dp_Arg2 shall be already a lock
to the file to open. This is implied by the above algorithm: Walking a directory tree ends whenever the path
terminates, and in this case it terminates right at the lock from dp_Arg2.

File systems shall be aware that the same file can be opened multiple times in shared access, and that
shared access also includes write access to the file. It is therefore advisable to split information on the file
into two objects: one local object that represents the state of the file as seen from each file handle, and a
global file specific object that stores the properties of the file common to them. Local states of the file are, for
example, the position of its file pointer which is different for each file handle, global states are for example
the size of the file, i.e. its end-of-file position. A pointer to the local object could be placed in fh_Arg1,
and it could contain a pointer to a global object that contains also a counter how often a file is accessed, and
which is released at the point all file handles to the file are closed.

14.1.2 Opening a File for Exclusive Access
The packet ACTION_FINDOUTPUT initializes a FileHandle structure for exclusive access to a file that
is either created if it does not exist, or replaces an existing file along with its contents.

Table 14.2: ACTION_FINDOUTPUT
DosPacket Element Value
dp_Type ACTION_FINDOUTPUT (1006)
dp_Arg1 BPTR to FileHandle
dp_Arg2 BPTR to FileLock
dp_Arg3 BPTR to BSTR of the path
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is used by the Open() function of dos.library which copies the packet type from its second
argument, namely accessMode. The macro ACTION_FINDOUTPUT therefore expands to the same value
as MODE_NEWFILE, see table 5.1 of section 5.3.1.

The arguments of the packet are initialized as for ACTION_FINDINPUT, see section 14.1.1, and the
primary and secondary result codes dp_Res1 and dp_Res2 shall be set likewise. Also, file systems should
deposit a unique value identifying the file in fh_Arg1 of the file handle, and interactive handlers shall set
fh_Port of the file handle to DOSTRUE.

For handlers that are not file systems, this packet may share the implementation with the packet type
ACTION_FINDINPUT, as handlers typically do not interpret the access mode under which a resource is
opened.

Packets for File Interactions 253

This is different for file systems: if the file identified by dp_Arg2 and dp_Arg3 does not exist, though
all directories but the last component of the path in dp_Arg3 do exist, then this packet shall not fail. Instead,
it shall create a file in the target directory under the name given by the last component of the path. In short,
while this packet shall create non-existing files, it shall not attempt to create intermediate directories between
the directory in dp_Arg2 and the file.

If the file identified by dp_Arg2 and dp_Arg3 already does exist, and it is not opened by any other file
handle, the contents of the existing file is removed, and a new empty file is created in its place. If opened by
other handles, this packet shall fail with ERROR_OBJECT_IN_USE. Regardless of whether an existing file
was replaced or a new file created, this packet grands exclusive access, and the file cannot be opened by any
other file handle until this handle is closed again.

What exactly happens if a file is replaced that is the target of hard links is implementation dependent.
The FFS replaces the file content such that the links point to the new file. The RAM-Handler detaches the
links such that the links point to the old content, and creates a new independent file of the new content.

14.1.3 Opening or Creating a File for Shared Access
The packet ACTION_FINDUPDATE initializes a FileHandle structure for shared access to a file, poten-
tially creating the file if it does not yet exist.

Table 14.3: ACTION_FINDUPDATE
DosPacket Element Value
dp_Type ACTION_FINDUPDATE (1004)
dp_Arg1 BPTR to FileHandle
dp_Arg2 BPTR to FileLock
dp_Arg3 BPTR to BSTR of file name
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is used by the Open() function of dos.library which copies the packet type from its second
argument, namely accessMode. The macro ACTION_FINDUPDATE therefore expands to the same value
as MODE_READWRITE, see table 5.1 of section 5.3.1.

The arguments of the packet are initialized as for ACTION_FINDINPUT, see section 14.1.1, except that
the packet shall create the file in case it does not exist. The primary and secondary result codes dp_Res1
and dp_Res2 shall be set likewise. Also, file systems should deposit a unique value identifying the file in
fh_Arg1 of the file handle, and interactive handlers shall set fh_Port of the file handle to DOSTRUE.

For handlers that are not file systems, this packet may share the implementation with the packet type
ACTION_FINDINPUT, as handlers typically do not interpret the access mode under which a resource is
opened.

For file systems, this packet works quite similar to ACTION_FINDINPUT described in section 14.1.2
except that it creates the file if it does not exist. If it does exists, its contents remain intact. In either case, the
file is opened for shared access and other handles may read from or write to it in parallel.

The purpose of this packet changed, unfortunately, with AmigaDOS 36 and what is documented above
is valid for this and all newer versions. The BCPL implementation of the OFS, and thus AmigaDOS 34 and
before used this packet to open an existing file in exclusive mode, quite the reverse from what the packet
does today. More details on this change is found in section 5.3.1.

14.1.4 Opening a File from a Lock
The packet ACTION_FH_FROM_LOCK initializes a FileHandle structure from a lock on an existing file.
Whether this access is shared or exclusive depends on the type of the lock. Upon success, the lock is absorbed
into the FileHandle.

254 Rom Kernel Reference Manual: DOS

Table 14.4: ACTION_FH_FROM_LOCK
DosPacket Element Value
dp_Type ACTION_FH_FROM_LOCK (1026)
dp_Arg1 BPTR to FileHandle
dp_Arg2 BPTR to FileLock
dp_Res1 Boolean result code
dp_Res2 Error code

This packet type implements the OpenFromLock() function of dos.library, see section 6.2.3. It opens
a file from a lock. For hierarchical file systems, this is close to an ACTION_FINDINPUT packet with
dp_Arg3 set to an empty string, except that dp_Arg2 is absorbed. This packet is new in AmigaDOS 36.

To uniquely identify the file and resources associated to it, the handler may, and file systems should, place
an identifier in the fh_Arg1 element of the FileHandle provided in dp_Arg1. This value is delivered as
argument of subsequent packets operating on the file and allows file systems to identify the target to work on.
More on this in section 14.1.1. Interactive handlers shall also set fh_Port of the file handle to DOSTRUE.

When successful, the lock in dp_Arg2 is absorbed into the file and shall be released when the file
handle is closed by ACTION_END, see 14.1.5. It is no longer available to the process initiating this packet.
In typical implementations, the lock or internal resources associated to the lock become part of the object
placed in fh_Arg1 of the file handle.

Before replying the packet, dp_Res1 shall be set by the handler to DOSTRUE on success, or DOSFALSE
on error. On success, dp_Res2 shall be set to 0, or to an error code from dos/dos.h otherwise.

14.1.5 Closing a File
The packet ACTION_END releases all file system internal resources related to a file and, if it was opened for
exclusive access, makes it accessible again.

Table 14.5: ACTION_END
DosPacket Element Value
dp_Type ACTION_END (1007)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Res1 Boolean result code
dp_Res2 Error code

dos.library uses this packet to implement the Close() function, see section 5.3.2.
dp_Arg1 contains the fh_Arg1 element of the FileHandle structure corresponding to the file that

is supposed to be closed. This value may be used by the file system or handler to uniquely identify the
resources associated to the file, see section 14.1.1 for more information.

This packet shall write out any pending changes, close the file, release all resources associated to it and,
in case the file was opened in exclusive mode, shall make the file accessible again. This packet does not
release the FileHandle structure, it does not even get access to it — this step is performed by dos.library
if this packet indicates success.

If there are still any packets blocking on the file to be closed, e.g. an ACTION_READ on an interactive
stream waiting for user input, such requests shall be canceled and replied as well.

Before replying to the packet, dp_Res1 shall be set to DOSTRUE on success or DOSFALSE on failure.
On success, dp_Res2 shall be set to 0, or to an error code otherwise.

If this packet is not successful, dos.library will not release the memory of the FileHandle structure,
and as such, it remains available for future operations. Thus, indicating failure implies that the file and
resources associated to it remain available, and clients of a file system or handler possibly continue to access
it. It is unfortunately unclear how a client will react on a failed ACTION_END.

Packets for File Interactions 255

14.1.6 Reading from a File

The packet ACTION_READ reads data from a file system or handler and advances the file pointer accordingly.

Table 14.6: ACTION_READ
DosPacket Element Value
dp_Type ACTION_READ (82)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Arg2 Pointer to the buffer
dp_Arg3 Number of bytes to read
dp_Res1 Bytes read or −1
dp_Res2 Error code

This packet implements the Read() function of dos.library, see 5.4.1. Packet arguments contain the
following data:

dp_Arg1 is a copy from fh_Arg1 of the FileHandle structure and may be used by the file system
or handler to identify the file. Note that it is not the FileHandle itself; instead, the handler may create and
insert an identifier of file into the FileHandle when opening it, see 14.1.1 for details.

dp_Arg2 is a pointer (not a BPTR) to the buffer to be filled.

dp_Arg3 is the number of bytes to read.

If a file system mounted on an exec device implements this packet by reading data from the device, it
should check the supplied target buffer against de_Mask in the environment vector of the file system. If
the buffer start or end address binary and’ed with the one’s complement of the mask is non-zero, the file
system should not attempt to directly fill the buffer from the underlying device. Instead, it should first read
the data into a buffer allocated with the memory requirements from de_BufMemType, and copy the buffer
contents manually to the target buffer. Also, file systems should never read more than de_MaxTransfer
bytes at once, and potentially break up the transfer into multiple reads. These workarounds are unfortunately
necessary for some broken device implementations, see section 8.1.3 for further details.

If successful, the file pointer of the file shall be advanced by the number of bytes that could be read from
it. On an error, the file pointer shall remain unaltered.

Before replying this packet, the handler shall fill dp_Res1 with the number of bytes that could be
transferred to the buffer, or −1 for an error. The number of read bytes may also be 0 if no data could be
transferred, for example because the end-of-file has been reached.

Unlike file systems, interactive handlers typically block if no data can be read, i.e. do not respond to the
packet immediately. The packet is replied as soon as at least a single byte becomes available. They then
deliver at most dp_Arg3 bytes of the data that became available, even if this is less data than requested. De-
tails, however, depend on the handler and its configuration; the Port-Handler, for example, can be configured
such that it does not block if no data is available on the serial port, but to return immediately with 0 bytes
in the buffer, see section 13.3.1. An alternative approach to prevent blocking for an undetermined time span
that shall be supported by all interactive handlers is ACTION_WAIT_CHAR specified in section 14.8.1. The
latter does not remove any bytes from the stream, they remain available for a subsequent ACTION_READ.

In case of an error, i.e. if the primary result code is −1, dp_Res2 shall be filled with an error code from
dos/dos.h or the list from section 10.2.9, otherwise it shall be set to 0.

Note that there are no separate packet types corresponding to the buffered IO functions from section 5.6.
Instead, dos.library functions at the caller side manage the buffer, monitor its fill state and potentially call
into Read() which then generates this packet.

256 Rom Kernel Reference Manual: DOS

14.1.7 Writing to a File

The packet ACTION_WRITEwrites data to a file system or handler and advances the file pointer accordingly.

Table 14.7: ACTION_WRITE
DosPacket Element Value
dp_Type ACTION_WRITE (87)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Arg2 Pointer to the buffer
dp_Arg3 Number of bytes to write
dp_Res1 Bytes written or −1
dp_Res2 Error code

This packet implements the Write() function of dos.library, see 5.4.2. The elements of the packet are
populated as follows:

dp_Arg1 is a copy from fh_Arg1 of the FileHandle structure and may be used by the file system
or handler to identify the file.

dp_Arg2 is a pointer (not a BPTR) to the buffer containing the data to be transferred.

dp_Arg3 is the number of bytes to write.

If a file system mounted on an exec device implements this packet by writing data to the device, it should
check the supplied target buffer against de_Mask in the environment vector of the file. If the buffer start
or end address binary and’ed with the one’s complement of the mask is non-zero, the file system should not
attempt to directly write the buffer to the underlying device. Instead, it should first manually copy the data
into a buffer allocated with the memory requirements from de_BufMemType, and then write the buffer
contents to the device. Also, file systems should never write more than de_MaxTransfer bytes at once,
and potentially break up the transfer into multiple writes. These workarounds are unfortunately necessary for
some broken device implementations, see section 8.1.3 for further details.

If successful, the file pointer of the file shall be advanced by the number of bytes that could be written.
On an error, the file pointer shall remain unaltered.

Before replying this packet, the handler shall fill dp_Res1 with the number of bytes that could be
transferred from the buffer, or −1 for an error condition. In case of an error, i.e. for the primary result
code −1, dp_Res2 shall be filled with an error code, otherwise it shall be set to 0.

Note that there are no separate packet types corresponding to the buffered IO functions from section 5.6.
Instead, dos.library functions at the caller side manage the buffer, monitor its fill state and potentially call
into Write() which then generates this packet.

14.1.8 Adjusting the File Pointer

The packet ACTION_SEEK sets the file pointer relative to a base location.

Table 14.8: ACTION_SEEK
DosPacket Element Value
dp_Type ACTION_SEEK (1008)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Arg2 File pointer offset
dp_Arg3 Seek mode from Table 5.2 in 5.4.3
dp_Res1 Previous file position
dp_Res2 Error code

Packets for File Interactions 257

This packet implements, to a major degree, the Seek() function of dos.library, see 5.4.3. The elements
of the packet contain the following data:

dp_Arg1 is a copy from fh_Arg1 of the FileHandle structure and may be used by the file system
or handler to identify the file.

dp_Arg2 defines the new location of the file pointer relative to a position identified by dp_Arg3, it
comes from the second argument of Seek(). This is an offset that may be positive or negative.

dp_Arg3 defines the position to which dp_Arg2 is relative. It is one of the modes in table 5.2 of
section 5.4.3 and is therefore identical to the third argument of Seek().

If the resulting position of the file handle as computed from dp_Arg2, its current value and the mode
from dp_Arg3 is outside of the file, i.e. either negative or beyond the end-of-file, the attempt shall fail with
the error code ERROR_SEEK_ERROR.

Before replying this packet, the handler shall fill dp_Res1 with the previous value of the file pointer,
i.e. before making the requested adjustment, or to −1 in case an error occurred. In the latter case, dp_Res2
shall be filled with an error code, otherwise it shall be set to 0. In case of an error, the file pointer shall remain
unaltered.

If a handler, for example an interactive handler, does not implement this packet, it shall still identify it
and set dp_Res1 to −1 — and not 0 — and dp_Res2 to ERROR_ACTION_NOT_KNOWN as this allows
users to identify the error, see also table 13.2 in section 13.1.3.

Unfortunately, it is not clearly defined how this packet should interact with files that are larger than
2GB. A suggested implementation strategy is to interpret dp_Arg2 as unsigned 32 bit offset for the mode
OFFSET_BEGINNING and extend it to 64 bits, and sign-extend it for OFFSET_CURRENT to 64 bits. For
the mode OFFSET_END, it is suggested to first zero-extend the 32 bit negative of dp_Arg2 to 64 bits, and
then negate it in 64 bits. The 64 bit offset formed by the above steps is either the new file pointer, or should
be added to the 64-bit file pointer or the 64-bit file size to form the new file pointer. The 32 least significant
bits of the of the current 64-bit file pointer shall be returned in dp_Res1. Unfortunately, that leaves it to
the client to check dp_Res2 in case the result is −1 and thus to distinguish a successful seek from an error
condition.

While this packet type implement the core of the Seek() function, the latter is also aware of the (caller-
side) buffer of the FileHandle and performs potentially a flush of this buffer. The packet cannot, of course,
perform this step as it does not have access to the buffer of the FileHandle.

14.1.9 Setting the File Size
The packet ACTION_SET_FILE_SIZE adjusts the size of a file, either truncating it or extending it beyond
its current end of file.

Table 14.9: ACTION_SET_FILE_SIZE
DosPacket Element Value
dp_Type ACTION_SET_FILE_SIZE (1022)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Arg2 File size adjustment
dp_Arg3 Mode from Table 5.2 in 5.4.3
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the SetFileSize() function of dos.library, see 5.4.4. This packet was intro-
duced in AmigaDOS 36. The elements of the packet contain the following data:

dp_Arg1 is a copy from fh_Arg1 of the FileHandle structure and may be used by the file system
or handler to identify the file.

258 Rom Kernel Reference Manual: DOS

dp_Arg2 defines the new size of the file, or equivalently the new position of the end of file, relative to a
position identified by dp_Arg3. This offset is coming from the second argument of SetFileSize().

dp_Arg3 defines the position dp_Arg2 is relative to. It is one of the modes in table 5.2 of section 5.4.3
and is therefore identical to the third argument of SetFileSize(). The new end-of-file position of the
file can therefore be set relative to the start of the file, i.e. dp_Arg2 is the new size of the file, relative to the
current file pointer, or relative to the current end-of-file.

When truncating a file, all contents beyond the new end of file are lost. When extending a file, the
contents of the file in the extended region is undefined. Unlike other operating systems, AmigaDOS does not
enforce zero-initialization of the extended region. The file pointers of all file handles accessing this file shall
be clamped to the new file size if necessary, but shall remain unaltered otherwise.

Unfortunately, it is not clearly defined how this packet should interact with files that are larger than
2GB. A suggested implementation strategy is to interpret dp_Arg2 as unsigned 32 bit offset for the mode
OFFSET_BEGINNING and extend it to 64 bits, and sign-extend it for OFFSET_CURRENT to 64 bits. For
the mode OFFSET_END, it is suggested to first zero-extend the 32 bit negative of dp_Arg2 to 64 bits, and
then negate it in 64 bits. The 64 bit offset formed this way is either the new file size directly, or shall be added
to the current file pointer or the current file size to obtain the target file size.

Before replying this packet, the handler shall fill dp_Res1 with a Boolean success indicator, DOSTRUE
in case it could extend or truncate the file as requested, or DOSFALSE in case of error. In case of success,
dp_Res2 shall be set to 0, otherwise it shall be set to an error code.

If a handler, for example an interactive handler, does not implement this packet, it shall still identify it
and set dp_Res1 to −1 — and not 0 — and dp_Res2 to ERROR_ACTION_NOT_KNOWN as this allows
users to identify the error, see also table 13.2 in section 13.1.3.

Additional information on this packet is found in section 5.4.4 which describes the dos.library function
that is based on it.

14.1.10 Locking a Record of a File
The packet ACTION_LOCK_RECORD locks a record of a file. Such a record lock neither prevents reading
from nor writing to the locked region, it just prevents locking an overlapping region with a conflicting lock,
see section 5.9 for details how the protocol is supposed to be used.

Table 14.10: ACTION_LOCK_RECORD
DosPacket Element Value
dp_Type ACTION_LOCK_RECORD (2008)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Arg2 Start offset of record
dp_Arg3 Length of record
dp_Arg4 Type of lock from table 5.5 in 5.9.1
dp_Arg5 Timeout (if applicable) in ticks
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the LockRecord() function of dos.library and attempts to lock a record of a
file, given as start offset from the beginning of the file and a byte size. There is no packet corresponding to
LockRecords(). Instead, the latter locks records sequentially. This packet was added in AmigaDOS 36.
Arguments of the packet are populated as follows:

The file is identified by dp_Arg1 which is a copy from fh_Arg1 of the FileHandle structure1.

1The information on dp_Arg1 in [1] is incorrect.

Packets for File Interactions 259

The record to lock is identified by dp_Arg2 and dp_Arg3 which correspond to the offset and
length arguments of the LockRecord() function.

The mode by which the record is supposed to be locked is given by dp_Arg4, it identifies whether the
access is shared or exclusive, and whether a timeout is applied or not. The mode is a value from table 5.5 in
section 5.9.1, and more information on the modes is found there.

If the mode from dp_Arg4 includes a timeout, see table 5.5, the file system shall wait at most dp_Arg5
ticks for the record to become available. Otherwise, dp_Arg5 is ignored and the packet shall fail immedi-
ately if locking is not possible.

If locking the record is possible, or possible within the timeout, then dp_Res1 shall be set to DOSTRUE
when replying this packet. In such a case, dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set
to DOSFALSE and dp_Res2 to an error code. If a timeout is provided, and the lock could not be obtained
within the timeout because an overlapping region is already locked by a conflicting record lock, the file
system shall signal ERROR_LOCK_TIMEOUT as error code. If no timeout was given and the lock could not
be obtained, the error code ERROR_LOCK_COLLISION shall be signaled instead.

14.1.11 Release a Record of a File
The packet ACTION_FREE_RECORD releases a record lock on a record of a file.

Table 14.11: ACTION_FREE_RECORD
DosPacket Element Value
dp_Type ACTION_FREE_RECORD (2009)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Arg2 Start offset of record
dp_Arg3 Length of record
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the UnLockRecord() function of dos.library and releases a lock on a subset
of a file, identified by start position and length. The UnLockRecords() function is not implemented by a
separate packet; instead, dos.library sequentially calls UnLockRecord() for each record. This packet was
introduced in AmigaDOS 36. Arguments of the packet are populated as follows:

The file is identified by dp_Arg1 which is a copy from the fh_Arg1 element of the FileHandle
structure.

The record to release is given by the start offset within the file provided by dp_Arg2 and the byte size
of the record in dp_Arg3.

On success, dp_Res1 shall be set to DOSTRUE and dp_Res2 to 0. On error, dp_Res1 shall be set to
DOSFALSE and dp_Res2 to an error code. If, in particular, the specified region is not locked, this packet
shall fail with ERROR_RECORD_NOT_LOCKED as error code.

14.2 Packets for Interacting with Locks
The packets listed in this section implement the dos.library functions listed in chapter 6; they create, release
or duplicate locks, or create directories returning a lock. A lock is an abstract representation of a file system
object, granting shared or exclusive access to it. If the lock represents a directory, it can be used to replace
the current directory of a process. If it represents a file, a file handle can be opened from it. Locks can also be
used to retrieve metadata such as comments or protection bits of a file system object. Locks never represent
soft- or hard links, they are resolved when obtaining the lock, and the lock then represents the target of the
link.

260 Rom Kernel Reference Manual: DOS

14.2.1 Obtaining a Lock
The ACTION_LOCATE_OBJECT packet locates an object — a file or a directory — on a file system and
creates from it a lock identifying the object uniquely.

Table 14.12: ACTION_LOCATE_OBJECT
DosPacket Element Value
dp_Type ACTION_LOCATE_OBJECT (8)
dp_Arg1 BPTR to FileLock
dp_Arg2 BPTR to BSTR of the object name
dp_Arg3 Mode of the lock
dp_Res1 BPTR to FileLock
dp_Res2 Error code

This packet creates a lock from a path and a directory to which this path is relative, also represented by a
lock. As such, this packet implements the Lock() function of dos.library as found in section 6.1.1.

dp_Arg1 is a BPTR to a FileLock structure that represents the object to which the path given in
dp_Arg2 is relative. If dp_Arg1 is ZERO, the path in dp_Arg2 is relative to the root of the currently
inserted volume. The Lock() function determines this lock from the GetDeviceProc() function, which
delivers for example the current directory of the caller or the lock of an assign identified from the path.

dp_Arg2 is a BPTR to a BSTR of an absolute path or a path relative to dp_Arg1 of the object to be
locked. That is, the location of the object to be locked is logically formed by appending the path in dp_Arg2
to the directory identified by the lock in dp_Arg1. If the string in dp_Arg2 is empty, the object to be locked
is identical to the object locked by dp_Arg1.

dp_Arg3 is the type of the lock to be created as defined in table 6.1 in section 6.1.1. The value
SHARED_LOCK requests a non-exclusive lock on an object; multiple shared locks can be held on the same
object. The value EXCLUSIVE_LOCK requests an exclusive lock. Attempting to exclusively lock an ob-
ject that is already locked shall fail, and attempting to lock an object that is already exclusively locked shall
fail as well2. Unfortunately, some programs call Lock() with an invalid value in accessMode, and file
systems should be prepared to receive such values in dp_Arg3. They should be considered equivalent to
SHARED_LOCK.

As opening a file implies getting access rights on the file to be opened similar to locks, an exclusively
locked file cannot be opened in any mode from its name, but only by ACTION_FH_FROM_LOCK. A file
locked in a shared mode cannot be replaced by a packet of type ACTION_FINDOUTPUT, but is accessible
in any other mode. A shared lock does therefore not protect the file contents from getting changed, but the
file from getting replaced. An exclusively locked directory cannot be deleted, but objects within it can be
created, deleted or changed.

If a lock can be granted, the file system shall create a FileLock structure representing the locked object.
Such structures are allocated, maintained and released by file systems and not dos.library. The FileLock
shall be initialized as follows (see also 6.4):

fl_Task shall point to a MsgPort through which the maintaining file system can be contacted, which
is typically, but not necessarily the process message port pr_Port of the file system itself.

fl_Volume shall be a BPTR to the DosList structure representing the volume on which the locked
object is located, see chapter 8.

fl_Access shall be filled with dp_Arg3, identifying the type of the lock.
fl_Link may be used to queue up locks on a volume that is currently not accessible. As locking an

object on a non-inserted volume is not possible, this element is only filled when a volume containing locked
2As the root directory is always also represented as ZERO lock, an exclusive lock on this directory is probably not very exclusive,

which is why [7] suggests not to permit exclusive locks on the volume root.

Packets for Interacting with Locks 261

objects is ejected or becomes otherwise inaccessible. The file system will then store all such locks in a singly
linked list starting at dol_LockList of the DosList and chained by fl_Link. If the same volume is
then re-inserted into another drive, another instance of the same file system is able to pick up these locks and
manages them instead; this requires patching fl_Task to point to the port of the file system that takes over
the lock. Thus, for example, a lock on an object in drive DF0 will remain valid even if the volume is removed
and re-inserted into DF1.

fl_Key may be used for the purpose of the file system for uniquely identifying the locked object. It is
an opaque value as far as dos.library is concerned.

On success, the BPTR to the created FileLock shall be stored in dp_Res1 and dp_Res2 shall be set
to 0. On error, dp_Res1 shall be set to ZERO and dp_Res2 to an error code from dos/dos.h identifying
the source of the problem, see also section 10.2.9 for a list of error codes.

14.2.2 Duplicating a Lock
Despite its misguiding name, the packet ACTION_COPY_DIR creates a copy of a (shared) lock, regardless
of whether it locks a directory or a file. FileLocks shall not be copied by making a byte-wise (shallow)
copies of their memory representation.

Table 14.13: ACTION_COPY_DIR
DosPacket Element Value
dp_Type ACTION_COPY_DIR (19)
dp_Arg1 BPTR to FileLock
dp_Res1 BPTR to FileLock
dp_Res2 Error code

This packet implements the DupLock() function of dos.library, see section 6.1.2, and attempts to repli-
cate the lock passed in dp_Arg1. If this argument is ZERO, the packet shall create a lock on the root
directory of the currently inserted volume.

On success, dp_Res1 is filled with the BPTR to a copy of the FileLock passed in, and dp_Res2
is set to 0. On error, dp_Res1 is set to ZERO and dp_Res2 to an error code. While [1] indicates that
dp_Res1 may be ZERO on an attempt to replicate the ZERO lock, file systems shall instead create a shared
lock on the root directory as otherwise application programs may misinterpret the result as failure.

This packet is identical to ACTION_LOCATE_OBJECT with dp_Arg3 set to SHARED_LOCK and
dp_Arg2 set to an empty string.

14.2.3 Finding the Parent of a Lock
The packet ACTION_PARENT obtains a shared lock on the directory containing a locked object.

Table 14.14: ACTION_PARENT
DosPacket Element Value
dp_Type ACTION_PARENT (29)
dp_Arg1 BPTR to FileLock
dp_Res1 BPTR to FileLock
dp_Res2 Error code

This packet implements the ParentDir() function of dos.library (see section 6.1.3) and attempts to
create a (shared) lock on the directory containing the object identified by dp_Arg1. If no parent exists
because dp_Arg1 is a lock on the root directory or the ZERO lock, the file system shall set dp_Res1 to

262 Rom Kernel Reference Manual: DOS

ZERO and dp_Res2 to 0, indicating that this is not a failure case. Note that dp_Arg1 may also be the lock
on a file in which case a lock on the containing directory shall be created.

This packet is subtly different from attempting to lock the path “/” relative to the lock dp_Arg1. The
latter fails with an error code ERROR_OBJECT_NOT_FOUND on the attempt to find the parent of the root
directory. In all other cases, the two approaches to lock the parent directory work alike.

On success, this packet shall fill dp_Res1 with a BPTR to a FileLock representing the parent di-
rectory of dp_Arg1, or ZERO if dp_Arg1 is a lock on the root directory. dp_Res2 shall be set to 0 on
success. On error, dp_Res1 is set to ZERO and dp_Arg2 to an error code.

14.2.4 Duplicating a Lock from a File Handle
The packet ACTION_COPY_DIR_FH creates a shared lock from an opened file represented by a file handle;
that is, it locks the object accessed by the handle.

Table 14.15: ACTION_COPY_DIR_FH
DosPacket Element Value
dp_Type ACTION_COPY_DIR_FH (1030)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Res1 BPTR to FileLock
dp_Res2 Error code

This packet implements the DupLockFromFH() function of dos.library, see 6.2.1. It was added in
AmigaDOS 36. Creating a lock from a file handle works only if the file has been opened in a non-exclusive
mode, i.e. either in MODE_READWRITE or in MODE_OLDFILE, and results in a shared lock on the opened
file.

dp_Arg1 is a copy of the fh_Arg1 element of the FileHandle structure, see section 5.7.1, and thus
serves to identify the opened file. This handle shall remain unchanged and usable after this packet returns.

On success, dp_Res1 shall be filled by the BPTR to the FileLock created. In such a case, dp_Res2
shall be set to 0. On error, dp_Res1 shall be set to ZERO and dp_Res2 to an error code.

14.2.5 Finding the Parent Directory of a File Handle
The packet ACTION_PARENT_FH obtains a lock on the directory containing a file identified by a file handle.

Table 14.16: ACTION_PARENT_FH
DosPacket Element Value
dp_Type ACTION_PARENT_FH (1031)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Res1 BPTR to FileLock
dp_Res2 Error code

This packet implements the ParentOfFH() function of dos.library, see section 6.2.2, and as such
creates a shared lock on the directory that contains the file opened to the provided file handle. Same as the
function, this packet was added in AmigaDOS 36.

dp_Arg1 is a copy of the fh_Arg1 element of the FileHandle structure and thus identifies the file
whose parent directory is to be locked.

Unlike ACTION_COPY_DIR_FH, this packet does not fail if the file was opened in exclusive mode. It
will, of course, fail if the parent directory is exclusively locked.

On success, dp_Res1 is filled with a BPTR to the FileLock created, and dp_Res2 is set to 0. On
error, dp_Res1 is set to ZERO and dp_Res2 to an error code.

Packets for Interacting with Locks 263

14.2.6 Creating a new Directory
The packet ACTION_CREATE_DIR creates a new directory and returns an exclusive lock to it.

Table 14.17: ACTION_CREATE_DIR
DosPacket Element Value
dp_Type ACTION_CREATE_DIR (22)
dp_Arg1 BPTR to FileLock
dp_Arg2 BPTR to BSTR of the directory name
dp_Res1 BPTR to FileLock
dp_Res2 Error code

This packet implements the CreateDir() function of dos.library, see section 6.1.4. The arguments
are as follows:

The lock in dp_Arg1 is the directory to which the path in dp_Arg2 is relative. The CreateDir()
function obtains it from the GetDeviceProc() function applied to the path.

The path in dp_Arg2 is logically concatenated to the directory represented by the lock in dp_Arg1,
or is relative to the root directory of the currently inserted volume if dp_Arg1 is ZERO. The name of the
directory to be created is given by the last component of the path in dp_Arg2, all components in the path
upfront must exist or the packet shall fail with the error ERROR_OBJECT_NOT_FOUND, i.e. this packet
shall not attempt to create directories recursively.

If the path in dp_Arg2 describes an already existing file system object, that is, if the target already exists
as a file or directory, this packet shall fail with the error code ERROR_OBJECT_EXISTS.

On success, this packet returns an exclusive lock to the directory created in dp_Res1, and dp_Res2 is
set to 0. On error, dp_Res1 is set to ZERO and dp_Res2 is set to an error code.

14.2.7 Comparing two Locks
The packet ACTION_SAME_LOCK compares two locks on the same file system and checks whether they
lock the same object.

Table 14.18: ACTION_SAME_LOCK
DosPacket Element Value
dp_Type ACTION_SAME_LOCK (40)
dp_Arg1 BPTR to FileLock
dp_Arg2 BPTR to FileLock
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is the core of the SameLock() function of dos.library (see 6.1.7), which, however, first
checks whether the locks to compare are on the same file system. Only if so, the file system corresponding
the two locks is contacted with this packet to compare them. This packet was introduced in AmigaDOS 36.

The arguments dp_Arg1 and dp_Arg2 are BPTRs to the two FileLocks to compare.
Upon reply, dp_Res1 shall be set to DOSTRUE if the two locks are on the same object, and in that case,

dp_Res2 shall be set to 0. If the two locks are on two different objects, then dp_Res1 shall be set to
DOSFALSE and dp_Res2 shall also be set to 0. On error, dp_Res1 is set to 0 and dp_Res2 to an error
code3.

If the file system does not implement this packet, the dos.library SameLock() function instead com-
pares the fl_Key elements of the two locks, and assumes that the locks point to the same object if their keys
are identical.

3The documentation in [1] on dp_Res1 is incorrect.

264 Rom Kernel Reference Manual: DOS

14.2.8 Changing the Mode of a Lock or a File Handle
The packet ACTION_CHANGE_MODE changes the access mode of a lock or a file handle, thus potentially
granting exclusive access — if possible — or lowering the rights to shared access.

Table 14.19: ACTION_CHANGE_MODE
DosPacket Element Value
dp_Type ACTION_CHANGE_MODE (1028)
dp_Arg1 Object type from table 6.2 in 6.1.6
dp_Arg2 BPTR to FileLock or FileHandle
dp_Arg3 Target mode
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the ChangeMode() function of dos.library and shall therefore change the
access mode of files or locks to exclusive or shared access mode. This packet was added in AmigaDOS 36.

dp_Arg1 identifies the object whose mode is to be changed. This is a value from table 6.2 in sec-
tion 6.1.6, i.e. either CHANGE_LOCK to adjust the type of a lock, or CHANGE_FH to change the access mode
of a file handle.

dp_Arg2 is the BPTR to the object whose mode is to be changed. If dp_Arg1 is CHANGE_LOCK,
this is a BPTR to a FileLock structure, if dp_Arg1 is CHANGE_FH, it is a BPTR to a FileHandle
structure. Note that this is unusual as files are typically identified by their fh_Arg1 element and not by the
handle itself. This packet is an exception.

dp_Arg3 is the target mode. This is either SHARED_LOCK for shared access to the file or the lock, or
EXCLUSIVE_LOCK for exclusive access to the file or the lock4. However, as information on this packet
is sparse and application programs can call the corresponding ChangeMode() function with incorrect tar-
get modes, file systems should also accept ACTION_FINDINPUT and ACTION_FINDUPDATE for shared
access and ACTION_FINDOUTPUT for exclusive access.

Note that it is not always possible to change the mode of a lock or a file to exclusive access, namely if it
is accessed by a second file handle or locked a second time. In such a case, this packet shall fail.

Upon reply, dp_Res1 shall include a Boolean success indicator, DOSTRUE for success or DOSFALSE
for failure. In the former case, dp_Res2 shall be 0, in the latter case, it shall contain an error code.

14.2.9 Releasing a Lock
The packet ACTION_FREE_LOCK releases a lock on a file system object.

Table 14.20: ACTION_FREE_LOCK
DosPacket Element Value
dp_Type ACTION_FREE_LOCK (15)
dp_Arg1 BPTR to FileLock
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the dos.library function UnLock() (see 6.1.5) and releases a FileLock. A
BPTR to the lock to release is provided in dp_Arg1. If this argument is ZERO, the file system shall ignore
the request and return success.

As first step of precaution, file systems should zero the fl_Task element of the FileLock structure
because dos.library ignores attempts to unlock such locks. This improves system stability a bit if applications

4The information in [1] is incorrect on this subject matter.

Packets for Interacting with Locks 265

erroneously attempt to release a lock twice. In a second step, file system shall release all internal resources
related to the lock, until finally the FileLock structure itself shall be disposed; it is not allocated or released
by dos.library.

If the volume the locked object is located on is currently not inserted, and the lock has not been claimed
by another file system, i.e. its fl_Task element still points to a port of this file system and it is still in the
dol_LockList, the attempt to unlock the lock shall be satisfied, and the lock shall be removed from this
list and then released.

When replying this packet, dp_Res1 shall be set to DOSTRUE on success and DOSFALSE on error. On
success, dp_Res2 shall be set to 0, otherwise it shall be set to an error code. There are actually only few
reasons why this packet could fail, probably because the passed in BPTR is invalid and does not point to a
valid FileLock. The UnLock() function does not return this result code, and also ignores dp_Res2.
Thus, dos.library has no means to forward such errors to its callers.

14.3 Packets for Examining Objects
The packets in this section implement the functions of section 7.1 on packet level, i.e. they retrieve from the
file system information on objects identified by locks. They also allow to iterate over directories and receive
information from all objects within. Unfortunately, implementing the packets in this section in a robust way
is nontrivial as directory contents can change while iterating over it.

14.3.1 Examining a Locked Object
The ACTION_EXAMINE_OBJECT packet retrieves information such as file name, comment and protection
bits from a lock on an object and fills a FileInfoBlock with this data.

Table 14.21: ACTION_EXAMINE_OBJECT
DosPacket Element Value
dp_Type ACTION_EXAMINE_OBJECT (23)
dp_Arg1 BPTR to FileLock
dp_Arg2 BPTR to a FileInfoBlock structure
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the Examine() function of dos.library defined in section 7.1.1. It fills the
FileInfoBlock structure pointed to by dp_Arg2 with information on the object identified by the lock
in dp_Arg1. See section 7.1 for the specification of this structure.

However, as the AmigaDOS handler design is based on BCPL, small differences exist between how
this packet operates and how the Examine() function provides its results to the caller. In specific, the
fib_FileName and fib_Comment elements shall be filled with a BSTRs, i.e. the first character is the
length of the file name or the comment. The conversion to a NUL-terminated C string is performed by
dos.library external to the file system.

The elements fib_DirEntryType and fib_EntryType shall be filled with a value from table 7.1
in section 7.1, identifying the type of the object. As programs are not consistent on the element they read, both
should be filled with the same value. The value 0 should be avoided as some programs identify directories by
testing against a positive value whereas others check for a non-negative value, i.e. interpret 0 as a directory.

The fields fib_OwnerUID and fib_OwnerGID shall be set to 0, unless the file system has an idea
on user and group IDs — unfortunately AmigaDOS cannot make use of these values anyhow, and it is not
documented how these fields shall be interpreted. fib_Reserved shall be left alone, in particular file sys-
tems shall not use it to store internal state information. Such information may only go into fib_DiskKey,
which is an element application programs, i.e. callers of dos.library, shall not interpret.

266 Rom Kernel Reference Manual: DOS

If dp_Arg1 is ZERO, then the root directory of the currently inserted volume shall be examined. In such
a case, fib_FileName shall be filled with the name of the volume.

The BCPL implementations of some system commands of the Kickstart 1.3, including Dir and List,
only reserve storage for a reduced version of the FileInfoBlock structure that does not include the
fib_Reserved field. A file system that is supposed to operate under such obsolete operating system
versions shall therefore not modify any element of this field as otherwise memory corruption may result.

The ACTION_EXAMINE_OBJECT packet is also used to initiate a scan over a directory to examine all
objects within in it. Then dp_Arg1 is the lock of the directory to be scanned. File systems may use this
packet to initialize internal state information stored in this lock, section 14.3.2 provides more information
why this might be necessary. Depending on the file system, the ZERO lock may then be not suitable to scan
the contents of the root directory, in which case applications need to obtain a lock on “:” explicitly.

This function returns a Boolean success code in dp_Res1, it shall be either set to DOSTRUE in case
information on the locked object could be retrieved and was inserted into the FileInfoBlock given by
dp_Arg2. In case of success, dp_Res2 shall be set to 0. In case of an error, dp_Res1 shall be set to
DOSFALSE and dp_Res2 to an error code.

14.3.2 Scanning Directory Contents
The ACTION_EXAMINE_NEXT continues a scan over the directory contents and delivers information on
the next subsequent entry in a directory. Such a scan is started by an ACTION_EXAMINE_OBJECT on the
directory to be scanned; the first ACTION_EXAMINE_NEXT then provides information on the first entry in
this directory and each subsequent packet to the corresponding next entry.

Table 14.22: ACTION_EXAMINE_NEXT
DosPacket Element Value
dp_Type ACTION_EXAMINE_NEXT (24)
dp_Arg1 BPTR to FileLock
dp_Arg2 BPTR to a FileInfoBlock structure
dp_Res1 Boolean result code
dp_Res2 Error code

This function continues a directory scan by providing information on the next subsequent object in the
directory identified by the lock in dp_Arg1. Information on the object is filled into the FileInfoBlock
structure pointed to by the BPTR in dp_Arg2. Similar to ACTION_EXAMINE_OBJECT discussed in
section 14.3.1, the file name and comment shall be provided as BSTRs and not as NUL-terminated C strings.
Conversion to the latter format is performed within dos.library.

Depending on the file system, it may be impossible to scan the root directory through the ZERO lock in
dp_Arg1. Failing with ERROR_INVALID_LOCK is permissible in such a case.

The BCPL implementations of some system commands of the Kickstart 1.3, including Dir and List,
only reserve storage for a reduced version of the FileInfoBlock structure that does not include the
fib_Reserved field. A file system that is supposed to operate under such obsolete operating system
versions shall therefore not modify any element of this field as otherwise memory corruption may result.

Unlike Unix like file systems, AmigaDOS does not keep entries in directories that correspond to the
directory itself or its parent directory, i.e. AmigaDOS file systems do not carry “.” or “..” directory entries.
Even if alien file system structures contain such entries, they should not be accessible by this packet and thus
be hidden from AmigaDOS applications.

Unfortunately, this packet is one of the hardest to implement as directory contents can change between
two ACTION_EXAMINE_OBJECT packets. In particular, file systems shall handle the situation gracefully
in which the object from the previous iteration identified by fib_DiskKey has been deleted, moved or

Packets for Examining Objects 267

replaced by another object, or in which dp_Arg1 is a different lock than the lock that was used to start the
scan by ACTION_EXAMINE_OBJECT. The file system may only assume that the lock in dp_Arg1 is a lock
on the same directory on which the scan has been started. Similarly, dp_Arg2 may have changed from the
last iteration, and the file system shall only depend on fib_DiskKey and fib_DirEntryType being
identical compared to the last iteration, all other entries can be potentially trashed or inconsistent. Thus,
the file system shall only use these two elements of the FileInfoBlock to store state information. Also,
file systems shall not depend on application programs scanning directories up to the last entry; application
programs can abort a directory scan at an arbitrary point, yet file system shall release all resources required
for storing state information of the scan after at least the lock on the scanned directory is released.

A possible implementation strategy is to store full state information in the lock given by dp_Arg1,
though keep sufficient information in fib_DiskKey to rebuild the full information in case the lock is
released and replaced during the scan. In the simplest possible case, fib_DiskKey could be a counter that
enumerates the elements in the directory, whereas the lock contains the full state information to access the
element directly. In case the lock is replaced, ACTION_EXAMINE_NEXT would find the state information
in the lock missing, and would then scan forward to the element enumerated by fib_DiskKey. While this
is less efficient than using the (now missing) state information in the lock, it will at least provide information
on a valid object in the directory. Also, if an object is removed or moved out of the scanned directory,
the file system would update the state information kept within the lock to the directory, though losing the
lock would at least continue the scan within the directory, even though not necessary from the same object.
Storing a block number (for disk-based file systems) or a pointer to an object (for RAM-based file systems)
is, however, a bad strategy as the corresponding disk block or RAM location may have found other uses at
the time the next object is examined. Unfortunately, such implementation defects are rather common and
have been found in multiple file systems of AmigaDOS in the past.

This packet shall provide a Boolean success code in dp_Res1. In case the next object in a directory
could be successfully examined and information on it could be stored in FileInfoBlock, dp_Res1
shall be set to DOSTRUE and dp_Res2 to 0. In case of an error, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code. In case the end of the directory has been reached and no further entries remain
to be examined, this error code shall be ERROR_NO_MORE_ENTRIES.

14.3.3 Examining Multiple Entries at once

The ACTION_EXAMINE_ALL packet scans a directory supplying multiple entries at once, potentially filter-
ing them through a pattern or through a hook.

Table 14.23: ACTION_EXAMINE_ALL
DosPacket Element Value
dp_Type ACTION_EXAMINE_ALL (1033)
dp_Arg1 BPTR to FileLock
dp_Arg2 APTR to a buffer to fill
dp_Arg3 Size of the buffer
dp_Arg4 Type defining the requested entries
dp_Arg5 Pointer to ExAllControl structure
dp_Res1 Continuation flag
dp_Res2 Error code

This packet implements the ExAll() function of dos.library, see section 7.1.4, and thus takes parame-
ters similar to the above function. Note that unlike many other packets, dp_Arg2 and dp_Arg5 are regular
pointers and not BPTRs5.

5The information on dp_Arg5 in [1] is incorrect, it is really a pointer and not a BPTR

268 Rom Kernel Reference Manual: DOS

This packet was introduced in AmigaDOS 36, but if the file system does not implement it, i.e. re-
turns ERROR_ACTION_NOT_KNOWN, then dos.library emulates it using ACTION_EXAMINE_OBJECT
and ACTION_EXAMINE_NEXT.

Packet arguments are as follows:
dp_Arg1 is a lock on the directory to be examined. This lock cannot be ZERO by the requirements of

ExAll(), see section 7.1.4.
dp_Arg2 is a pointer to a word aligned buffer to be filled with information on the objects found in the

directory, it is not a BPTR. This buffer shall be filled with a singly linked list of ExAllData structures, see
again section 7.1.4 for the definition of this structure. Only the elements requested by dp_Arg4 are filled.
Remaining entries are undefined and need not to be present at all, i.e. only the minimal amount of information
requested may be filled in, using the unused elements to store subsequent ExAllData structures.

In addition, file systems shall align the ExAllData in the buffer to word boundaries to allow their
interpretation also by the less capable members of the 68K family; that is, the ed_Next element pointing to
a subsequent structure shall be even. For the last filled structure, this pointer shall be set to NULL to terminate
the list, even though the number of structures filled shall also be made available in the eac_Entries
element of the ExAllControl structure. In other words, the file system shall build a NULL-terminated
singly linked list of ExAllData structures that are properly aligned.

dp_Arg3 is the size of the buffer in bytes dp_Arg2 points to, and into which the result of the scan shall
be filled.

dp_Arg4 defines which elements of the ExAllData are filled. The encoding of this argument is given
by table 7.3 in section 7.1.4.

dp_Arg5 is a pointer to an ExAllControl structure, also defined in section 7.1.4. A detailed descrip-
tion of this structure is also provided there. Note that this is also a regular pointer, not a BPTR.

The file system shall provide in the eac_Entries element of the ExAllControl structure the num-
ber of ExAllData structures it could fit into the target buffer pointed to by dp_Arg2.

The file system may store internal state information of the directory scanner in eac_LastKey. This
state information could, for example, correspond to the fib_DiskKey in the FileInfoBlock identify-
ing an element in a directory at which to continue an interrupted scan. It is zero-initialized before the first
packet, and thus the file system may assume that a key value of 0 identifies the start of the scan.

If non-NULL, eac_MatchString is a parsed pattern as generated by the ParsePatternNoCase()
function, see section 9.2.2. If this pattern is present, only directory entries whose name matches the pattern
shall be filled into the target buffer.

eac_MatchFunc provides even finer control of which objects are filled into the target buffer; it supplies
a pointer to a Hook structure whose h_Entry function shall be called for each candidate directory entry,
e.g. by the CallHookPkt() function of utility.library. Its object argument is then a pointer a LONG
containing the type from dp_Arg4, and its message argument a pointer to the ExAllData structure
filled with a candidate entry. If the hook returns non-zero, the ExAllData copied into the buffer shall be
considered accepted and shall remain in the buffer; if it returns zero, this candidate entry is rejected and shall
not appear in the output. Calling conventions of this hook are also described in section 7.1.4.

The same precautions as for ACTION_EXAMINE_NEXT hold for ACTION_EXAMINE_ALL, too. In
particular, the file system shall be prepared for the directory to get modified during scans, by either adding,
removing, renaming or moving objects out of or into the directory. Using a disk block or a pointer to
a structure representing a specific object through eac_LastKey is therefore discouraged. Similarly, on
subsequent requests forming a scan of a directory, the ExAll() interface requires that dp_Arg1 is a lock
to the same directory, though it need not necessarily be the identical lock as used in the previous iteration over
the same directory. In other words, eac_DiskKey shall hold sufficient state information to reconstruct the
point from which the scan can be continued. It is, however, ensured that the pointer to the ExAllControl
structure stored in dp_Arg5 does not change between requests, and the file system may depend on the

Packets for Examining Objects 269

pointer having the same value as on a the previous (incomplete) request for the directory. Also, file systems
may depend on the client sending a packet of type ACTION_EXAMINE_ALL_END to abort a scan before
reaching the end of the directory.

The ACTION_EXAMINE_ALL packet shall be replied with dp_Res1 set to DOSTRUE if not all entries
could be fit into the buffer, i.e. if dp_Arg3 bytes were not sufficient to hold all matching directory entries
and at least another iteration over the directory is necessary to supply (some of) the missing entries. In
such a case, dp_Res2 shall also be set to 0. Such an incomplete scan is either continued with another
ACTION_EXAMINE_ALL packet, or will be aborted by an ACTION_EXAMINE_ALL_END packet.

In case the end of the directory has reached and all directory entries could fit into the buffer, dp_Res1
shall be set to 0, and dp_Res2 to ERROR_NO_MORE_ENTRIES. In case the directory scan had been
aborted due to an error, dp_Res1 shall be set to 0 and dp_Res2 to an error code. In both cases, all
resources corresponding to the scan shall be released.

14.3.4 Aborting a Directory Scan
The packet ACTION_EXAMINE_ALL_END aborts a directory scan started with ACTION_EXAMINE_ALL
that returned with a non-zero result in dp_Res1. It allows file systems to release resources associated to the
scan.

Table 14.24: ACTION_EXAMINE_ALL_END
DosPacket Element Value
dp_Type ACTION_EXAMINE_ALL_END (1035)
dp_Arg1 BPTR to FileLock
dp_Arg2 APTR to a buffer to fill
dp_Arg3 Size of the buffer
dp_Arg4 Type defining the requested entries
dp_Arg5 Pointer to struct ExAllControl
dp_Res1 Boolean success flag
dp_Res2 Error code

This packet implements the ExAllEnd() function of dos.library, see section 7.1.5, and aborts a partial
directory scan started with ExAll() but for which neither the end of the directory has been reached nor
an error code has been received. This packet may be used by an implementing file system to release any
temporary resources allocated for the purpose of the scan. It was introduced in AmigaDOS 39.

Arguments are populated as follows:
dp_Arg1 is the lock on the directory on which a partial scan has been started. It is not necessarily the

original lock passed into ACTION_EXAMINE_ALL, but a lock on the same directory.
dp_Arg2 and dp_Arg3 are a pointer to a buffer and its size. This buffer, however, should not be

touched and no data should be deposited there; as this buffer is not necessarily the same as the one for which
the scan has been started, file systems may ignore these arguments.

dp_Arg4would define which information would go into the buffer provided by dp_Arg2; the encoding
of dp_Arg4 is given by table 7.3 in section 7.1.4. However, as this packet should not fill any data into the
supplied buffer, file systems may also ignore it.

dp_Arg5 is a pointer to an ExAllControl structure, and the pointer provided here is identical to the
pointer provided to the ACTION_EXAMINE_ALL packet whose abortion is requested. Thus, file systems
may use the pointer value and specifically the eac_DiskKey element in the structure it points to to identify
and release any resources related to the scan.

Before replying this packet, the file system shall set dp_Res1 to a Boolean success code indicating
whether it could abort the scan. On success, dp_Res1 shall be set to DOSTRUE, and dp_Res2 to 0.

270 Rom Kernel Reference Manual: DOS

If the file system does not implement this packet, it shall set dp_Res1 to DOSFALSE and dp_Res2 to
ERROR_ACTION_NOT_KNOWN. dos.library then (attempts to) emulates this packet by setting the match
pattern in the ExAllControlExAllControl structure to a pattern that matches no entry, and then
continues the scan with a ACTION_EXAMINE_ALL packet. This would then clearly reach the end of
the directory without overrunning the buffer. However, due to a defect in dos.library up to the latest ver-
sion, the (non-matching) pattern is a literal pattern and not a pre-parsed pattern. It therefore could match
an entry in the directory. Thus, it is advisable to always implement ACTION_EXAMINE_ALL_END if
ACTION_EXAMINE_ALL is implemented, even if it is just replied with success and no additional resources
need to be released.

On any other error, dp_Res1 shall be set to DOSFALSE and dp_Res2 to an error code.

14.3.5 Examining from a File Handle
The ACTION_EXAMINE_FH packet examines an object identified by a file handle rather than a lock.

Table 14.25: ACTION_EXAMINE_FH
DosPacket Element Value
dp_Type ACTION_EXAMINE_FH (1034)
dp_Arg1 fh_Arg1 of the FileHandle
dp_Arg2 BPTR to a FileInfoBlock structure
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the ExamineFH() function of dos.library, see section 7.1.2, and retrieves
information on an object identified by a file handle rather than a lock. This packet therefore allows to retrieve
information on files from handlers that do not support locks. It was introduced in AmigaDOS version 36.

dp_Arg1 is a copy of the fh_Arg1 element of the FileHandle that is to be examined and thus
serves to identify the object6.

dp_Arg2 is a BPTR to a FileInfoBlock structure as documented in section 7.1, and which shall
be filled by the handler with the information on the object identified by dp_Arg1. As for the packet
type ACTION_EXAMINE_OBJECT specified in section 14.3.1, the handler shall fill fib_FileName and
fib_Comment with BSTRs. They are converted to NUL-terminated C strings by dos.library.

Before replying this packet, the file system shall set dp_Res1 to a Boolean result code. On success,
dp_Res1 shall be set to DOSTRUE and dp_Res2 to 0. On failure, dp_Res1 shall be set to DOSFALSE
and dp_Res2 to an error code.

14.4 Packets for Working with Links
The packets in this section interact with links and define the interface for working with links on the file
system level. They mirror the functions of dos.library listed in section 7.4 which also provides additional
background information.

The packet interface consists of two packets: one for creating all types of links given the path of the link
to create and the link target, and a second packet that is specific to soft links only: this packet finds the path
of the link target given a path containing a soft link as one of its components. It is mostly used by dos.library
internally to resolve soft links transparently to applications.

Unlike soft links, hard links are resolved entirely within the handler and do not require interaction with
dos.library.

6Note that the information in [1] on dp_Arg1 is incorrect.

Packets for Working with Links 271

AmigaDOS version 47 introduced another type of link, the external link. When accessing the link, the
file system containing the link interacts with the file system of the link target and copies the contents of the
target into the link. Thus, external links implement a “copy on read” functionality. Such links are created
by the same packet that also creates soft and hard links, and similar to hard links, they do not require an
additional packet for resolving them.

14.4.1 Creating Links
The ACTION_MAKE_LINK packet creates soft, hard or external links in a file system.

Table 14.26: ACTION_MAKE_LINK
DosPacket Element Value
dp_Type ACTION_MAKE_LINK (1021)
dp_Arg1 BPTR to a FileLock
dp_Arg2 BPTR to BSTR of the path of the link to create
dp_Arg3 BPTR to FileLock or APTR to C-string
dp_Arg4 Type of the link, from table 7.5
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the MakeLink() function of dos.library, see section 7.4.1, and as such creates
soft, hard or external links within the file system. It was added in AmigaDOS version 36.

Arguments are populated as follows:

dp_Arg1 is a BPTR to a FileLock structure that identifies the directory within which the object is to
be created. It is typically retrieved from the GetDeviceProc() function.

dp_Arg2 is a BPTR to a BSTR that provides the path of the link to be created. This path is logically
appended to the path of the directory given by dp_Arg1, and the last component of this path is the file name
of the link to be created.

dp_Arg3 identifies the target of the link, i.e. the object the link points to. If dp_Arg4 is LINK_HARD,
then this argument is a BPTR to a FileLock structure identifying the target. The type of the link then
depends on whether this target is on the same or a different file system.

If the FileLock identifies an object on the same file system as dp_Arg1, then a hard link is created.
If the object locked by dp_Arg3 is a file, then the created link will represent a file, otherwise a directory.

Resolution of hard links is up to the file system. That is, if the link is accessed, it is up to the file system to
locate the target of the link and access it instead of the link. Multiple implementation strategies exist for hard
links: Either, each object includes a reference counter that is incremented for each directory entry pointing to
it, that is for each link created; likewise, this counter is decremented each time a directory entry is removed.
If the counter reaches 0, the object itself is deleted. This strategy is used for example by the family of ext
file systems on Linux. Links cannot be distinguished from regular objects in this design as the link is just
another directory entry pointing to the same file system object.

Alternatively, each link is pointing to the linked object, and the object itself contains a list of links that
reference it. If a link is deleted, it is removed from its directory and from the list of links within the target
object. If the object itself is deleted, one of the links becomes the object itself and the list of links is copied
from the deleted object to the link. The FFS implements the latter design.

If dp_Arg4 is LINK_HARD and the FileLock pointed to by dp_Arg3 is on a different file system,
then an external link shall be created. That is, the file system addressed by the packet shall create a file or
directory within its own file system, and this file or directory shall mirror the contents of the link target given
by dp_Arg4 whenever the link or an object within the link is accessed; the file system shall thus implement

272 Rom Kernel Reference Manual: DOS

a “copy on read” for the linked object. If the link target is a directory, it shall also create copies of the objects
within it if they are accessed.

Once the copy is made, the copied object is detached from its source; if the source is deleted or modified,
the copied objects remains available unaltered, and can also be modified or deleted without affecting the
object in the link target. If no copy has been created so far and the object in the link target has been deleted,
an attempt to access the linked object fails with ERROR_OBJECT_NOT_FOUND.

Currently, only the RAM-Handler implements this type of link, and it is there used to realize the ENV
assign containing all preferences settings. Section 7.4 contains more information on external links which
were added in AmigaDOS version 47.

If dp_Arg4 is LINK_SOFT, then dp_Arg3 is a pointer to a NUL-terminated C string providing the
target of the link. This string is not immediately interpreted by the file system and stored as-is; it is interpreted
as a path name relative to the location of the link at the time the link is resolved7.

Resolution of soft links is performed within dos.library or within the client application as not all functions
of the library implement soft link resolution. For a list of functions that do implement it, see table 7.4 in
section 7.4, see also section 14.4.2 for how to resolve soft links manually.

Upon accessing a soft link, or a path containing a soft link, the file system shall create an error code
ERROR_IS_SOFT_LINK. If this error is received, the sender of a packet accessing the link — thus typically
dos.library itself — shall read the target of the link with the ReadLink() function specified in section 7.4.2.
This function then again contacts the file system containing the link with a ACTION_READ_LINK which
shall construct from the link an updated path to the object. Section 14.4.2 provides more details on this
packet.

From this follows that file systems are not aware whether the target of a soft link actually exists as they can
only provide the path to the object, but not necessarily the object itself; in particular, soft links can cross file
system boundaries. If the target of a soft link is deleted, the soft link itself remains and becomes a “dangling”
link. When accessing such a link, its resolution fails with an error ERROR_OBJECT_NOT_FOUND.

Upon replying the ACTION_MAKE_LINK packet, dp_Res1 shall be set to DOSTRUE and dp_Res2
to 0 on success. On failure, dp_Res2 shall be set to DOSFALSE and dp_Res1 to an error code.

14.4.2 Resolving a Soft Link
The ACTION_READ_LINK packet constructs from a path containing a soft link an updated path by inserting
the target of the link.

Table 14.27: ACTION_READ_LINK
DosPacket Element Value
dp_Type ACTION_READ_LINK (1024)
dp_Arg1 BPTR to a FileLock
dp_Arg2 APTR to C string
dp_Arg3 APTR to buffer
dp_Arg4 Buffer size
dp_Res1 Actual buffer size needed
dp_Res2 Error code

This packet implements the ReadLink() function of dos.library, see section 7.4.2, and is used there to
resolve soft links and obtain the link target. This packet was added in AmigaDOS version 36.

Implementing this packet correctly requires, however, some care as the soft link may be in the middle of
the path provided by dp_Arg2 and not just at its last component, and the soft link itself may be an absolute

7This is quite unusual as AmigaDOS otherwise represents strings as BSTR, though that would limit the length of the link target.

Packets for Working with Links 273

or relative path. This packet shall provide from the original path an updated path that points to the intended
location relative to the location of the soft link, and that is not necessarily the same as a path relative to
dp_Arg1.

Arguments of this packet are populated as follows:

dp_Arg1 is a lock to a directory in the file system relative to which the path in dp_Arg2 shall be inter-
preted. This need not to be directly the directory containing the link. The lock argument of ReadLink()
will be placed here.

dp_Arg2 is a pointer to a path name relative to dp_Arg1 which contains a soft link as one of its
components. The soft link need not to be the last component of this path, it can also be one of the components
in the middle of it. This argument is, unlike in many other packets, not a BPTR to a BSTR but a pointer to a
regular NUL-terminated C string.

The file system shall now proceed with soft link resolution as follows: Starting from the directory given
by dp_Arg1, it shall interpret the path in dp_Arg2 component by component as explained in chapter 4,
until it finds a soft link. That is, a colon (“:”) indicates that the scan shall continue at the root directory, an
isolated slash (“/”) shall enter the parent directory, and all other components terminated by a slash shall be
interpreted as names of directories that shall be recursively entered. This process continues until either the
end of the path is found, or — and this is the purpose of this packet — a soft link is detected.

If a soft link is detected as part of the path, the target of the link as stored in the file system shall be read.
Note that the link target can not only consist of an isolated file or directory name, but can well be an absolute
or relative path that shall be merged with the path provided in dp_Arg2.

In particular, if the path stored in the soft link contains a colon (“:”), and hence is an absolute path, the
components parsed off from dp_Arg2 up to the detection of the soft link shall be disregarded in order to
start from the root directory. If no device or volume name is provided in the absolute link target, the file
system shall insert the name of the current volume and a colon, in order to provide an unambiguous anchor
of the newly constructed path. The remaining path stored in the soft link is then concatenated to the volume
name. Finally, the rest of the components from dp_Arg2 behind the component name of the soft link are
concatenated to this intermediate path, forming the final link target.

If the path stored in the soft link is a relative path, then it shall be concatenated to the path from dp_Arg2
up to the component name of the soft link at which iterating through dp_Arg2 was interrupted. The remain-
ing components from dp_Arg2 behind the component name of the soft link shall then be attached to this
intermediate path, forming the final result.

This procedure is tedious, but it ensures that the soft link is interpreted relative to the path from which the
client application detected it, even if the soft link is the middle of the supplied path and not contained directly
in the directory provided by dp_Arg1. Note that the above algorithm only resolves a single soft link in a
path; this is intentional, dos.library will send another ACTION_READ_LINK packet to the same or another
file system if the remaining path contains additional soft links, or even in case the soft link points to another
soft link. It is therefore important at the level of client application — or dos.library — to detect endless loops
of soft links pointing to each other. dos.library aborts soft link resolution after the expansion of 15 links.

dp_Arg3 is the pointer (not a BPTR) to a target buffer into which the path resolving the soft link shall
be filled as a NUL-terminated C string.

dp_Arg4 is the size of this target buffer in bytes.

On an error, dp_Res1 shall be set to−1, or to−2 in case the target buffer overflows and cannot take the
full target path8. In case of error, dp_Res2 shall also be set to an error code. In particular, if the target buffer
size in dp_Arg4 is too small to hold the resolved path, dp_Res2 shall be set to ERROR_LINE_TOO_LONG
and dp_Res1 to −2.

8Currently any negative value will do to indicate an error, and dos.library does not distinguish between −1 and −2 as result code.
Unfortunately, even the latest version of the FFS will not return a negative value but 0 in case of an error; this is a defect.

274 Rom Kernel Reference Manual: DOS

If the source path in dp_Arg2 does actually not contain a soft link and the scanning algorithm aborted
without finding one, this also constitutes an error that shall be reported by setting dp_Res1 to−1. This error
is not handled consistently in AmigaDOS. The RAM-Handler reports ERROR_OBJECT_WRONG_TYPE, the
FFS the error code ERROR_OBJECT_NOT_FOUND. While the former error looks more sensible, the latter
is the right choice — it helps an algorithm resolving soft links to identify the case that it has probably not yet
found the right directory of a multi-assign that contains the soft link. See also the code in section 7.4.2.

On success, dp_Res1 shall be set to the length of the constructed path, i.e. to the length of the string in
dp_Arg3 (not including the terminating NUL), and dp_Res2 to 0.

The following example is a skeleton code implementing the above algorithm:

/* Representation of a file system object in a file

** system... this is a prototype. Extend as needed.

*/
struct node {

LONG type; /* entry type, file, directory, link... */
LONG size; /* size of the soft link name */
....

};

/* Find the object from lock and string. This is a file

** system internal function that needs to be provided

** by the user.

** path_before is the offset of the last component

** of the path in the string that could be resolved

** successfully. If a softlink is found in the

** middle of the path, or some other error was found,

** NULL is returned.

** link_node is set to a pointer to a structure that

** represents the link.

** path_pos is set to the offset of the "/" behind

** the soft link if a soft link is in the middle.

** If the link is the last component of the path, then

** the node that represents the soft link is returned,

** Otherwise, the node is returned.

*/
extern struct node *locatenode(BPTR lock,const UBYTE *path,

LONG *path_before,
struct node **linknode,
LONG *path_pos);

/* copy the target of the soft link into the buffer behind

** the path of the link as zero-terminated C string.

** This function also needs to be provided by the

** implementation of the file system. It returns

** the size of the soft link as result, or -1 on error.

*/
extern LONG readsoftlink(const struct node *,

UBYTE *buffer,LONG size);

/* Will be filled into dp_Res2 on return, i.e.

** what will be filled into IoErr()

Packets for Working with Links 275

*/
extern LONG res2;

/* Pointer to DosList of this handler, needed

** for the name of the volume.

*/
extern struct DosList *volumenode;

/* Skeleton of an implementation of the readlink function

** lock is from dp_Arg1 and a BPTR to a filelock

** string is from dp_Arg2 and the path containing a link

** buffer is from dp_Arg3 and the target buffer

** size is from dp_Arg4 and the size of the buffer.

*/
LONG readlink(BPTR lock, UBYTE *string,UBYTE *buffer, ULONG size)
{

struct node *node,*linknode;
UBYTE *src = string;
LONG is_dir = FALSE;
LONG path_before;
LONG path_pos;
LONG res,len;
/*
** Locate the first soft link in the path

*/
node = locatenode(lock,string,&path_before,

&linknode,&path_pos);
if (!node) {

if (IoErr() == ERROR_IS_SOFT_LINK) {
is_dir = TRUE; /* remember... */
node = linknode;

} else {
/* Resolution did not work for some

** other error. Return an error.

*/
return -1;

}
}

/* Check whether the found object is a softlink */
if (node->type != ST_SOFTLINK) {

res2 = ERROR_OBJECT_WRONG_TYPE;
return -1;

}

/* Check whether the link is in the middle or the end of

** the path.

*/
if (is_dir) {

/* must deal with ’/’ and ’:’ correctly in the soft link

** code below counts on these assigns!

276 Rom Kernel Reference Manual: DOS

*/
string = string + path_pos;
len = strlen(string) + 1; /* + 1 for slash */

} else {
len = 0; /* softlink is last part of string */

}

/* Check whether there is sufficient room in the

** target buffer.

*/
if (node->size + 1 + path_before + len >= size) {

res2 = ERROR_LINE_TOO_LONG;
return -2;

}

/* Copy the head of the link resolution path to the

** target buffer, ready to append the contents of

** the link.

*/
memcpy(buffer,src,path_before);

/* Find the contents of the link */
res = readsoftlink(node,buffer + path_before,size - path_before);
if (res < 0)

return res; /* Deliver the error */

/* If the link is absolute, i.e.\ contains a ’:’, then ignore the

** start of the string. ’res’ is the length of the link location.

*/
src = strchr(buffer + path_before,’:’);
if (src) {

/* Yes, is absolute. First check whether it is ":", thus

** whether it refers to this volume.

*/
if (src == buffer + path_before) {

/* Is relative to our root, but not necessarily

** to the root of the caller, so fix up.

*/
char *volname = (char *)BADDR(volumenode->dol_Name);
LONG len = *volname; /* It’s a BSTR */
/* Check whether there is enough buffer */
if (len + res >= size) {

SetIoErr(ERROR_LINE_TOO_LONG);
return -2;

} else {
/* Move soft link behind the volume name,

** note that the softlink is ":" here and

** the ":" becomes part of the volume name.

*/
memmove(buffer + len ,buffer + path_before,res + 1);
/* Prepend the volume name */

Packets for Working with Links 277

memcpy(buffer,volname + 1,len);
res += len;

}
} else {

/* Here the link is absolute to a given volume

** so move the soft link behind the volume name

*/
memmove(buffer,buffer + path_before,res + 1);

}
}

/* add on the rest of the path behind

** the soft link if it sits in the middle

*/
if (is_dir) {

if(!AddPart(buffer, string, size)) {
SetIoErr(ERROR_LINE_TOO_LONG);
return -2;

}
}

/* The result is the length of the path created */
return strlen(buffer);

}

14.5 Packets for Adjusting Metadata
Packets in this section change metadata associated with file system objects, such as name, comment, creation
date or protection flags.

14.5.1 Renaming or Moving Objects
The ACTION_RENAME_OBJECT changes the name of an object such as a file, directory or a link, or relo-
cates it within the directory tree of a volume.

Table 14.28: ACTION_RENAME_OBJECT
DosPacket Element Value
dp_Type ACTION_RENAME_OBJECT (17)
dp_Arg1 BPTR to source FileLock
dp_Arg2 BPTR to BSTR of the object path
dp_Arg3 BPTR to target FileLock
dp_Arg4 BPTR to BSTR of the target path
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the Rename() function of dos.library, see section 7.2.2, and relocates and/or
renames an object within the directory structure of a volume. This packet cannot relocate objects across
volumes, i.e. dp_Arg1 and dp_Arg3 are locks to objects within the same volume, and dp_Arg2 and
dp_Arg4 represent paths within this volume.

Arguments of this packet are populated as follows:

278 Rom Kernel Reference Manual: DOS

dp_Arg1 represents the directory to which the source dp_Arg2 is relative to. The Rename() function
takes it from the output of the GetDeviceProc() function (see section 8.2.1) applied to the source path,
and it typically corresponds to the current directory of the calling process or the lock of an assign in the
source path.

dp_Arg2 is the path of the original object. This path need not to consist of a single component, though
the object to rename or relocate is the last component of this path. The file system shall walk the provided
path, starting from dp_Arg1, to identify the object that is to be renamed or moved.

dp_Arg3 is the directory to which the target path dp_Arg4 is relative to, represented as a lock.
Rename() also determines this lock through GetDeviceProc() and the target path.

dp_Arg4 is the target path of the object, relative to dp_Arg3. The location of the target is formed by
logically appending the path from dp_Arg4 to the directory in dp_Arg3.

The file system shall find a suitable target directory into which the object is to be moved: for this, it
shall walk the directory tree starting at dp_Arg3, resolving directories as given by the path in dp_Arg4.
If any of the components in this path but the last component does not exist or is not a directory or not a
hard link to a directory, the result shall be ERROR_OBJECT_NOT_FOUND or, if a soft link is in the path,
ERROR_IS_SOFT_LINK.

If the source and the target object are identical, though possibly only differ by case (i.e. lower/upper case
is possibly different), then original object shall be renamed, giving the original object the file name from the
last component of the target path. This adjusts the case of the object name without changing the directory
structure or the object location.

If the last component in the target path is an existing directory or hard link to an existing directory, and an
object of the source name does not exist within it, the source object as identified by dp_Arg1 and dp_Arg2
shall be moved into the target directory under its original name, i.e. the name as given by the last component
of the path in dp_Arg2. This allows programs, in particular the Rename command line utility, to relocate
file system objects within a file system.

If the last component of the target path does not exist, it forms the new name of the target object, and
the target path up to the second to last component the target directory into which the source object is to be
relocated. In this case, the object is not only moved, but also given a new name.

If the last component of the target path is a soft link, the attempt to rename into a soft link shall fail with
the error code ERROR_IS_SOFT_LINK.

If the last component of the target path is an existing file or a hard link to an existing file, renaming shall
fail with ERROR_OBJECT_EXISTS. That is, it is not permissible to rename into an existing file or replace
an existing file by renaming contents into a an existing file. Strictly speaking, this is probably a limitation of
the FFS and the RAM-Handler as file systems from other operating systems are capable of supporting this
operation, then deleting the contents of the target file into which the source is renamed.

Particular care needs to be taken if the object to be relocated is a directory, and this directory is to be
moved into another directory. In such a case, the file system shall test whether an attempt is made to move
the directory into itself or into one of the sub-directories of its own. As this would render the directory
unreachable, the packet shall fail and the error code ERROR_OBJECT_IN_USE shall be reported9.

Upon replying the packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall be
set to DOSTRUE and dp_Res2 shall be set to 0. On error, dp_Res1 shall be to DOSFALSE and dp_Res2
to an error code.

14.5.2 Deleting an Object
The ACTION_DELETE_OBJECT removes an object from a directory, releasing the storage it occupies.

9The Kickstart 1.3 BCPL implementation of the AmigaOs ROM file system missed this test and thus created an amusing opportunity
to make directories disappear without deleting them.

Packets for Adjusting Metadata 279

Table 14.29: ACTION_DELETE_OBJECT
DosPacket Element Value
dp_Type ACTION_DELETE_OBJECT (16)
dp_Arg1 BPTR to FileLock
dp_Arg2 BPTR to BSTR of the object path
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the DeleteFile() function of dos.library, see section 7.2.1, which can delete
files, directories and links.

dp_Arg1 is a lock to the directory to which the path in dp_Arg2 is relative. The DeleteFile()
function fills it from GetDeviceProc().

dp_Arg2 is the path to the object to be deleted. The path can contain multiple components, in which
case the file system shall walk the path starting at dp_Arg1 until reaching its last component which is the
object to be deleted. If the target is a directory, the file system shall check, in addition, if the directory is
empty, and if not so, refuse to delete it with the error code ERROR_DIRECTORY_NOT_EMPTY.

If the target is a soft link or a hard link, the link shall be deleted, and not the object the link points to. In
particular, in this special case resolution of links, in particular soft links, is not necessary. This particular case
depends on the asymmetry between links and regular entries of the Amiga file systems: Deleting a link to a
non-empty directory is possible, though deleting the directory itself not, even if the (or a) link could replace
it and adopt its entries. Other file systems that cannot distinguish between hard links and their link targets
may resolve the situation differently, and for example refuse to delete hard links that point to non-empty
directories.

Before replying the packet, dp_Res1 shall be set to a Boolean success indicator. In case of success,
dp_Res1 shall be set to DOSTRUE and dp_Res2 to 0. On error, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code.

14.5.3 Changing the Protection Bits

The ACTION_SET_PROTECT changes the protection bits of a file system object.

Table 14.30: ACTION_SET_PROTECT
DosPacket Element Value
dp_Type ACTION_SET_PROTECT (21)
dp_Arg2 BPTR to FileLock
dp_Arg3 BPTR to BSTR of the object path
dp_Arg4 New protection bits
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the SetProtection() function of dos.library introduced in section 7.2.4; it
changes the protection bits of an object on the file system to that given in dp_Arg4. For the definition of
protection bits, see section 7.1, table 7.2. Some file systems may support only a subset of all protection bits,
or may not be able to carry them on all objects, such as directories or links; in such a case, they may ignore
the request, or may only implement a subset of all bits.

dp_Arg2 is a lock of a directory to which the path in dp_Arg3 is relative10. The SetProtection()
function retrieves it from the GetDeviceProc() function.

10This is not a typo, dp_Arg1 is really unused.

280 Rom Kernel Reference Manual: DOS

dp_Arg3 is a path relative to dp_Arg2. This path need not to consist of a single component, though
the object whose protection bits shall be changed is the last component of this path. The file system shall
walk the provided path, starting from dp_Arg2 to find the object to modify.

dp_Arg4 are the new protection bits as specified in table 7.2 in section 7.1. Note that the least significant
four bits are shown inverted by most system tools such as the List command.

Links are a special case, and here file system authors need to decide whether the protection bits apply to
the object itself or the links pointing to the object. The FFS keeps the protection bits of the object and links
to the object always in sync. The RAM-Handler ignores requests to change the protection bits of hard links,
but copies its bits always from the link target. Protection bits of soft links are not particularly meaningful.
The FFS creates upon an attempt to set their protection bits the usual ERROR_IS_SOFT_LINK, whereas the
RAM-Handler does not create this error if the last component of the path in dp_Arg3 is a soft link. Instead,
it sets the protection bits of the link.

Before replying to this packet, the file system shall set dp_Res1 to a Boolean result code. On success,
dp_Res1 shall be set to DOSTRUE and dp_Res2 shall be set to 0. On error, dp_Res1 shall be set to
DOSFALSE and dp_Res2 to an error code.

14.5.4 Setting the Comment to an Object
The ACTION_SET_COMMENT packet changes, adds or removes a comment of a file system object such as
a directory, file or link.

Table 14.31: ACTION_SET_COMMENT
DosPacket Element Value
dp_Type ACTION_SET_COMMENT (28)
dp_Arg2 BPTR to FileLock
dp_Arg3 BPTR to BSTR of the object path
dp_Arg4 BPTR to BSTR of comment
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the SetComment() function of dos.library, see section 7.2.3, and as such
changes, adds or removes a comment on a file, directory or link. Not all file systems will support this request,
or may only support comments on a subset of objects.

dp_Arg2 represents a directory relative to which the path in dp_Arg3 shall be interpreted. The
SetComment() function fills it from the GetDeviceProc() function.

dp_Arg3 is the path relative to dp_Arg2 of the object whose comment is to be changed.

dp_Arg4 is a BPTR to a BSTR of the new comment to be set. If this string is empty, the comment
shall be removed. File systems shall also check the size of the comment and fail with the error code
ERROR_COMMENT_TOO_BIG if the comment is longer than what the file system and the FileInfoBlock
structure (see section 7.1) supports. The latter limits the size of the comment to 79 characters. Note that the
handling of overlong comments is different from handling overlong file names: The latter are truncated
without error to the maximum size the file system supports.

Before replying to this packet, the file system shall set dp_Res1 to a Boolean result code. On success,
dp_Res1 shall be set to DOSTRUE and dp_Res2 shall be set to 0. On error, dp_Res1 shall be set to
DOSFALSE and dp_Res2 to an error code.

14.5.5 Setting the Creation Date of an Object
The ACTION_SET_DATE packet sets the creation date of an object on a file system.

Packets for Adjusting Metadata 281

Table 14.32: ACTION_SET_DATE
DosPacket Element Value
dp_Type ACTION_SET_DATE (34)
dp_Arg2 BPTR to FileLock
dp_Arg3 BPTR to BSTR of the object path
dp_Arg4 BPTR to DateStamp structure
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the SetFileDate() function of dos.library from section 7.2.5 and sets the
creation date of an object on a file system. Not all file systems will support this packet, or may only support
it with reduced precision of the date.

dp_Arg2 represents a directory relative to which the path in dp_Arg3 is interpreted11. The implemen-
tation of the SetFileDate() function retrieves it from the GetDeviceProc() function.

dp_Arg3 is the path of the object whose creation date is to be changed. This path shall be interpreted
relative to dp_Arg2, and its last component is the object whose creation date shall be changed.

dp_Arg4 is a BPTR to a DateStamp structure as specified in section 3 and defines the target date to
install in the metadata of the object.

The AmigaDOS file systems, the FFS and the RAM-Handler, always keep the file date of hard links
and link targets in sync, and it is recommended that alternative file system implementations follow this
strategy. The strategy for soft links is not that uniform. While both file systems support a separate cre-
ation date for soft links, this packet adjusts the date of the link for the RAM-Handler, whereas it creates an
ERROR_IS_SOFT_LINK for the FFS, and by the help of dos.library, adjusts then the date of the link target.
Given that the date is probably used to test whether a particular file is up to date, e.g. for make utilities, the
latter strategy is advisable.

Before replying to this packet, the file system shall set dp_Res1 to a Boolean result code. On success,
dp_Res1 shall be set to DOSTRUE and dp_Res2 shall be set to 0. On error, dp_Res1 shall be set to
DOSFALSE and dp_Res2 to an error code.

14.5.6 Setting the Owner of an Object

The ACTION_SET_OWNER packet sets the owner and group ID of an object in a file system.

Table 14.33: ACTION_SET_OWNER
DosPacket Element Value
dp_Type ACTION_SET_OWNER (1036)
dp_Arg2 BPTR to FileLock
dp_Arg3 BPTR to BSTR of the object path
dp_Arg4 Owner information
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the SetOwner() function of dos.library (see 7.2.6) and is supposed to set
a group and user ID of an object in a file system; the actual encoding of this information is not defined
by dos.library or the packet. dp_Arg4 is a literal copy of the second argument of SetOwner(). Since
AmigaDOS is not a multi-user system, the value of this packet is questionable; the FFS supports this packet
since version 43, the RAM-Handler does not implement it.

11The information in [1] is incorrect, and dp_Arg1 is, indeed, unused.

282 Rom Kernel Reference Manual: DOS

dp_Arg2 represents a directory relative to which the path in dp_Arg3 is interpreted. The implementa-
tion of the SetOwner() function determines it from its argument through GetDeviceProc() and fills
it for example with the current directory of the calling process.

dp_Arg3 is the path of the object whose owner information is to be changed. This path shall be inter-
preted relative to dp_Arg2, and its last component is the object whose owner shall be changed.

dp_Arg4 is an opaque owner information; dos.library does not define its meaning. This argument is a
verbatim copy of the second argument of SetOwner() and the FFS copies it directly into the Owner field
of the blocks of type ST.SHORT, see section 13.6.5 and following.

The FFS follows for hard and soft links the same strategy as for ACTION_SET_DATE: The owner of
hard links and link targets are always kept in sync, and in case the owner of a soft link is supposed to be
changed, the FFS signals the error ERROR_IS_SOFT_LINK. With the help of dos.library, the owner of
the link target is then changed — if the file system of the link target supports this packet. This is also the
recommended strategy. The RAM-Handler does currently not implement ACTION_SET_OWNER.

Before replying to this packet, the file system shall set dp_Res1 to a Boolean result code. On success,
dp_Res1 shall be set to DOSTRUE and dp_Res2 shall be set to 0. On error, dp_Res1 shall be set to
DOSFALSE and dp_Res2 to an error code.

14.6 Packets for Starting and Canceling Notification Requests
The packets in this section implement notification requests. Once a notification request has been registered,
the file system informs a task through a signal or through a message send to a port when the observed object
changes. This mechanism is for example used by the IPrefs program to load new preferences when they
are modified through the preferences editors. The dos.library interface for notification requests is introduced
in section 7.5.

14.6.1 Registering a Notification Request
The ACTION_ADD_NOTIFY packet registers a notification request at a file system.

Table 14.34: ACTION_ADD_NOTIFY
DosPacket Element Value
dp_Type ACTION_ADD_NOTIFY (4097)
dp_Arg1 APTR to NotifyRequest structure
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the StartNotify() function of dos.library, see section 7.5.1. It registers a
request at a file system to get informed on changes on a selected file system object. Notification requests,
and therefore this packet, have been introduced in AmigaDOS version 36.

dp_Arg1 is a C pointer12 to a NotifyRequest structure that defines the object to be monitored, and
the task to be informed on a change of this object. This structure is specified in section 7.5.1.

The nr_FullName element of the NotifyRequest structure is already filled by an absolute path to
the object to be monitored which is assumed to exist already. This path is computed by dos.library within the
StartNotify() function from the nr_Name element and the current directory of the calling process, and
the file system shall depend on this path and not on the contents of nr_Name which, from the perspective of
the file system, is undefined and may not even be filled.

12In [1] this argument is documented to be a BPTR, though this information is incorrect.

Packets for Starting and Canceling Notification Requests 283

The file system shall store this request in its internal structures, and then monitor the object and hard links
to the object identified by nr_FullName for changes. Notification requests on directories shall also monitor
objects directly contained in the monitored directory for changes; the request does not extend recursively to
the contents of sub-directories.

A notification event either sets a signal or sends a message to a MsgPort:
If NRF_SEND_MESSAGE is set in nr_Flags, then a NotifyMessage shall be send to the port

indicated in nr_Msg.nr_Port. This structure is also specified in section 7.5.1. Its nm_Class ele-
ment shall be set to NOTIFY_CLASS, and its nm_Code element to NOTIFY_CODE, both are defined in
dos/notify.h. In addition, nm_NReq shall point to the NotifyRequest structure through which the
object is monitored. The elements nm_DoNotTouch and nm_DoNotTouch2 may be used for internal
administration of the file system.

If NRF_SEND_SIGNAL is set, then the file system shall set a signal bit of the target task if the monitored
object changes by calling

Signal(nr->nr_Signal.nr_Task,1UL<<nr->nr_Signal.nr_SignalNum);

If the NRF_NOTIFY_INITIAL flag is set in nr_Flags, the file system shall trigger a notification
immediately after having received this packet, regardless of whether or not the object has been modified
already. If NRF_WAIT_REPLY is set, and a NotifyMessage has already been send out, it shall rather note
the modification, though defer any further notification on the same object until the former NotifyMessage
has been replied. This avoids queuing up too many notifications at the client port. The NRF_MAGIC bit in
nr_Flagsmay be used by the handler to implement this functionality; it may mark those requests for which
a message has been send, but no reply has been received yet.

NRF_WAIT_REPLY is, of course, non-functional if notifications are transmitted through a signal by
NRF_SEND_SIGNAL.

Table 14.35 lists the packets which shall or may trigger a notification request on a monitored object.
Some changes do not trigger a notification request immediately, but only after the modified file is closed.
This avoids sending notifications on incomplete objects and avoids piling up too many notifications at once.
Monitoring a directory implicitly also monitors the files within it for the changes listed in this table:

Table 14.35: Packets triggering a Notification
Packet Notes
ACTION_WRITE After closing the file with ACTION_END
ACTION_SET_FILE_SIZE After closing the file with ACTION_END
ACTION_FINDOUTPUT After closing the file with ACTION_END
ACTION_FINDUPDATE Only if the file was created, after closing it.
ACTION_DELETE_OBJECT Immediately
ACTION_RENAME_OBJECT Immediately
ACTION_SET_DATE Immediately
ACTION_CREATE_DIR Immediately, when monitoring directories
ACTION_MAKE_LINK Immediately, for links created in monitored directories
ACTION_SET_COMMENT Optionally
ACTION_SET_PROTECT Optionally
ACTION_SET_OWNER Optionally

Volume changes, ACTION_INHIBIT, ACTION_RENAME_DISK and ACTION_SERIALIZE_DISK
shall never trigger notification requests. However, if a volume is ejected, and re-inserted into another drive,
the notification requests need to be carried over to the file system of the drive into which the volume has
been reinserted, in the same way locks are carried over from one file system to the other, see 14.2.1. This

284 Rom Kernel Reference Manual: DOS

requires that the file system shall also update the nr_Handler element of the NotifyRequest structure
to point to the MsgPort of the receiving file system. By updating nr_Handler, the correct file system is
contacted for canceling the request.

Upon replying this packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall
be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code.

14.6.2 Canceling a Notification Request
The ACTION_REMOVE_NOTIFY packet cancels a notification request and aborts monitoring the object
recorded in the NotifyRequest structure.

Table 14.36: ACTION_REMOVE_NOTIFY
DosPacket Element Value
dp_Type ACTION_REMOVE_NOTIFY (4097)
dp_Arg1 APTR to NotifyRequest structure
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the EndNotify() function of dos.library, see section 7.5.2, and terminates
monitoring the object in the nr_FullName element of the NotifyRequest structure. This packet was
introduced along with notification requests in AmigaDOS version 36.

nr_Arg1 is a C-pointer to the structure that indicates which notification request shall be canceled. The
NotifyRequest structure is specified in section 7.5.1.

If any notifications are still pending, e.g. because the monitored object has already been changed through
a file handle though this file handle has not yet been closed, such pending notifications shall be canceled as
well. The file system shall be aware that even after this packet has been replied, some NotifyMessages
send out to clients can be replied later because the clients are still working on them. In particular, the memory
associated to such messages shall not be released upon receiving the ACTION_REMOVE_NOTIFY packet
and only after the NotifyMessage has been replied and was received again by the file system. dos.library
replies all NotifyMessages it finds still pending in the port of the client application, but clearly cannot
handle those messages that are still being processed.

If the notification request is on a volume that is currently not inserted, but the request has not been claimed
by another file system, i.e. the nr_Handler points still to a port of the file system receiving the cancellation
request, cancellation shall proceed as if it is still owned by this file system. This is similar to how locks on
removed volumes are handled, see section 14.2.9.

Upon replying this packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall
be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code.

14.7 Packets Operating on Entire Volumes
The packets in this section impact the volume mounted on a file system in total and do not interact with
individual objects, such as files, directories or links on it.

14.7.1 Determining the Currently Inserted Volume
The packet ACTION_CURRENT_VOLUME determines from a FileHandle a BPTR to the DosList struc-
ture representing the volume on which the file is located.

Packets Operating on Entire Volumes 285

Table 14.37: ACTION_CURRENT_VOLUME
DosPacket Element Value
dp_Type ACTION_CURRENT_VOLUME (7)
dp_Arg1 fh_Arg1 of a FileHandle or ZERO
dp_Res1 BPTR to DosList structure
dp_Res2 0

This packet is not exposed by dos.library, but it used by it when constructing an error requester through
its ErrorReport() function documented in section 16.2.1. If an error is generated by a function taking
a FileHandle as argument, this packet is used to determine the DosList entry representing the volume.
From there, the name is copied into the requester, for example to ask the user to insert it.

dp_Arg1 shall be filled with a copy of the fh_Arg1 element of a FileHandle structure, or shall be
ZERO. If a non-ZERO handle is provided, the file system shall fill a BPTR to the DosList of the volume
the handle is located on into dp_Res1. In such case, the packet is safe as the volume entry cannot vanish as
long as the handle still uses it13.

If dp_Arg1 is ZERO, a BPTR to the DosList of the currently inserted volume, or ZERO if no volume
is inserted, shall be returned. Unfortunately, as the volume may be ejected any time, it is unclear whether the
DosList entry returned in dp_Res1 is still valid at the time it is interpreted by the issuer of of this packet.
In such a case, the issuer of the packet should lock the device list upfront, copy the required information, for
example the name of the volume, and unlocked the list again as seen from the following code:

void NameOfVolume(struct MsgPort *port,UBYTE *name,size_t len)
{

struct DosList *dl;

LockDosList(LDF_VOLUMES|LDF_READ);
dl = (struct DosList *)BADDR(DoPkt1(port,ACTION_CURRENT_VOLUME,ZERO));
if (dl) {

/* dol_Name is always a 0-terminated BSTR */
strncpy(name,(UBYTE *)BADDR(dl->dol_Name) + 1,len);
name[len-1] = 0;

} else name[0] = 0;
UnLockDosList(LDF_VOLUMES|LDF_READ);

}

The file system shall set dp_Res1 to a BPTR to the DosList entry representing a volume, i.e. an entry
on the device list whose dol_Type is DLT_VOLUME and whose dol_Task points to a MsgPort of the
file system having received the packet. In case no volume is inserted, dp_Res1 shall be set to ZERO. This
packet shall not fail, and dp_Res2 is ignored by dos.library. For practical purposes, dp_Res2 shall be set
to 0 indicating that no error has been detected.

14.7.2 Retrieving Volume Information from a Lock

The ACTION_INFO packet retrieves information on a volume, given a lock of an object on the volume, and
provides it in an InfoData structure.

13In [1], dp_Arg1 is not mentioned, though providing it is important to avoid a race condition. The RAM-Handler is probably an
exception as it only maintains a single volume that cannot vanish during its lifetime.

286 Rom Kernel Reference Manual: DOS

Table 14.38: ACTION_INFO
DosPacket Element Value
dp_Type ACTION_INFO (26)
dp_Arg1 BPTR to FileLock
dp_Arg2 BPTR to InfoData
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the Info() function of dos.library, see section 6.3, and provides information
on the volume on which the locked object is located, or on the currently inserted volume if the lock is ZERO.

dp_Arg1 is a BPTR to a lock, used to identify a volume from which information is requested. If this
lock is non-ZERO, the file system shall first validate whether the lock is valid, and whether it is a lock it had
created. The packet shall fail with ERROR_INVALID_LOCK if not so. Once the lock is validated, the file
system shall check whether the volume of the locked object is currently inserted, and if not, shall report the
error ERROR_DEVICE_NOT_MOUNTED.

If dp_Arg1 is ZERO, the packet shall provide information on the currently inserted volume; if no volume
is inserted, it shall fail with ERROR_NO_DISK. If the disk structure of the inserted volume is corrupt, the
error code ERROR_NOT_A_DOS_DISK shall be indicated.

dp_Arg2 is a BPTR to an InfoData structure as defined in section 6.3 which shall be filled with
information on the currently inserted volume, such as the state of the volume, the number of errors detected
on it, its capacity and the number of free blocks. Details on this structure and the information therein are
found in section 6.3.

Upon replying this packet, dp_Res1 shall be set to a Boolean success indicator. If information on the
volume could be retrieved, dp_Res1 shall be set to DOSTRUE and dp_Res2 shall be set to 0. On failure,
dp_Res1 shall be set to DOSFALSE and dp_Res2 to an error code.

This packet is not identical to ACTION_DISK_INFO introduced in section 14.7.3 even if dp_Arg1 is
set to ZERO. ACTION_INFO checks in addition the state of the inserted volume and generates an error code
if no disk is inserted or the inserted disk is not validated. The packet in section 14.7.3 does not fail under
such conditions, but returns the disk state in the InfoData structure in any case.

14.7.3 Retrieving Information on the Currently Inserted Volume
The ACTION_DISK_INFO packet retrieves information on whether the drive a file system is operating on
contains a medium, whether this medium contains a valid file structure and whether it is writable. It provides
this information in an InfoData structure.

Table 14.39: ACTION_DISK_INFO
DosPacket Element Value
dp_Type ACTION_DISK_INFO (25)
dp_Arg1 BPTR to InfoData
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is currently not exposed by dos.library and must be issued through the packet interface
directly. It is almost identical to ACTION_INFO except that it does not take a lock as argument.

If a disk is inserted and validated, it returns the same information as ACTION_INFO. Otherwise, it does
not fail but returns the state of the file system in the InfoData structure. In specific, it sets id_DiskType
to ID_NO_DISK_PRESENT if no volume is inserted, or to ID_NOT_REALLY_DOS if the disk is readable,

Packets Operating on Entire Volumes 287

but its disk structure is corrupt. Unlike the packet from 14.7.2, this packet does not create errors in such
cases. For all other other id_DiskType values this packet can generate, see table 6.6 in section 6.3.

This packet is also used to retrieve console specific information from the CON-Handler or interactive
handlers in general, and is documented as such again in section 14.8.3. The elements of the InfoData are
then interpreted in an alternative way.

dp_Arg1 is a BPTR to an InfoData structure as defined in section 6.3 into which information is filled
such as the state of the currently inserted volume, the number of errors detected on it, its capacity and the
number of free blocks. Details on this structure are found in section 6.3.

Upon replying this packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall
be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code.

At the time the packet is received by its issuer, the information provided in the InfoData structure is
not necessarily up do date as the user can change the volume any time. It also remains operational if the
file system is inhibited, see 14.9.2, but then delivers ’BUSY’ as disk state. If information on a specific
volume is needed, ACTION_INFO described in section14.7.2 is a better choice as ACTION_DISK_INFO
only provides a snapshot of the file system state at some time in the past. The Workbench uses this packet to
determine whether or which icon to show on its screen.

14.7.4 Relabeling a Volume

The ACTION_RENAME_DISK packet changes the volume name of the inserted medium.

Table 14.40: ACTION_RENAME_DISK
DosPacket Element Value
dp_Type ACTION_RENAME_DISK (9)
dp_Arg1 BPTR to BSTR of new volume name
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the Relabel() function of dos.library as specified in section 8.7.2 and changes
the volume name of the inserted medium. As such, it shall also change the name of the DosList represent-
ing the volume in the device list, i.e. adjust the dol_Name element of the DosList structure.

dp_Arg1 is a BPTR to a BSTR of the new volume name. Relabeling shall be applied on the currently
inserted volume.

Before replying this packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall
be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code.

This packet does not provide means to identify the medium to be relabeled, it always affects the currently
inserted medium. If the user changes the medium after the packet has been send, but before it has been
received by the file system, the recently inserted medium will be relabeled.

14.7.5 Initializing a New File System

The ACTION_FORMAT packet initializes a new file system on a medium or partition, writing administration
information representing a blank volume on it. It therefore deletes all information stored previously on the
volume.

288 Rom Kernel Reference Manual: DOS

Table 14.41: ACTION_FORMAT
DosPacket Element Value
dp_Type ACTION_FORMAT (1020)
dp_Arg1 BPTR to BSTR of new volume name
dp_Arg2 Dos type or other private data
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the Format() function of dos.library introduced in section 8.7.3. It was added
in AmigaDOS version 36. Before that release, the Format command of the Workbench included the code
to initialize the OFS or FFS disk structure.

When the file system receives this packet, it performs a soft-initialization of the partition or medium
currently inserted. Note, however, that it does not perform low-level formatting, such as creating sectors on
a floppy disk or issuing a low-level SCSI format command. If this is intended, formatting must be performed
by a client application upfront, e.g. by using the TD_FORMAT command of the underlying exec device. This
packet only writes administration information on a volume that represents it in empty state.

dp_Arg1 is a BPTR to a BSTR of the volume name the medium or partition shall be given14. This
packet shall be issued while the file system is inhibited, and thus the DosList structure representing the
volume will be created or updated at the time the file system is uninhibited.

dp_Arg2 contains file system specific information that may be used to define its flavor. For example,
for the FFS dp_Arg2 carries the DosType, which shall be one of the values documented in table 8.3 in
section 8.1.3. The Format() function will take dp_Arg2 from its third argument.

Before replying this packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall
be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code.

14.7.6 Make a Copied Disk Unique
The ACTION_SERIALIZE_DISK packet serializes a volume, that is, ensures that the volume is unique and
distinguishable from other volumes available to the system.

Table 14.42: ACTION_SERIALIZE_DISK
DosPacket Element Value
dp_Type ACTION_SERIALIZE_DISK (4200)

dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed by dos.library. The packet interface e.g. DoPkt(), must be used to issue
it. The purpose of this packet is to ensure that the volume inserted in a drive is unique and distinguishable
from other volumes. Along with ACTION_FORMAT, this packet shall only be issued while the file system is
inhibited, see sections 8.7.4 and 14.9.2.

This packet does not take any arguments, it affects the currently inserted volume. The FFS implements
this packet by setting the volume creation date to the system date; other file systems can include volume IDs
or other means to uniquely label disks. The DiskCopy command of the Workbench uses this packet after
copying the disk content to ensure that the copy is distinguishable from its original.

Before replying this packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall
be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code.

14The information in [1] that the new volume name is in dp_Arg2 and the DosType is in dp_Arg3 is incorrect.

Packets Operating on Entire Volumes 289

14.7.7 Write Protecting a Volume
The ACTION_WRITE_PROTECT packet enables or disables a software write-protection on the currently
inserted volume, thus disallowing any write access through the file system on it.

Table 14.43: ACTION_WRITE_PROTECT
DosPacket Element Value
dp_Type ACTION_WRITE_PROTECT (1023)
dp_Arg1 Write protection flag
dp_Arg2 Password hash
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed by any function of dos.library, though the Lock command of the Workbench
uses it to enable or disable write protection on a volume. Optionally, write protection may be secured by a
password of which only an integer hash key is provided to the file system. To re-enable write access, the file
system shall check whether the password hash supplied matches the one when setting the write protection,
and shall refuse to unblock it if the password hash keys do not match. How a password hash is computed
is irrelevant to the file system, it only checks the keys for enabling and disabling the write protection for
equality.

dp_Arg1 is a Boolean indicator that, if non-zero, enables write protection, and if DOSFALSE re-
leases it. Any attempt to write data to the protected medium or partition shall fail with the error code
ERROR_DISK_WRITE_PROTECTED, including an attempt to set a write protection on an already write
protected file system, regardless of the password key used for re-protection.

dp_Arg2 is an integer password hash key that is stored internally in the file system when the write
protection is set, and compared against if it is to be released again. If this hash is 0, then any password
releases the lock; otherwise, if the received password hash is not equal to the original hash, attempting to
release the protection shall fail with ERROR_INVALID_COMPONENT_NAME.

Version 47 of the Lock command uses currently the following algorithm to compute a hash key15:

ULONG ComputeHash(const UBYTE *password) {
ULONG arg2 = 0;
while (*password)

arg2 = 10 * arg2 + *password++;
return arg2;

}

Before replying this packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall
be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code.

14.8 Packets for Interactive Handlers
The packet types documented in this section are specific to interactive handlers, e.g. handlers that interact with
the environment of the computer system. Examples for interactive handlers are the CON-Handler interacting
with the user through a window, the AUX-Handler which makes a console available through the serial port,
and the Port-Handler which reads and writes data through the serial or parallel port and also makes the printer
accessible to AmigaDOS.

15The algorithm in [7] is no longer up to date, the algorithm shown here has not been changed since at least version 40.

290 Rom Kernel Reference Manual: DOS

14.8.1 Waiting for Input Becoming Available
The packet ACTION_WAIT_CHAR waits for characters becoming available from an interactive handler.

Table 14.44: ACTION_WAIT_CHAR
DosPacket Element Value
dp_Type ACTION_WAIT_CHAR (20)
dp_Arg1 Timeout in microseconds
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the WaitForChar() function of dos.library, see section 5.5.3. As such, it
checks whether (interactive) input is available to satisfy a potential Read(). Note that this packet does not
receive an indicator of a file handle, thus even if input is available, it is not clear which ACTION_READ
packet will retrieve the available data. It neither removes any data buffered in the handler.

dp_Arg1 provides the timeout in ticks, where a tick is 20ms long, see also chapter 3.

This packet instructs the handler to wait at most dp_Arg1 microseconds. If no input becomes available
within this time period, dp_Res1 shall be set to DOSFALSE and dp_Res2 to 0.

If at least a single character of input becomes available within the timeout period, dp_Res1 shall be
set to DOSTRUE. If the handler implements line buffering such as the CON-Handler, then dp_Res2 shall
be set to the number of input lines available in the buffer of the handler. This feature is, for example, used
by the ARexx interpreter for implementing the LINES() function. If the handler does not implement line
buffering, dp_Res2 shall be set to 0.

In case of an error, dp_Res1 shall be set to DOSFALSE and dp_Res2 to an error code.

14.8.2 Setting the Line Buffer Mode
The ACTION_SCREEN_MODE packet changes the buffer mode of an interactive console and disables or
enables line buffering.

Table 14.45: ACTION_SCREEN_MODE
DosPacket Element Value
dp_Type ACTION_SCREEN_MODE (994)
dp_Arg1 Buffer mode
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the SetMode() function of dos.library defined in section 5.5.4. dp_Arg1 is a
copy of the second argument of this function.

The purpose of this packet is to adjust the buffer mode of a console. The CON-Handler, responsible
for all types of consoles, serves both the CON, the RAW and (through an indirection layer) the AUX devices,
all of which are incarnations of the same handler configured differently; the CON-Handler is described in
section 13.2 in more detail.

In particular, the devices CON and RAW are just two modes of the in total three modes of the graphical
console. With this packet, a CON: window can be converted into a RAW: window and vice-versa, and into a
third type of window for which no distinct device name is created.

The same type of mode switch can also be performed for the serial terminal represented by the AUX
device, which also exists in three modes in total, though usually only one of them is exposed to the user as
AUX:. This packet makes two additional modes available.

Packets for Interactive Handlers 291

dp_Arg1 defines the mode into which the console shall be switched. In total three modes are available,
regardless whether the console is a graphical console in a window or a serial console on an external terminal.
The modes are defined in table 5.3 in section 5.5.4 and explained in more detail in section 13.2.4.

All other values are reserved for future use; some third party implementations also support a mode 3
that is not documented here. For backwards compatibility, interactive handlers should interpret the value −1
(thus, DOSTRUE) identical to 1, i.e. switch to the unbuffered raw mode.

Before replying this packet, the handler shall set dp_Res1 to DOSTRUE if the mode switch could be
performed, and dp_Res2 to 1 if the console is attached to an open intuition window, or to 0 if the window
is currently closed or the console operates on top of some other device. Otherwise, if the mode switch is not
possible, the handler shall set dp_Res1 to DOSFALSE and dp_Res2 to an error code.

14.8.3 Retrieving IORequest and Window Pointer from the Console
The ACTION_DISK_INFO packet retrieves from a console pointers to its underlying resources.

Table 14.46: ACTION_DISK_INFO
DosPacket Element Value
dp_Type ACTION_DISK_INFO (25)
dp_Arg1 BPTR to InfoData
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed by dos.library; it is the same packet as the one introduced in section 14.7.3
and takes the same parameters. However, when applied to consoles, it returns different information and is
thus discussed here again.

The id_DiskType element of the InfoData structure (see section 6.3) pointed to by dp_Arg1
provides information on the mode the console is in:

Table 14.47: id_DiskType

Value of id_DiskType Console Mode
’CON\0’ Cooked or medium mode
’RAW\0’ Raw mode

Section 13.2.4 provides more information on console modes; they describe whether the console buffers
entire lines and which key presses are reported how.

The id_VolumeNode element of the InfoData structure provided in dp_Arg1 is filled with a
pointer to the intuition window the console runs in. For a serial console, or a console running on any other
device, this element remains NULL.

The id_InUse element is filled with a pointer to the IORequest structure (see exec/io.h) which
is used to communicate with the exec device the handler operates on. For a graphical console, this is a
IORequest to console.device; for the AUX: console, it is an IORequest to the corresponding device the
console runs on, e.g. of serial.device. Other devices are also possible.

Even though this packet provides useful information to the caller, it has several drawbacks and its usage
is discouraged. First, as it potentially provides information on the intuition window, a window opened in
AUTO mode cannot be closed anymore, and neither can it be iconified. This is because both operations would
invalidate the window pointer provided by this packet.

Applications should inform the console by sending an ACTION_UNDISK_INFO packet at the time the
window pointer or the IORequest is no longer required. Console windows then regain the AUTO and
iconification capabilities. ACTION_UNDISK_INFO is specified in section 14.8.4.

292 Rom Kernel Reference Manual: DOS

Second, ACTION_DISK_INFO will not provide a window if the console is not running in an intuition
window, but remotely over a serial line or any other device. The IORequest pointer then corresponds to
the target device through which the console communicates with the user, and not to console.device.

Often, applications (mis-)use this packet to retrieve the current cursor position or the dimensions of the
window in character positions, assuming that the IORequest pointer in id_InUse is, actually, corre-
sponding to console.device and as such io_Unit of the request is a pointer to a ConUnit structure. How-
ever, this assumption may not be true, and console dimensions and the cursor position cannot be obtained in
general in this way.

The following algorithm provides an alternative by switching the console to raw mode, and requesting
the required information through CSI sequences. These sequences operate independently of the device and
only require that the local or remote console implements a VT-100 compatible interface.

/* Retrieve the window dimensions in characters

** from a console connected to a file handle "file"

*/
void WindowSize(BPTR file,LONG *width,LONG *height)
{

if (!ParsePosition(file,’r’,width,height)) {
/* Provide a standard console size in

** case of failure.

*/
if (width)

*width = 80;
if (height)

*height = 24;
}

}

/* Retrieve the cursor position from a console

** connected to a file handle "file"

*/
void CursorPosition(BPTR file,LONG *x,LONG *y)
{

ParsePosition(file,’R’,x,y);
}

/*
** Maximum time to wait for the console

** to respond in microseconds. May require

** adjustment for slow connections.

*/
#define MAX_DELAY 200000

/* Generic CSI sequence parser for a VT-xxx

** console. Returns TRUE if the sequence could

** be parsed.

*/
BOOL ParsePosition(BPTR file,char answer,LONG *width,LONG *height)
{
BOOL success;
BOOL incsi,innum,negative,inesc;

Packets for Interactive Handlers 293

LONG counter;
LONG args[5];
UBYTE in;

memset(args,0,sizeof(args));
SetMode(file,1);

success = TRUE;
incsi = FALSE;
inesc = FALSE;
innum = FALSE;
negative = FALSE;
counter = 0;

/* Now send a window borders or

** cursor status request to the stream

*/
if (answer == ’R’) {

Write(file,"\033[6n",4);
} else {

Write(file,"\033[0 q",5);
}

/* Parse the incoming string */
for(;;) {

if (WaitForChar(file,MAX_DELAY) == FALSE) {
success = FALSE;
break;

}

if (Read(file,&in,1) != 1) {
success = FALSE;
break;

}

/*
** State machine for interpreting CSI or ESC

** sequences.

*/
if (incsi) {

if ((in<’ ’) || (in>’~’)) { /* Invalid sequence? */
incsi = FALSE;

} else if ((in>=’0’) && (in<=’9’)) {
/* Valid number? */
if (innum == FALSE) {

innum = TRUE;
args[counter] = 0;

}
args[counter] = args[counter]*10+in-’0’;

} else {
/* Abort parsing the number. Install its sign */

294 Rom Kernel Reference Manual: DOS

if (innum) {
if (negative)

args[counter] = -args[counter];
innum = FALSE;
negative = FALSE;

}
if ((in>=’@’) && (in<=’~’)) { /* End of sequence? */
/* Is it a bounds report? */
if ((in==’r’) && (answer==’r’) && (counter==3)) {

if (height)

*height = args[2]-args[0]+1;
if (width)

*width = args[3]-args[1]+1;
break;

}
/* Is it a cursor report? */
if ((in==’R’) && (answer==’R’) && (counter==1)) {

if (height)

*height = args[0];
if (width)

*width = args[1];
break;

}
incsi = FALSE; /* Abort sequence */

} else if (in==’;’) { /* Argument separator? */
counter++;
/* Do not parse more than 5 arguments,

** throw everything else away

*/
if (counter>4) counter=4;
innum = FALSE;
negative = FALSE;

} else if (in==’-’) {
if (innum)

incsi = FALSE; /* minus sign in the middle is invalid */
negative = ~negative;

} else if (in==’ ’) {
/* Ignore SPC prefix */

} else {
/* Abort the sequence */
incsi = FALSE;

}
}

} else if (inesc) {
if (in == ’[’) {

inesc = FALSE;
incsi = TRUE; /* found a CSI sequence */
innum = FALSE; /* but not yet a valid number */
negative = FALSE;
counter = 0;
args[0] = args[1]=args[2]=args[3]=args[4] = 1;

Packets for Interactive Handlers 295

} else if ((in >= ’ ’) && (in <= ’/’)) {
/* ignore the ESC sequence contents */

} else {
inesc = FALSE; /* terminate the ESC sequence */

}
} else if (in == 0x9B) {

incsi = TRUE; /* found a CSI sequence */
innum = FALSE; /* but not yet a valid number */
negative = FALSE;
counter = 0;
args[0] = args[1]=args[2]=args[3]=args[4] = 1;

} else if (in == 0x1B) {
inesc = TRUE; /* found an ESC sequence */

} /* Everything else is thrown away */
}

SetMode(file,0);
return success;

}

The above algorithm supports both 7-bit and 8-bit consoles and is aware of the 7-bit two-character equivalent
of CSI. It thus cannot only be used for communication with an Amiga console, will work with any VT-100
compatible terminal.

Upon replying ACTION_DISK_INFO, dp_Res1 shall be set to a Boolean success indicator. On suc-
cess, it shall be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to
DOSFALSE and dp_Res2 to an error code.

14.8.4 Releasing Console Resources

The ACTION_UNDISK_INFO packet releases any resources obtained by ACTION_DISK_INFO.

Table 14.48: ACTION_UNDISK_INFO
DosPacket Element Value
dp_Type ACTION_UNDISK_INFO (513)

dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed by dos.library, the packet must be issued through the DoPkt() function. It
was added in AmigaDOS version 45, but was already implemented in some third party handlers before.

The purpose of this packet is to let the console know that the pointers to the window and the IORequest
provided by ACTION_DISK_INFO are no longer needed and the console may close the window or release
the IORequest if needed. This has the practical consequence that AUTO windows can be closed again, and
the console can also be iconified again.

To implement this packet, the console should keep a counter to track the number of times its resources
have been provided to clients. An ACTION_DISK_INFO increments it, and ACTION_UNDISK_INFO
decrements it. As long as the counter is non-zero, the window shall remain open and the connection to the
device implementing the console functionality shall be established. This includes that the window needs
to be forced open on the first ACTION_DISK_INFO if it was closed, either because it is not yet open, is
iconified or because it is an AUTO window that has been closed by the user.

296 Rom Kernel Reference Manual: DOS

This packet does not take any arguments. Even though there is practically no reason why this packet
could fail, the console handler shall set dp_Res1 to DOSTRUE and dp_Res2 to 0 on success. On an error,
if such an error should be possible, dp_Res1 shall be set to DOSFALSE and dp_Res2 to an error code.

14.8.5 Stack a Line at the Top of the Output Buffer
The ACTION_STACK packet injects a line at the start of the output buffer of the console.

Table 14.49: ACTION_STACK
DosPacket Element Value
dp_Type ACTION_STACK (2002)
dp_Arg1 fh_Arg1 of a FileHandle
dp_Arg2 APTR to characters
dp_Arg3 Size of the buffer in bytes
dp_Res1 Number of characters stacked
dp_Res2 Error code

This packet is not exposed by dos.library, it rather must be issued through the packet interface, e.g.
DoPkt(). This packet injects a line at the top of the output buffer of the console. This buffer keeps all
lines entered by the user, and lines injected by ACTION_STACK and ACTION_QUEUE. The number of
lines in this output buffer can be obtained through ACTION_WAIT_CHAR which delivers the line count in
dp_Res2. While this packet does not show up in [1], it is present since AmigaDOS version 36 and the
integration of ARexx.

Lines from this buffer are provided to clients on ACTION_READ requests that empty this buffer line by
line. Thus, a line provided through this packet will be delivered to the next reading client, before any other
buffered lines, but after all lines entered by the user have been delivered.

Lines injected into the console output buffer are not echoed on the screen. Arexx uses this packet to
implement the PUSH instruction which employs the console as “external stack”. This packet places a line at
the top of this stack.

dp_Arg1 is a copy of the fh_Arg1 element of a FileHandle structure interfacing to the console.
dp_Arg2 is a C pointer (not a BPTR) to an array of characters to be injected into the output buffer of

the console.
dp_Arg3 is the size of the buffer in characters, i.e. the number of characters add at the head of the output

buffer.
Upon replying this packet, dp_Res1 shall be set to the number of characters that could be stacked in

the output buffer of the console, or to −1 in case of failure. On success, dp_Res2 shall be set to 0, or to an
error code on failure.

14.8.6 Queue a Line at the End of the Output Buffer
The ACTION_QUEUE packet injects a line at the end of the output buffer of the console.

Table 14.50: ACTION_QUEUE
DosPacket Element Value
dp_Type ACTION_QUEUE (2003)
dp_Arg1 fh_Arg1 of a FileHandle
dp_Arg2 APTR to characters
dp_Arg3 Size of the buffer in bytes
dp_Res1 Number of characters stacked
dp_Res2 Error code

Packets for Interactive Handlers 297

This packet is not exposed by dos.library, it rather must be issued through the packet interface, e.g.
DoPkt(). This packet injects a line at the end of the output buffer of the console. This buffer keeps all
lines entered by the user, and lines injected by ACTION_STACK and ACTION_QUEUE. The number of
lines in this output buffer can be obtained through ACTION_WAIT_CHAR which delivers the line count in
dp_Res2. While this packet does not show up in [1], it is present since AmigaDOS version 36 and the
integration of ARexx.

Lines from this buffer are provided to clients on ACTION_READ requests that empty this buffer line by
line. Thus, a line provided through this packet will be delivered to a reading client after all other buffered
lines have been read from the console, including lines entered by the user.

Lines injected into the console output buffer are not echoed on the screen. Arexx uses this packet to
implement the QUEUE instruction which employs the console as “external stack”. This packet places a line
at the end of this stack, i.e. queues it.

dp_Arg1 is a copy of the fh_Arg1 element of a FileHandle structure interfacing to the console.

dp_Arg2 is a C pointer (not a BPTR) to an array of characters to be injected into the output buffer of
the console.

dp_Arg3 is the size of the buffer in characters, i.e. the number of characters to append at the end of the
output buffer.

Upon replying this packet, dp_Res1 shall be set to the number of characters that could be queued in the
output buffer of the console, or to −1 in case of failure. On success, dp_Res2 shall be set to 0, or to an
error code on failure.

14.8.7 Force Characters into the Input Buffer
The ACTION_FORCE packet injects characters into the keyboard buffer of the console, as if the user typed
them.

Table 14.51: ACTION_FORCE
DosPacket Element Value
dp_Type ACTION_QUEUE (2001)
dp_Arg1 fh_Arg1 of a FileHandle
dp_Arg2 APTR to characters
dp_Arg3 Size of the buffer in bytes
dp_Res1 Number of characters stacked
dp_Res2 Error code

This packet is not exposed by dos.library, it rather must be issued through the packet interface, e.g.
DoPkt(). This packet injects characters into the keyboard buffer of the console, at the same place keystrokes
are recorded. Such characters are echoed on the console, or executed in case of control sequences. Therefore,
this packet also allows to move the cursor left or right, or erase the current line by emulating the corresponding
keystrokes. While this packet does not show up in [1], it is present since AmigaDOS version 36, though did
not work as intended before AmigaDOS version 47.

Note that the keyboard input buffer is different from the line output buffer; lines entering the console
through ACTION_FORCE qualify as keyboard input16. The main user of this packet is the Shell through
which it injects TAB-expanded file names into the console. The ConClip command also uses this packet to
insert the paths of icons dropped on the console window.

dp_Arg1 is a copy of the fh_Arg1 element of a FileHandle structure interfacing to the console.

16Even though the V36 CON-Handler already supported this packet, it is there implemented incorrectly and does not impact the
keyboard buffer but the keyboard buffer. This was fixed in V47.

298 Rom Kernel Reference Manual: DOS

dp_Arg2 is a C pointer (not a BPTR) to an array of characters to be injected into the output buffer of
the console. It may contain control sequences.

dp_Arg3 is the size of the buffer in characters, i.e. the number of characters to inject into the keyboard
buffer.

Upon replying this packet, dp_Res1 shall be set to the number of characters that could be injected into
the keyboard buffer of the console, or to −1 in case of failure. On success, dp_Res2 shall be set to 0, or to
an error code on failure.

14.8.8 Drop all Stacked and Queued Lines in the Output Buffer

The ACTION_DROP packet disposes all lines that have been injected into the output buffer and thus reverts
any ACTION_STACK and ACTION_QUEUE packets.

Table 14.52: ACTION_DROP
DosPacket Element Value
dp_Type ACTION_DROP (2004)
dp_Arg1 fh_Arg1 of a FileHandle
dp_Arg2 0
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed by dos.library, it rather must be issued through the packet interface, e.g.
DoPkt(). It removes any lines injected by ACTION_STACK and ACTION_QUEUE from the output buffer
of the console and thus reverts their effects. Keyboard inputs and the keyboard buffer remain unaffected.
Thus, this packet resets the line stack in the console. This packet is designed for compatibility with ARexx,
it is, however, not used at the time of writing. While this packet does not show up in [1], it is present since
AmigaDOS version 36 and the integration of ARexx.

dp_Arg1 is a copy of the fh_Arg1 element of a FileHandle structure interfacing to the console.

dp_Arg2 shall be 0. This element is reserved for future use as a priority and shall be zero-initialized for
forwards compatibility.

Upon replying this packet, dp_Res1 shall be set to DOSTRUE and dp_Res2 to 0 on success. On error,
dp_Res1 shall be set to DOSFALSE and dp_Res2 to an error code.

14.8.9 Bring the Console Window to the Foreground

The ACTION_SHOWWINDOW activates the console window, if it is open, and brings it to the foreground.

Table 14.53: ACTION_SHOWWINDOW
DosPacket Element Value
dp_Type ACTION_SHOWWINDOW (506)

dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed by dos.library. The packet interface, e.g. DoPkt(), is required to issue it.
It brings the window associated to the console, should such a window exist, to foreground and activates it.
If the console is a serial console or the console window is closed or iconified, no activity is performed and
no error is reported. Unlike ACTION_DISK_INFO, it will not force the window open if the window is
currently closed. This packet was introduced in AmigaDOS version 47.

Packets for Interactive Handlers 299

The primary user of this packet is the ConClip tool which sends this packet to make the window visible
whenever an icon is dropped on it. The path of the icon is injected into the keyboard input buffer with
ACTION_FORCE.

Upon replying this packet, dp_Res1 shall be set to DOSTRUE and dp_Res2 to 0 on success. On error,
dp_Res1 shall be set to DOSFALSE and dp_Res2 to an error code.

14.8.10 Change the Target Port to Receive Break Signals
The ACTION_CHANGE_SIGNAL packet sets a MsgPort to whose task the console sends break signals
generated by the Ctrl-C to Ctrl-F key combinations.

Table 14.54: ACTION_CHANGE_SIGNAL
DosPacket Element Value
dp_Type ACTION_CHANGE_SIGNAL (995)
dp_Arg1 fh_Arg1 of a FileHandle
dp_Arg2 APTR to MsgPort structure
dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed by dos.library. The packet interface, e.g. DoPkt(), is required to issue
it. It defines one of the two ports to which break signals as generated by the Ctrl-C to Ctrl-F key
combinations are send. Actually, the port itself is not used as such, but only its mp_Task element providing
the task to which signals are send. This packet was introduced in AmigaDOS version 36.

The port set by this packet is implicitly overridden and replaced by the port of the next process reading
from the console by ACTION_READ. That is reading from the console implicitly requests receiving break
signals. Despite to the reading port, the console also sends break signals to the last process that issued an
ACTION_WRITE request, provided this is not a shell process running in the background.

The console takes a couple of precautions to avoid trashing memory by attempting to send signals to
processes that no longer exist: the console implicitly disables the port set by ACTION_CHANGE_SIGNAL
and ACTION_READ or the port set by ACTION_WRITE whenever an ACTION_END is received from a
process to which the corresponding port belongs. That is, processes that are closing a stream to the console
are removed as candidates for receiving break signals. In addition, before sending a signal, the console tests
the validity of the port by testing whether its mp_Task field is known to the exec scheduler. For that, it
searches the list of waiting and ready tasks within ExecBase for mp_Task and refuses to send a signal if
the task is not found in one of the two lists.

This packet is, for example, used when a shell is started in a console window, or a NewShell command
creates a shell in an already open console. In such a case, the System() function as part of dos.library sends
a ACTION_CHANGE_SIGNAL to the console to ensure that break signals are received by the new shell just
started, and not by the shell which is then running in the background17. This packet is not send for executables
started by the Run command in the background. Even though Run also goes through System(), it uses
different parameters that suppresses its generation.

Arguments are populated as follows:
dp_Arg1 is a copy of the fh_Arg1 element of a FileHandle structure that is opened to the console,

even though the system CON-Handler does currently not use this argument. Third party handlers may depend
on it, however.

dp_Arg2 is a pointer to a MsgPort to whose task break signals will be send. If this argument is NULL,
the currently configured port is not changed. As the console shall always return the previously configured
port in dp_Res2, this allows clients to retrieve the currently configured break port without changing it.

17Unlike what [7] claims, this packet is not send by CreateNewProc().

300 Rom Kernel Reference Manual: DOS

Before replying this packet, dp_Res1 shall be set to DOSTRUE on success, and dp_Res2 to the port
that was previously registered for receiving signals, or NULL if no such port was configured. On error,
dp_Res1 shall be set to DOSFALSE and dp_Res2 to an error code.

14.9 Packets Controlling the Handler in Total
The packets in this section impacts file systems and handlers at a global level. They do not apply to a
particular volume or file system object.

14.9.1 Adjusting the File System Cache

The ACTION_MORE_CACHE packet increases or decreases the number of file system buffers.

Table 14.55: ACTION_MORE_CACHE
DosPacket Element Value
dp_Type ACTION_MORE_CACHE (18)
dp_Arg1 Buffer increment
dp_Res1 Total number of buffers or 0
dp_Res2 Error code

This packet implements the AddBuffers() function of dos.library introduced in section 8.7.1. It
increases or decreases the number of buffers the file system may use to cache data. How exactly a file
system uses these buffers and how large these buffers are is specific to the file system implementation and its
configuration.

The FFS uses these buffers to temporary store administration data such as blocks describing the directory
structure or information which blocks a particular file occupies on disk. Providing additional buffers (within
limits) can thus help to improve the performance of a file system by reducing the number of times the
underlying device needs to be contacted. The FFS also uses these buffers to store payload data if the source
or destination buffer of the client is not reachable by the exec device driver. The de_Mask element of the
environment vector is used to determine such incompatibilities, see section 8.1.3.

dp_Arg1 is the increment (or decrement, if negative) of the number of buffers be added (or removed)
from the pool of cache buffers of the file system. File systems may clamp this value to guarantee that a
minimum number of buffers are available, or limit the buffer count to a useful value

The FFS versions 34 and below did not support reducing the number of buffers and neither accepted a
value of 0 for the buffer increment. This was fixed in AmigaDOS version 36.

If this packet succeeds, the file system shall set dp_Res1 to the number of buffers currently allocated,
and dp_Res218 to 0. Thus, the current buffer count can obtained by sending this packet with dp_Arg1 set
to 0. On an error, dp_Res1 shall be set to DOSFALSE and dp_Res2 to an error code.

14.9.2 Inhibiting the File System

The ACTION_INHIBIT packet disables or enables access of the file system to the underlying device; once
file system access is disabled, application programs such as Format may access the underlying device
directly.

18The dos.library autodocs and [7, 1] document that the file system shall return the buffer count in dp_Res2 instead. However,
the current version of the FFS returns it in dp_Res1, and the AddBuffers command depends on this — possibly erroneous —
implementation. However, as programs seem to depend on this behavior, it is recommended to accept this deviation from official
sources as specification change.

Packets Controlling the Handler in Total 301

Table 14.56: ACTION_INHIBIT
DosPacket Element Value
dp_Type ACTION_INHIBIT (31)
dp_Arg1 Inhibit flag
dp_Res1 Boolean result code
dp_Res2 Error code

This packet implements the Inhibit() function of dos.library, see 8.7.4. An inhibited file system
is blocked from accessing its underlying medium for read and write access, with the exception of the
ACTION_FORMAT, ACTION_SERIALIZE_DISK and ACTION_DISK_INFO packets which remain op-
erational. The former two even require the file system to be inhibited.

When requesting the disk state with ACTION_DISK_INFO, an inhibited file system changes its disk
type id_DiskType in the InfoData structure to ‘BUSY’, see table 6.6 in section 6.3.

Once the file system is uninhibited again, it shall perform a validation of the volume as if it has been
re-inserted. This is necessary because an application bypassing the file system to access the volume directly
could have changed the file system structure, the volume name or the date, or may have even written a
completely new file system structure on it. This check thus implies verifying the flavor of the file system,
e.g. the DosType for the FFS, and potentially creating and inserting a DosList entry into the device list
representing the volume. Thus, first inhibiting and uninhibiting a file system is equivalent to simulating a
medium change, which is also how the DiskChange command operates.

id_Arg1 is a Boolean indicator that defines whether the file system shall be inhibited or uninhibited.
If dp_Arg1 is DOSFALSE, the file system is uninhibited and a file structure check shall be performed.
In all other cases, the file system shall be inhibited and, with the exception of ACTION_FORMAT and
ACTION_SERIALIZE_DISK, should refrain from accessing the medium or partition.

Before replying this packet, dp_Res1 shall be set to a Boolean success indicator. On success, it shall
be set to DOSTRUE and dp_Res2 shall be set to 0. On failure, dp_Res1 shall be set to DOSFALSE and
dp_Res2 to an error code. A reason for failing to inhibit a volume is for example if any files are open for
writing, and thus the bitmap is inconsistent. Inhibiting in such a case could damage the file system structure.

14.9.3 Check if a Handler is a File System
The ACTION_IS_FILESYSTEM tests whether a handler is a file system.

Table 14.57: ACTION_IS_FILESYSTEM
DosPacket Element Value
dp_Type ACTION_IS_FILESYSTEM (1027)

dp_Res1 Boolean result code
dp_Res2 Buffer count or error code

This packet implements the IsFileSystem() function of dos.library as introduced in section 5.5.2
and tests whether a particular handler provides sufficient services to operate as a file system. This packet was
introduced in AmigaDOS version 36.

A file system shall be able to access multiple separate files, shall be able to support locks and shall also
be able to examine directories such that commands like List are able to show directory contents. A file
system may be either a flat or a hierarchical file system, i.e. file systems are not required to support multiple
directories per volume.

This packet does not take any arguments. It shall set dp_Res1 to DOSTRUE and dp_Res2 to 0 in case
the handler qualifies as a file system. In case the handler supports this packet but does not implement a file
system, it shall set dp_Res1 to DOSFALSE and dp_Res2 to 0.

302 Rom Kernel Reference Manual: DOS

If the handler sets dp_Res1 to DOSFALSE and dp_Res2 to ERROR_ACTION_NOT_KNOWN, then
this is an indication that the handler cannot interpret this particular packet. If this secondary result code is
received by the IsFileSystem() function, it falls back to a heuristic for determining whether a handler
is a file system: it uses Lock(":",SHARED_ACCESS), i.e. ACTION_LOCATE_OBJECT to obtain a lock
on the file system root. If successful, then dos.library assumes that the handler is actually a file system. An
approximation of this algorithm is found in section 5.5.2

14.9.4 Write out all Pending Modifications
The ACTION_FLUSH packet instructs the file system to write all pending or cached modifications out to the
medium19.

Table 14.58: ACTION_FLUSH
DosPacket Element Value
dp_Type ACTION_FLUSH (27)

dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed by dos.library and thus can only be send manually through the packet interface,
e.g. DoPkt(). File systems may cache writes in order to improve their performance, and may defer write
operations an arbitrary amount of time. This packet instructs the file system to write out all modifications
immediately.

This packet shall not be replied before all changes have been written back, the buffers at exec device
level have been flushed to the physical layer, e.g. by a CMD_UPDATE, and if applicable, the drive motor has
been turned off. However, FFS versions of 40 and before replied ACTION_FLUSH immediately and thus
this packet only established a write barrier. This was fixed in AmigaDOS version 43.

Even though it is unclear how clients could make use of the result code, file systems should set dp_Res1
to DOSTRUE and dp_Res2 to 0 on success20. In case of error, file systems should set dp_Res1 to
DOSFALSE and dp_Res2 to an error code.

14.9.5 Shutdown a Handler
The packet ACTION_DIE requests a file system unmount its volumes and terminate.

Table 14.59: ACTION_DIE
DosPacket Element Value
dp_Type ACTION_DIE (5)

dp_Res1 Boolean result code
dp_Res2 Error code

This packet is not exposed through dos.library; rather, the packet must be send through the packet inter-
face, i.e. through DoPkt(). It requests the file system to release all resources, set the dol_Task element
of the DosList structures that point to (one of its) ports(s) in the device list to NULL, and then terminate
the process.

A file system shall not exit as long as resources cache copies of its MsgPort(s); this is typically the
pr_MsgPort of the handler process which is released by AmigaDOS as soon as the process exits. This port
would become unusable on exit, and an attempt to contact the file system through it would crash the system.

19Users of Unix like systems may consider this as the AmigaDOS equivalent of sync.
20The official reference [1] only states that dp_Res1 shall be set to DOSTRUE. This is probably what most AmigaDOS file systems

implement, though the value of unconditionally indicating success is questionable.

Packets Controlling the Handler in Total 303

Resources that contain a pointer to the (or a) file system port are file handles, locks or NotifyRequest. If
any of them are still active, the file system or handler cannot exit, and ACTION_DIE shall fail.

If none of these resources exist, as next step, references to the file system port(s) shall be removed from
the device list. To gain access to the device list, the file system should use AttemptLockDosList() as
a blocking semaphore may cause a deadlock. If the list is not accessible at this time, the file system cannot
safely shut down and ACTION_DIE shall also fail. If the device list is accessible, the file system shall set the
dol_Task elements of the volumes it administrates and the device node it is represented by to NULL. This
will request AmigaDOS to launch a new file system from the dol_SegList segment as soon as a client
attempts to access it through its device name.

Unfortunately, even these precautions are not fully sufficient to safely unmount a device because client
programs can request a handler message port via GetDeviceProc() or DeviceProc() any time for
direct communication and buffer the returned port. A file system has no direct control of where or whether
cached copies of its port(s) are held, and thus whether it can safely terminate. This limits the utility of this
packet to system debugging tools.

In case the file system can foresee that it cannot safely exit at the time the request is made, this packet shall
fail by setting dp_Res1 to DOSFALSE and dp_Res2 to an error code, e.g. ERROR_OBJECT_IN_USE.
If termination is seemingly possible, this packet shall be replied by setting dp_Res1 to DOSTRUE and
dp_Res2 to 0.

After unmounting the volume and replying to this packet, the MsgPort(s) of this handler or file system
used for packet communication can still contain packets that were submitted after ACTION_DIE has been
received. In order to avoid a deadlock or a crash, the file system shall still reply these packets, for example
with the default result codes from table 13.2 in section 13.1.3; additional details on how to terminate a handler
are found in section 13.1.4.

Some handlers do not initialize the dol_Task element of its DosList entrie(s) with an address of their
port(s); interactive handlers such as the CON-Handler are typical examples. Such handlers shall terminate
themselves without requiring an ACTION_DIE when the last resource opened to them had been shut down,
i.e. all file handles have been closed, all locks (if they are supported at all) have been unlocked and all
NotifyRequests (if supported) had been canceled.

14.9.6 Do Nothing

The ACTION_NIL packet performs no activity.

Table 14.60: ACTION_NIL
DosPacket Element Value
dp_Type ACTION_NIL (0)

dp_Res1 DOSTRUE
dp_Res2 0

This packet is not exposed by dos.library. It does not perform any activity. A handler or file sys-
tem implementation should indicate success when replying this packet. Another reason why a seemingly
ACTION_NIL packet can appear at a handler MsgPort is because the startup package has its dp_Type
set to 0, too, and thus identifies itself also as ACTION_NIL. While ACTION_NIL does not provide any
arguments, the startup package does, see section 13.1.2.

There is no reason why this packet should actually fail, unless a handler implements startup handling
through the packet type ACTION_NIL. On success, dp_Res1 shall be set to DOSTRUE and dp_Res2 to 0.
On an error dp_Res2 shall be set to DOSFALSE and dp_Res2 to an error code.

304 Rom Kernel Reference Manual: DOS

14.10 Handler Internal Packets
The packets in this section shall never be sent to a handler or file system as part of an application request.
Instead, these packets are only used internally within the handler, and are rather an implementation trick
to uniform the handler event processing. While regular DosPackets are carried by an exec message,
the packets listed here are linked to an IORequest (see exec/io.h). This allows using a shared port,
typically the pr_MsgPort of the handler process, for receiving replied IORequests and incoming packets
as both appear as DosPackets.

For such packets, the io_Message.mn_Node.ln_Name points to the DosPacket structure, and its
dp_Link elements points back to the IORequest. Handlers dispatch these IORequest to exec devices
asynchronously with SendIO(), and continue processing requests while the exec device is busy with the
requested input or output command. Due to its linkage to a DosPacket, a completed IORequest is
received by the packet interface of the handler as one of the packet types listed here.

14.10.1 Receive a Returning Read
The ACTION_READ_RETURN packet is part of a returning CMD_READ or similar input IORequest sent
to an exec device and indicates that reading data completed.

Table 14.61: ACTION_READ_RETURN
DosPacket Element Value
dp_Link APTR to IORequest
dp_Type ACTION_READ_RETURN (1001)

This packet does not constitute a request to the handler, it rather indicates that the IORequest pointed
to by dp_Link completed and the requested data is now available. As such, this packet shall never be
replied.

14.10.2 Receive a Returning Write
The ACTION_WRITE_RETURN packet is part of a returning CMD_WRITE or similar output IORequest
sent to an exec device and indicates that writing data completed.

Table 14.62: ACTION_WRITE_RETURN
DosPacket Element Value
dp_Link APTR to IORequest
dp_Type ACTION_WRITE_RETURN (1002)

This packet does not constitute a request to the handler, it rather indicates that the IORequest pointed
to by dp_Link completed and data had been written out. As such, this packet shall never be replied.

14.10.3 Receive a Returning Timer Request
The ACTION_TIMER packet is part of a returning TR_ADDREQUEST, a timer.device request to wait for a
certain time span.

Table 14.63: ACTION_TIMER
DosPacket Element Value
dp_Link APTR to IORequest
dp_Type ACTION_TIMER (30)

Handler Internal Packets 305

This packet does not constitute a request to the handler, it rather indicates that the timerequest
pointed to by dp_Link completed and the requested time span passed. As such, this packet shall never
be replied. The FFS uses this packet to turn off the drive motor after the last read or write operation, and
interactive handlers such as the console use it to implement ACTION_WAIT_CHAR.

14.11 Obsolete and Third-Party Packets
The following packets are not implemented nor defined by AmigaDOS but are either obsolete or currently
in use by some third-party handlers. Their functionality is beyond the scope of this work. This list does not
claim to be complete:

Table 14.64: Some Third Party Packets
dp_Type Purpose
ACTION_GET_BLOCK(2) obsolete, used by the BCPL file system
ACTION_SET_MAP(4) obsolete, used by the BCPL file system
ACTION_EVENT(6) obsolete, used by the BCPL file system
ACTION_DISK_TYPE(32) obsolete, used by the BCPL file system
ACTION_DISK_CHANGE(33) not used, not related to C:DiskChange
ACTION_VDU (992) Tripos legacy virtual terminal support
ACTION_SETVDU (993) Tripos legacy virtual terminal support
ACTION_SC_WRITE (996) Tripos legacy terminal support
ACTION_SC_MSG (997) Tripos legacy terminal support
ACTION_DUMMY (1000) Tripos legacy, not used in AmigaDOS
ACTION_FINDREADONLY(1009) open a file for exclusive read access
ACTION_FINDONEWRITER(1010) open a file for exclusive write access
ACTION_WREIG (1011) Tripos legacy streamer support
ACTION_REWIND (1012) Tripos legacy streamer support
ACTION_DIRECT_READ(1900) used by the CDTV
ACTION_DOUBLE(2000) create two file handles for a pipe
ACTION_PEEK(2005) retrieve the current console input line
ACTION_REPLACE(2006) replace the current console input line
ACTION_GET_HISTORY(2007) retrieve the history of the console
ACTION_HANDLER_DEBUG(2010) install a debug hook into a handler
ACTION_SET_TRANS_TYPE(2011) configure LF/CR translation
ACTION_NETWORK_HELLO(2012) network handler support package
ACTION_JUMP_SCREEN(2020) move console to another screen
ACTION_SET_HISTORY(2021) update or set console history
ACTION_GET_DISK_FSSM(4201) get FileSysStartupMsg structure
ACTION_FFS_INTERNAL1(7654) was reserved for the v37 FFS
ACTION_FFS_INTERNAL2(8765) was reserved for the v37 FFS
ACTION_TOGGLE_INTL(331122) reserved to toggle the international mode

306 Rom Kernel Reference Manual: DOS

Chapter 15

The AmigaDOS Shell

The Shell is the command line interpreter of AmigaDOS and implements a simple language. User appli-
cations can use services of the shell by requesting it to interpret a shell script or launching a new shell in
a user-provided console window, then interpreting commands entered by the user. The latter is called an
interactive shell, the former is non-interactive.

The Shell is built into the Kickstart ROM, even though AmigaDOS is flexible enough to allow custom
shells and make them available to user applications. The Shell is also responsible for booting up the system
by executing the Startup-Sequence script in the S assign.

15.1 The Shell Syntax
The Shell reads commands along with its arguments line by line from the console or a script. Each line
consists of at least one command and its arguments, all separated by spaces or tabulators. Each argument is
either a value, e.g. a file name, a string or a number — or a pair of a keyword and a value. The keyword
may be either separated by blank spaces or tabulators from its value, or by an equals sign (“=”), without any
spaces or tabulators in between. Many shell commands use the argument parser from section 15.5.1 and thus
use the syntax implied by the ReadArgs() function described above, even though commands can use other
means for parsing their arguments.

The command refers to an alias, or a script or executable file within the path. The path is a list of
directories the Shell searches for scripts or executables; it always contains the current directory and the C
assign, though additional directories can be added or removed with the Path command any time. Aliases
(see 15.1.8) are simple Shell macros that expand to other commands and perform simple argument injection
and reordering.

The following sections describe the Shell syntax in detail. Even though it stems from the Tripos system,
AmigaDOS added over the years features such as variable substitution, compound commands including
pipes, back-tick expansion and additional redirection operators.

15.1.1 Input/Output Redirection

Commands receive from the Shell an input and output stream, and a console handler to which commands can
refer by the special file name “*”. Optionally, commands can also be provided with an error stream through
which diagnostic messages are printed. The Shell allows redirecting or creating these streams by operators
on the command line that shall also be separated by the spaces or tabulators from the arguments and the
command. In the following, the term “path” is an absolute or relative path to a file or device in the sense of
chapter 4, that is, a path name that can be opened to provide alternative input, output or error streams.

The Shell Syntax 307

The Shell supports the following redirection operators:

>path redirects the output of a command to a particular file, creating the file if it does not yet exist, or
overwriting it if does.

>>path appends the output of a command to a file if the file already exists, or creates the output file if it
does not yet exist.

<path redirects the input of a command from an already existing file which must exist; otherwise, an
error is reported.

<<ind uses the current console or the shell script from which the command is run as input, line by line,
until a line starting with the indicator ind is found. The indicator can be chosen arbitrarily. A
typical choice is EOF. This avoids creating temporary files for providing longer inputs, the input
is instead taken from the script containing the command. This operator was added in AmigaDOS
version 45.

<>path redirects both the standard input and the standard output of the command to a file. The file must
exist already, otherwise an error is reported. This can be used, for example, to detach a command
completely from the console and redirect input and output to NIL:.

*>path redirects the error output of the command to the given file. If the path identifies an interactive
stream (see section 5.5.1), such as a console, then the console process of the command is also
set to the handler of the path. Changing the console process will also redirect the output of
commands that print errors to the * file representing the console. This redirection operator was
also added to AmigaDOS version 45. The syntax of this redirection operator is a reminder that
the console, i.e. the file “*”, is redirected.

*>>path appends the error output of a command to a file, or creates a new file for error output if it does
not yet exist. If the target file is interactive, the console process of the command is also updated.
This redirection operator was added to AmigaDOS version 45.

*<> creates a standard error stream and redirects it to the standard output, that is, errors go into
the same file into which command output is redirected. This operator does not take a path as
argument and stands alone. If none of the three above redirection operators are present, then
(unlike in other operating systems) the command does not receive a standard error stream. What
happens in such a case with error output is specific to the implementation of the command.
The system error handling functions will still redirect error output to the standard output as
if an implicit *<> would be present. This redirection operator was introduced in AmigaDOS
version 45, too.

Where the redirection operator is placed within a command line does typically not matter, e.g. whether
it is directly following the command or placed at the end of the command line. There are, however, three
exceptions the Shell makes when parsing the command line:

For the Alias and Run command, redirections of the command itself shall be placed directly following
the command, i.e. directly behind Run or Alias. The same applies to all other commands if the shell
variable oldredirect is set to on. This enables the legacy AmigaDOS 33 redirection syntax.

In cases described above, redirections placed at a later point of the command line will become part of
the command line arguments. That is, for Run, the command run in background will redirect its streams
rather than the output of the Run command, and for Alias, the redirection will become part of the alias and
will become active when the alias is expanded. Enabling the oldredirect variable will do likewise for
all other commands which then need to parse redirection operators manually as they appear as part of their
command line arguments. Most executables are not prepared to interpret redirection operators, however, and
it is thus recommended not to set the oldredirect variable.

308 Rom Kernel Reference Manual: DOS

15.1.2 Compound Commands and Binary Operators
Starting with AmigaDOS version 45, the Shell allows combining multiple commands on the command line,
then forming compound commands. The following operators go between commands such that the last argu-
ment of the first command is directly to the left of such an operator, and the next command follows to the
right of the operator. As for arguments, these operators need to be separated by blank spaces or tabulators
from the surrounding commands or arguments:

| The vertical bar creates a pipe such that the standard output of the command to the left becomes the
standard input of the command to its right. As some commands require an explicit file name they read
data from, or they write data to, the pipe itself can be explicitly addressed through the PIPE: file
name, both for the reading and the writing end. Pipes require the Queue-Handler (see section 13.4),
which is mounted by the System-Startup module described in section 17.4 during bootstrapping the
system1.

|| Two vertical bars concatenate the output of two commands together into one common stream which
can then redirected to a common output2.

&& Sequences two commands, first executes the one to the left, and if its result code is below the FailAt
value, continues to execute the command to its right.

The brackets “(” and “)” group commands and execute the grouped command in a separate process in a
sub-shell. Similar to all other operators listed in this section, both the opening and closing bracket shall be
separated by spaces or tabulators from commands and arguments as otherwise the shell interprets them as part
of the command or arguments. Brackets provide logical grouping of commands into compound commands.

Thus, for example, the command line

List | More

will pipe the output of the list command through the pager, and the command line

echo "Current Directory Content:" || List | More

will print an additional title on top which will also be run through the pager.
The command line

(List && Dir) >RAM:Listing

will run both the List and Dir command on the current directory one after another, and the joined output
of both commands, as run in a sub-shell, will be redirected into a file in RAM:. Note that spaces are placed
between the brackets and the commands as otherwise they would be parsed as part of the command name.

15.1.3 Unary Shell Operators
In addition, the Shell recognizes two unary operators that do not stand between commands, but only at their
end or at the end of the command line.

& The run-back operator works similar to the Run command, it starts the command line within which
it appears in background. The command will receive a new logical console, and its output and er-
ror streams will be redirected to this console, unless additional operators redirect the streams to other
files explicitly. Unfortunately, at this time, the ROM-based CON-Handler does not take advantage
of this information and will simply merge the output of the process run back with that of the regular

1With some tweaks and limitations, pipes could already be made somewhat working in earlier AmigaDOS versions. Full pipe support
was introduced in version 45.

2This syntax is different from the bash operator that looks similar.

The Shell Syntax 309

shell, though third party handlers use this information for job control and hold the output of the back-
ground process until moved explicitly to the foreground. This operator was introduced in AmigaDOS
version 45.

+ The plus operator shall only appear at the end of a command line. If it is present, it injects a line-feed
and the following line of the current input of the Shell into the argument line of the command. It thus
forms an argument string that consists of multiple lines. Only very few commands can actually process
a line-feed as part of their argument line, most will ignore all characters behind the first line feed. One
particular command that supports such argument lines is Run. It feeds its argument line unprocessed
into a new non-interactive Shell as command stream, building it from a string using a technique similar
to that explained in section 5.7.2. This sub-shell will thus receive a shell script as input which consists
of multiple lines, and will execute the commands one after another. In combination with the Run com-
mand, the plus (“+”) operator therefore indicates that the following line forms an additional command
line of a shell script that is to be executed in background.

; The semicolon ends a command line and starts a comment. All characters beyond the semicolon are
ignored.

Thus, for example, the following two lines entered on the console

Run List +
Dir

run the List command in background, which is followed by the Dir command, also run in the same
background shell after the List command finished. The same can be accomplished, though in a more
compact form, by the single line

(List && Dir) &

15.1.4 Quoting and Escaping
To allow spaces, tabulators, equals-signs and the above operators within command names and arguments,
e.g. to handle file names containing such characters, the Shell offers quoting. Blank spaces, tabulators,
semicolons, the above operators and equals-signs become part of the command or argument and are not
interpreted by the Shell if they are enclosed in double quotes (“"”). A quote only starts a quoted argument
or command and is thus a functional element of the Shell if it is at the start of the line or preceded by a blank
space or a tabulator; quotes within an otherwise unquoted argument are literals and stand for themselves. A
quote, however, does terminate a quoted string even if it is not followed by a blank space or tabulator.

The Shell recognizes the asterisk “*” as an escape character, and depending on the escape sequence, it is
either active in any place, or only recognized within double quotes. The escape sequences supported by the
Shell can be roughly broken up into two classes:

The first class of escape sequences is only substituted within double quotes. These legacy escape se-
quences are recognized by the Shell, but the actual substitution of the escape sequence by the escaped char-
acter is left to the executing program and thus happen outside of the Shell.

*N The newline character, ASCII 0x0a.

*E The ESC character, ASCII 0x1b. There is no escape sequence for the CSI control character 0x9b, but
there is a 7-bit equivalent sequence all terminals support, namely *E[. The Shell does not establish
this equivalence, but the console does.

*" The double quote; a double quote escaped as such does not terminate the quoted argument, but repre-
sents the quote itself as part of the argument.

310 Rom Kernel Reference Manual: DOS

** The asterisk itself.

As the Shell does not perform substitutions for the above sequences, they appear within the command line
as received by the executed program, which is then responsible to perform the above substitutions correctly
itself. Thus, the command

Echo "Hello*NThere"

prints the word Hello on one line, and There on a new line below, though the Echo command receives the
argument line "Hello*NThere" including the quotes and the escape sequence. Replacement of “*N” with
the line feed happens inside of the Echo command, or more precisely, within the ReadArgs() function
called by it.

The above escape sequences are not substituted outside of double quotes, and therefore, are literals there.
This allows, for example, to use “*” as file name — without quotes — representing the current code. The
command

Echo Hello*NThere

therefore prints Hello*NThere on the console, without any line feed, unchanged.
Proper interpretation and escape sequence substitution is ensured if the command uses the ReadArgs()

or ReadItem() functions of dos.library, see section 15.5.1 and following. This distribution of responsibil-
ities has the inconvenient side effect that some third-party argument parsers, e.g. the ones provided by some
C compilers, do not fully support the (admittedly unorthogonal) quotation and escaping rules of the Shell and
thus do not deliver the expected results.

The second class of escape sequences is transparently substituted by the Shell, and thus no additional
burden arises for the executed program to interpret them3. Unlike the above, the following sequences are
also interpreted outside of quotes, everywhere on the command line:

*$ The literal dollar sign. The non-escaped dollar sign is a syntax element that indicates variable expan-
sion, see section 15.1.5.

*‘ The literal back-tick. The non-escaped back-tick is a syntactical element for command output substi-
tution, see section 15.1.7.

*[The literal opening square bracket. Square brackets are part of the alias syntax, see section 15.1.8, and
this sequence inserts a bracket itself if it is part of an alias. This sequence can only be used within
aliases, but has no special meaning outside of them.

*] The literal closing square bracket. Similar to the above, this sequence is only recognized during alias
expansion and inserts a literal square bracket into the expanded alias.

The following examples illustrate the consequences of the above syntax. While

Echo *$

prints a $ sign, even the asterisk is outside of quotes, the same asterisk upfront an opening square bracket

Echo *[

prints *[because the command is not part of an alias substitution. However, if the sequence is part of an
alias definition such as

Alias PrintBracket Echo *[

then this creates an alias that prints [because now the bracket is escaped by an asterisk and not interpreted
as a syntactical element of the alias definition.

3This inconsistency can probably be only understood in historical context as variable expansion and back-tick substitution were later
Amiga specific extensions to the original Tripos Shell.

The Shell Syntax 311

15.1.5 Variables and Variable Expansion

The AmigaDOS Shell supports variables, both local to the Shell and system-global, and expands variables as
part of the regular command line parsing. A variable is indicated by a string starting with a dollar-sign (“$”)
and followed by alpha-numerical characters, i.e. 0-9, A-Z and a-z. Variable names are case-insensitive. The
last character that is outside this range terminates the variable name.

An equivalent but more flexible way of referring to a variable is by enclosing the variable name after the
“$” sign in braces, i.e. “${name}” within which all other characters except the closing brace are allowed as
components of the name as well. In particular, variables can be grouped in a directory-like hierarchy where
components are separated by forward-slashes (“/”) as in paths. Section 15.4.1 provides more information on
how to access shell variables from program code without requiring variable expansion of the Shell.

Local variables are represented as entries in the pr_LocalVars list that is part of the process structure
that executes the Shell, see chapter 10 and section 15.4.1. When expanding variables, the Shell first checks
there for a variable of a matching name. Only if that fails, the Shell tests for global variables. They are
represented as files in the ENV assign, which is typically an external link within the RAM device copying
elements from the ENVARC assign. That is, local variables take priority over global variables.

Variables are substituted by the Shell before the resulting argument line is provided to the command, i.e.
it is not necessary to expand variables within commands. The Shell does not attempt to generate pairs of
double quotes to ensure that an expanded variable corresponds to a single argument. In fact, if a variable
contains spaces, tabulators or equals-signs and it is not included in double quotes, it will appear in the
expanded command line as multiple arguments. However, if a variable contains asterisks or double quotes,
and the variable appears within double quotes, such asterisks or double quotes are escaped by the Shell with
an (additional) asterisk as escape character to ensure the resulting argument is represented appropriately.

If an attempt is made to expand a variable that is not defined, then the variable is not expanded at all.
In such a case, the entire expression, including the “$” sign and optional braces stand for themselves and
become the argument.

If the variable name is started with “$?” instead of “$”, then the Shell will check whether the variable
exists or not, and instead of inserting its value, it will substitute the name by a 1 if the variable exists, or
by a 0 if it does not exist, i.e. is undefined. If a variable reference starts with “$??”, the Shell checks
whether the variable exists as global variable, and if so, expands the entire reference to 1, otherwise to 0.
Finally, if the variable reference starts with “$!”, the variable may contain control characters such as line
feeds that are included in the expansion. This binary expansion is only applicable to global variables, and
as potential control characters are injected into the Shell tokenizer, it is necessary to include such binary
expanded variables in double quotes. This ensures that the Shell escapes the control characters properly and
makes them accessible to the command and its argument parser.

15.1.6 Pre-defined Shell Variables, Configuring the Shell

Some variables are built into the Shell and either allow to configure features of the Shell, or are filled by the
Shell with status information on the recently executed command. They are listed in the following without a
leading $ sign required to expand them to their contents:

process is filled with the CLI task number. Each Shell is assigned a unique small integer to which
process is expanded. This is the same number found in pr_TaskNum of the process structure of the
Shell (see chapter 10) and the process number shown by the Status command. It can be used, for example,
to generate unique file names for temporary files.

RC is the return code of the previously run command. It can be used to check whether the last command
failed or not. The Shell compares this result with the value set by the FailAt command and if it is greater or
equal than the threshold, a Shell script is aborted. This result code is also found in the cli_ReturnCode
element of the CLI structure, see section 15.3.7.

312 Rom Kernel Reference Manual: DOS

Result2 is the error code the last executed command returned in case of failure. It is a code from the
list given in section 10.2.9. The Why command prints a textual description of this error code. This variable
corresponds to the cli_Result2 element of the CLI structure, more details are given in section 15.3.7.

The following Shell variables are not set by the Shell, but only read by it. They configure the Shell
and some of its features. Some of these variables take Boolean values. In such a case, the strings “on”,
“1”, “yes” or “TRUE” indicate an enabled feature, all other values disable the corresponding feature. The
comparison is not case-sensitive.

VIEWER is the path of a program that is used to show non-executable files. If this viewer is set to the
path of the MultiView program, then just typing the name of a known datatype shows its contents. If
this variable is left undefined, attempting to execute a non-executable file as command results in an error.
Section 15.1.9 provides more details.

echo is a Boolean variable that, if set, echos the currently executed command on the console. This is
possibly helpful for debugging Shell scripts, though interactive is probably an even more useful tool,
see below.

debug is a Boolean variable that enables writing all executed commands over the serial port, at 9600
baud, 8 bits, no parity, 1 stop bit. Multiple debugging tools are available to redirect this debug output into a
file. If logging is enabled in the boot menu, the syslog ROM module will capture these outputs and redirect
them to RAM:syslog. Section 17.4 provides more background on this feature.

oldredirect changes the syntax of the redirection operators introduced in section 15.1.1. If this
Boolean variable is enabled, then redirection operators are only recognized if they follow the command im-
mediately. If they are somewhere else on the command line, they become part of the regular arguments of
a command. Thus, for example, “List >Out C:” will continue to redirect the output of the List com-
mand, though “List C: >Out” will not. Instead, it will attempt to list the “C:” assign along with a file or
directory named “>Out” where the “>” character is part of the file name. This emulates the AmigaDOS 33
BCPL CLI syntax. Note that enclosing a redirection operator in double quotes also disables its function
regardless of this variable, and makes it a literal symbol that becomes part of a command line argument.

interactive enables interactive tracing of Shell scripts. This variable can also be set by the boot
menu to enable debugging of the Startup-Sequence, see also section 17.4. If this variable is set, the
Shell prints each command prior execution, and waits for a keyboard command. The return key, or “y” then
executes the command, the delete key or “n” skips over the command, and the escape key or “q” disables
tracing and deletes this variable.

simpleshell disables TAB expansion through the console medium mode, see section 13.2.4. Instead,
the Shell will only set the console to cooked mode and read entire lines. The history and file name expansion
by the TAB key are then not available anymore, and the Shell falls back to pre-AmigaDOS 45 console usage.
As of AmigaDOS 47, the history is no longer part of the console, but was migrated into the Shell, and thus is
then neither available anymore.

histsize sets the size of the history in lines. This variable is only used if the Shell does actually keep
a history, and thus requires the simpleshell variable to be either undefined or off.

histskipdups is a Boolean variable that, if set, instructs the Shell not to keep duplicate commands
in its history. If a command is executed a second time, this repeated command does not become an identical
second entry on the history. This variable is only recognized if the Shell is actually keeping a history, which
it does not if simpleshell is enabled.

15.1.7 Backtick Expansion

After variable expansion, the Shell checks the command line for back-ticks, (“‘”). The characters within
two terminating back-ticks form a command itself that is executed before interpretation of the containing
command line continues, and the standard output of the enclosed commands is substituted for the command

The Shell Syntax 313

line within the back-ticks. As this output may include line feeds, these are furthermore substituted by blank
spaces.

Back-tick expansion was already available in AmigaDOS version 36, but was restricted to only a single
pair of backticks per command line. This restriction was lifted in AmigaDOS version 45.

Note that the result of the backtick expansion may even contain functional syntax elements of the Shell,
e.g. angle brackets in the output of a command in back-ticks will become Shell stream redirection operators
which are then further interpreted by the Shell. Needless to say, this can cause bad surprises.

The back-ticked sequence can itself be enclosed in double quotes. While this avoids the above sur-
prise, it will necessarily only generate a single logical argument. Only in that case, namely a back-ticked
sequence contained in another pair of double quotes, the Shell performs backwards escaping of asterisks
and double quotes — as for variable expansion. Each double quote or asterisk in the output of the quoted
back-ticked command is escaped with (another) asterisk. This ensures that the resulting output string within
double quotes retains its original value once interpreted through ReadItem() or ReadArgs(). Note
that backwards-escaping does not take place without the additional layer of double quotes surrounding the
back-ticked command, same as in variable substitution.

15.1.8 Alias Substitution
The next step in Shell processing is alias expansion. Aliases are simple macros that replace the alias with
another command with the option of rearranging arguments. Before the Shell searches for a command in the
path, it checks whether it constitutes an alias and then expands it.

Aliases are always local to the executing Shell, AmigaDOS keeps them in the same list as local shell
variables. If the command name matches an alias, its name is removed, and replaced by the contents of
the alias. If this contents contains a pair of opening and closing square brackets, that is the sequence “[]”,
then the brackets are replaced by all remaining arguments of the command. The result of alias expansion is
another command that undergoes alias expansion again, except that the same alias cannot be used twice in
the same command line to avoid endless recursion.

For example, given the following alias definition

Alias XType Type [] hex

a new alias XType is defined such that the command

XType S:Startup-Sequence

is expanded into

Type S:Startup-Sequence hex

which prints a hex-dump of its argument on the console. Thus, aliases are useful to create simple one-line
command scripts. Complex command sequences also requiring argument parsing are, however, the domain
of shell scripts. Section 15.1.10 provides more details on the Execute command through which such scripts
are processed.

15.1.9 Command Location and Execution
The purpose of the next step is to identify from a command name a segment containing machine code which
is executed to implement the function of the command.

If the command name is not quoted, the Shell first attempts to locate the name on the list of resident
segment, see section 15.6. If a match is found, its use count seg_UC is incremented and the segment
seg_Seg contains then the code that will be executed. If no match is found there, or the command name is
quoted, then the Shell keeps looking in the current directory for a file system object matching the command

314 Rom Kernel Reference Manual: DOS

name — at this stage, both files and directories are accepted. Note that unlike under Unix like systems, the
current directory is always scanned first, and there is no option to disable searching it.

If the command could not be located there and does not include a directory name, the Shell keeps scanning
all directories in the path, though from this point on, only files match. The path is a list of directories
containing commands, and is adjusted by the Path command, see also section 15.3.7 how it is represented
internally.

If nothing is found in the path, the Shell finally checks the C assign. The directory — or directories, in
case it is a multi-assign — the assign points to is also always implicitly contained in the path and, similar to
the current directory, cannot be removed from it.

If neither a resident segment nor a file or directory could be found, the Shell indicates failure due to an
unknown command.

If, however, a file system object matching the command name was successfully located, the Shell checks
whether it is a file or a directory. In the latter case, the Shell inserts a CD command upfront, and restarts the
process of locating the command. Thus, directories found as matches are executed as arguments of the CD
command which exists as Shell built-in on the list of resident segments.

If the result is a file, the Shell continues to check the protection bits of it, see section 7.1 for their value.
If the s protection bit is set, the Shell assumes that command is actually a script. If this script starts with the
magic character sequence “/*”, it is assumed to be a Rexx script and an implicit RX command is prepended
to the file name, and command location starts again with the updated line. If the script starts with the two-
character sequence “#!” or “;!”, then the remaining first line of the script file contains the path of the
command interpreter which is then also injected as command name, again restarting command location.
If none of the two conditions hold, the Shell assumes this file is a Shell script, prepends an Execute
command upfront the script name and again restarts command location. Thus, with the s bit set, either the
Rexx interpreter, a custom interpreter or the Shell itself — through the Execute command — runs the
script. More on the latter command is in section 15.1.10. Implicit execution of ARexx scripts was added in
AmigaDOS version 37, the option of having custom interpreters was added in version 45.

If the e protection bit is set indicating an executable file, the Shell attempts to load the file through
LoadSeg() returning a segment for execution. If this succeeds and, in addition, the p and h bits are set,
the segment just loaded is also added to the list of resident segments, thus making it resident implicitly.
This function of the h bit was introduced in AmigaDOS 39, then removed due to restricted ROM size in
AmigaDOS 40, and was reintroduced in AmigaDOS 45.

If the e protection bit is not set, but the shell variable VIEWER is set, then the Shell attempts to check
whether the system datatypes.library is able to identify the contents of the file. If a suitable datatype
exists, the Shell prepends the contents of this variable to the file name and then restarts command location.
By setting VIEWER to the system program MultiView, the Shell can therefore display any system-known
datatype by typing its name. This feature was added in AmigaDOS version 45.

If the above algorithm was able to come up with a segment, the Shell establishes its input, output and
error stream, and potentially also updates its console process if the error output is interactive. The found
segment is then — depending on the context — either started as a background process, or overlays the Shell
executable with the RunCommand(), see section 15.2.3. A background process is started for the command
left of a pipe operator, i.e. to the left of the “|” or “||” operators, or if the “&” operator is present at the right
of the command. Otherwise, the command overlays the Shell process.

Finally, if the Shell found a file, but could not load a segment for executing, interpreting or viewing it, it
indicates that the file is not executable.

15.1.10 The Execute Command
Unlike what its name suggests, the Execute command does not actually interpret Shell scripts. Instead,
it performs argument substitution within an existing Shell script through a simple pattern matching process,

The Shell Syntax 315

and then leaves the execution of the resulting script to the Shell by adjusting its command input stream. Thus,
Execute does not actually execute anything, it rather prepares a script for execution through the Shell.

Since input, output and error redirection operators introduced in section 15.1.1 only temporarily replace
the pr_CIS, pr_COS and pr_CES handles of the process (see chapter 10) executing the command and the
handles are restored as soon as the command terminates and control returns to the Shell, redirection operators
were without effect on the Execute command in AmigaDOS 40 and below. In particular, they could not
change the input and output streams of the commands within the script. As the script — or rather the com-
mands within it — are actually executed by the Shell after Execute reorganized its cli_CurrentInput
handle, and thus after Execute already returned to the Shell, commands in the script received the original
input, output and error stream and not the handles modified by redirection operators.

That output redirection of Execute became working in the latest AmigaDOS versions nevertheless is
instead a special case hard coded into the Shell; it recognizes the Execute command and adjusts its own
output stream, reverting the change at the end of the script. The latest AmigaDOS version also gave input
redirection of Execute a meaning, namely as proving the file handle from which to read Shell commands
instead of taking the script file name from the first command line argument. This allows for example List
to generate a script on the fly, and piping the generated script directly into Execute without requiring an
intermediate temporary file:

List LFORMAT="%p%n" DEVS:Monitors/~(#?.info) | Execute

This example initiates all found monitor drivers by creating a script containing all file names on the writing
end of a pipe, which is then received by the standard input of Execute on its reading end.

Argument substitution through Execute is controlled through additional syntax elements that are only
implemented within Execute and that are unrelated, and even partially conflicting with the syntax elements
of the Shell4.

These “pseudo”-commands that are only interpreted though Execute but removed before the resulting
script is fed back into the Shell. All these pseudo-command start by default with a dot (“.”), though even
this character can be changed through another pseudo-command. Such pseudo-commands controlling the
Execute syntax elements shall be placed at the top of scripts as the Execute one-pass interpreter needs
to see them first. If the first line of the script does not contain a pseudo-command, Execute bypasses
argument substitution completely and feeds the script unaltered into the Shell by setting its command input
stream to the script.

The following pseudo-commands are supported by the Execute:

.dot takes a single argument and changes the character by which all (following) pseudo-command start.
This is by default a dot (“.”), and for the sake of simplicity, the following pseudo-commands are all shown
with this default.

.key or .k defines which arguments a Shell script takes. The argument is a ReadArgs() type tem-
plate, defining the names of the formal parameters along with their types. Each formal name in this tem-
plate, enclosed in angle brackets – or rather the characters defined by .bra and .ket – is substituted by
a matching argument provided to the script. Clearly, only a single .key pseudo-command shall be present
within a script. Such command templates and their syntax are discussed in section 15.5.1 along with the
ReadArgs() function which is also used by Execute.

.default or .def defines defaults for arguments that are not present on the command line that invoked
the script. It takes two arguments, first the key — the formal name of the parameter for which a default is
to be provided — and the default value itself. Key and default value may be either separated by blank
spaces, tabulators, or an equals-sign “(=)”. If no default value is provided, an empty string is used. A single
.default pseudo-command can be provided per formal parameter. Another mechanism to provide default
parameters is through the “$” character, see below.

4This is probably another historical accident from Tripos legacy

316 Rom Kernel Reference Manual: DOS

.bra defines the character that marks the beginning of a formal parameter that is to be substituted. A
logical choice for such formal parameters would be to place them in local variables, and let the Shell perform
the substitution5. However, Execute uses another syntax by which formal parameters are enclosed in pairs
of characters, one starting the parameter, and another ending it. The initial character is by default the “<”
sign, but the .bra pseudo-command can change it. As “<” also redirects the standard input of commands,
this default is probably not a very wise choice, and it should be changed by .bra. Suggested alternatives
are curly or square brackets.

.ket or .k defines the character that marks the end of a formal parameter that is to be substituted. This
is by default the “>” sign, i.e. formal parameters are enclosed in pairs of angle brackets. Unfortunately, this
default is not a very wise choice either as it makes output redirections in scripts impossible. To override this
default, .ket should be used. A suggested alternative is a closing curly or square bracket.

.dollar or .dol defines the character that defines an alternative mechanism for providing defaults
for formal parameters. Without this pseudo-command, the character for providing defaults is the dollar sign
(“$”). Thus, for example, with all defaults active, the script

.key FILE
echo <FILE$Help>

echos the contents of the format parameter “FILE” defined through the .key command, though if not
present, prints “Help”.

Thus, an optional “$” sign, or its replacement defined through this pseudo-command, separates the formal
parameter from its default value during substitution. The formal name, the “$” sign, and its default are all
enclosed in this order in the angle brackets, as seen in the example above, or in whatever the angle brackets
were replaced with by the .bra and .ket commands.

Two “$” signs in angle brackets expand to the shell number and may be used as unique identifier, e.g. to
generate a file name of a temporary file. The following script

.dot . ;ensure that argument substitution is on
echo "The shell number is <$$>"

prints the current shell number on the console. The topmost pseudo-command of this script is only required
to ensure that Execute performs argument substitution — without it, the “<$$>” token would be printed
literally.

Even though the “$” sign as syntax element for default value separation is only active within .bra and
.ket, it is still a bad choice as it conflicts with the Shell syntax which uses the same character to indicate
Shell variables.

Formal argument substitution otherwise follows the same lines as variable substitution, and Execute
attempts to preserve the original command line arguments as good as possible. That is, if a formal parameter
is enclosed within double quotes in the script, asterisks and double quotes are escaped properly. If the formal
parameter included spaces or tabulators and thus was quoted on the command line, Execute generates a
pair of double quotes when substituting the formal parameter with its value, unless the formal parameter is
already enclosed in double quotes. If a formal parameter takes multiple arguments, as indicated by a /M
modifier in its template (see section 15.5.1), then Execute also expands it as multiple parameter in scripts.

The generated script after substitution of formal parameters is placed in the T: directory, its name is filled
into cli_CommandFile and the command input of the invoking Shell, namely cli_CurrentInput
(see section 15.3), is redirected to a file handle opened from this temporary script. Thus, the Shell continues
execution of commands, but rather takes its input from the temporary file rather than its current input, e.g.
the console. As this construction would forbid the recursive execution of another Shell script within a Shell
script, the Shell detects Execute as a special case for which it keeps a stack of script files and active

5This is another historical accident, likely.

The Shell Syntax 317

redirections. Through that, it provides each recursive Execute a clean environment that allows redirection
of the command input through another nested instance of Execute.

This is a major difference compared to AmigaDOS version 40 and below which instead resolved this
situation by concatenating recursively executed scripts to each other. This construction had a series of bad
side effects, one being that a script could not skip backwards over an Execute command.

Once cli_CurrentInput exhausted, the Shell terminates execution there, closes this file handle,
deletes the temporary file whose name is stored in cli_CommandFile and, depending on how it was
initiated and configured, continues execution from cli_StandardInput or terminates. More on Shell
processing of scripts and its configuration through System() is found in sections 15.7 and 15.7.1.

15.2 Creating and Controlling the Shell
The functions in this section create shell processes and run commands within them, or overlay a shell process
with a command. AmigaDOS also keeps a process table of all active shell processes and each running shell
is uniquely identified by its task number.

15.2.1 Create New Shells and Execute Scripts
The System() function creates a new shell, and potentially executes a shell script within it. Depending on
parameters, it waits for the script to complete, or launches an interactive Shell in a console or a non-interactive
shell in the background. The same dos.library entry point exists under three names that only differ in how
the code generator of a compiler provides parameters for it.

The SystemTagList() function is equivalent to the System() function and does not differ in ar-
guments and call syntax. It is only present to harmonize function naming across all library entry points. It
takes a pointer to a string containing a shell script, and additional parameters encoded in a TagItem array
as defined in utility/tagitem.h.

The SystemTags() function also receives this string, but expects the TagItems explicitly as one or
multiple extra arguments to the function. Compilers typically build then the TagItem array on the stack
and pass the pointer to the first item on the stack to the dos.library entry point.

error = SystemTagList(command, tags) /* since V36 */
D0 D1 D2

LONG SystemTagList(STRPTR, struct TagItem *)

error = System(command, tags) /* since V36 */
D0 D1 D2

LONG System(STRPTR, struct TagItem *)

error = SystemTags(command, Tag1, ...) /* since V36 */

LONG SystemTags(STRPTR, ULONG, ...)

This function is the generic shell execution function that creates a shell in one or multiple modes, and
executes the commands provided as first argument in that shell. Hence, the first argument establishes a
shell script, encoded as a string, that is interpreted by the shell. If the string depletes, the shell terminates
without continuing to pull commands from its input stream; this is in contrast to the Execute() function
in section 15.2.2. This string may contain multiple (compound or simple) commands separated by newline
characters, they will be executed one after another. Argument substitutions as by the Execute command

318 Rom Kernel Reference Manual: DOS

(see section 15.1.10) are not performed, but otherwise the entire shell syntax is available, including shell
variables, compound commands, back-tick substitution, redirection and pipes. If argument substitution is
necessary, Execute should be called as command in the first argument, receiving its input from a temporary
file or a pipe.

Depending on its arguments, this function is synchronous, i.e. waits for the completion of the called
commands, or asynchronous and then detaches from the caller. By proper usage of arguments, this function
can emulate (or is actually even used by) the Run and NewShell commands, and is also used by the system
startup module to create the initial boot shell, see section 17.4.

By default, the newly created Shell receives the input and output file handles of the caller, i.e. pr_CIS
and pr_COS are copied from the calling process, see chapter 10 for the documentation of the process struc-
ture. However, with suitable tags, the caller can provide alternative input and output streams. Whether these
file handles are closed upon termination of the shell depends on further arguments, but the default is not to
close them when run synchronously, and to close them otherwise, even if they were the streams of the caller,
so beware!

The input and output file handles provided to the shell shall be different, i.e. it is not permissible to
provide the same file handle as input and as output stream. If the input and output handle should go to an
interactive stream such as the console, then only provide an input stream and set the output stream to ZERO
by SYS_Output, see the list of tags below. dos.library will in that case create an output file handle by
opening another stream from the input handle to the console through the “*” file name. This is similar to the
CloneHandle() function introduced in section 5.7.3.

The newly creates shell will receive a copy of the path, the local shell variables, the prompt, the current
directory and the stack size of the shell of the caller, if such a shell exists, i.e. pr_CLI of the calling process
is non-ZERO. Otherwise, a default path containing only the C: directory and the current directory will be
created, no local variables will be defined, the prompt will be set to “%N> ” (including a trailing space) and
the current directory to “SYS:”.

By default, the executing shell will be the system Shell whose segment is available as a system segment
of the name “BootShell” in the list of resident modules, see section 15.6. Other shells can be provided by
specifying their names which are then located on the list of resident segments. Section 15.7 provides more
information on how to implement a custom shell.

The tags this function tags are documented in dos/dostags.h and consist of the SYS_ tags and a
subset of the NP_ tags also used to create new processes, defined in section 10.1.1.

SYS_Input This tag takes a BPTR to a file handle as argument which becomes the input stream of
the new shell. If this tag is not provided, the input stream of the calling process (pr_CIS) will be used. If
command is NULL, this stream will also be closed when the shell terminates, thus the caller needs to open a
separate file handle as if SYS_Asynch is set.

SYS_InName This tag takes a string as argument. This string will be used as argument to Open() to
create a stream that will be used as input stream to the newly created shell. This stream will always be closed
when the created shell terminates, regardless of other tags. This tag is mutually exclusive to SYS_Input, it
was introduced in AmigaDOS version 47.

SYS_Output This tag defines a BPTR to a file handle which will be used as output stream of the new
shell. This handle shall be different from the handle provided by SYS_Input. If this tag is not present, the
output stream of the calling process (pr_COS) will be used for shell output. If the command is NULL and
SYS_Asynch is not set, then SYS_Output or pr_COS is cloned by the mechanism of section 5.7.3 if it
is an interactive stream, otherwise the console of the caller is used as an output stream. That is, even though
System() is in this case implicitly asynchronous, SYS_Output will not be closed and remains available
to the caller. If SYS_Output is explicitly set to ZERO, then AmigaDOS will attempt to create an output
stream itself: If an input stream is present and interactive, and command is non-NULL or SYS_Asynch
is non-zero, then the input stream is cloned through the “*” file name, see 5.7.3. Otherwise, the handler
provided through the NP_ConsoleTask or the console task of the caller, if the former tag is not present, is

Creating and Controlling the Shell 319

used to open “*”. If opening the console fails, AmigaDOS will instead provide a handle to NIL: as output
stream, thus disregarding any output. Any stream implicitly provided by dos.library by the above mechanism
rather than explicitly through a non-ZERO argument to SYS_Output will also be closed transparently upon
termination of the shell.

SYS_OutName provides an output file name that will be opened by dos.library and used as output stream
for the newly created shell. This file will always be closed when the shell terminates. This tag is mutually
exclusive to SYS_Output, it was introduced in AmigaDOS version 47.

SYS_CmdStream provides a BPTR to a file handle from which commands are read, i.e. a shell script
is supplied as stream, and not as a string. This tag is only used if the command argument is NULL and
then provides an alternative (stream-based) source for the script to be executed. This stream is always closed
on exit, and closure cannot be prevented by any other tag. If SYS_Asynch is set, then the shell first reads
commands from SYS_CmdStream, and once this stream reaches an EOF, it is closed and the shell continues
reading from SYS_Input until this stream also reaches an EOF, or an EndCLI command terminates the
Shell. Thus, the configuration of providing a SYS_CmdStream and setting SYS_Asynch is equivalent to
the NewShell command. This tag was added in AmigaDOS version 47.

SYS_CmdName provides a file name of a shell script whose contents is interpreted. This tag is mutually
exclusive to SYS_CmdStream and only used if the command argument is NULL. This stream will always
be closed on exit. This tag was added in AmigaDOS version 47.

SYS_Asynch If the Boolean argument to this tag is non-zero, the shell is detached from the calling
process and executes concurrently to the caller; setting this tag also implies that the streams provided by
SYS_Input and SYS_Output are closed when the shell terminates. It is thus necessary to explicitly
provide SYS_Input or SYS_InName and SYS_Output or SYS_OutName, as otherwise the input or
output streams of the calling process will be closed. For legacy reasons, setting the command argument
to NULL also enforces asynchronous execution, independent of the value of this tag, and thus the same
precautions in preparing input and output streams should be taken6 for a NULL command as well.

SYS_UserShell If this Boolean tag is set to non-zero, then the “user shell” is launched. This corre-
sponds to the segment “Shell” on the resident list of AmigaDOS. The default of this tag is DOSFALSE,
indicating that the Boot Shell is to be used which corresponds to the “BootShell” segment on the resident
list. Upon system startup, and in all typical configurations of AmigaDOS, both correspond to the AmigaDOS
Shell. Users can, however, replace both shells with custom segments, see section 15.7.

SYS_CustomShell This tag provides a string of the name of a custom shell to be used instead. The
AmigaDOS list of resident segments is scanned for a fitting name, and the resident segment found is then
used as shell.

The following tags defined for CreateNewProc(), see section 10.1.1, are also recognized:
NP_StackSize defines the stack size in bytes for the shell to be created and also the stack size the shell

will allocate for its clients. The default is 4096 bytes for the shell itself; for the shell clients, the stack size is
taken by default from the shell of the calling process, or 4096 bytes if the caller is not a shell process.

NP_Name is the name of the shell process to be created. The default is “Background CLI”. Amiga-
DOS version 45 and before did not honor this tag.

NP_Priority is the priority of the shell process to be created. The default priority is the priority of the
calling process.

NP_ConsoleTask provides a pointer to the MsgPort of the console handler that is used for open-
ing the “*” and paths relative to “CONSOLE:”. This port will be copied to pr_ConsoleTask, but is
potentially overridden by the process MsgPort of the input or output file handle if they are interactive. If
command is NULL, then an interactive output handle will provide the console. Otherwise, an interactive
input handle will override NP_ConsoleTask, and will also request with ACTION_CHANGE_SIGNAL to
deliver break signals to the created shell.

6This inconsistency does not allow synchronous execution in combination with a SYS_CmdStream; this is probably a defect.

320 Rom Kernel Reference Manual: DOS

NP_CopyVars is a Boolean tag that specifies whether local shell variables are copied into the new shell.
The default is to copy the variables.

NP_Path contains BPTR to a linked list of directory locks that establish the path of the newly created
shell. The structure of this path is specified in section 15.3. The path provided by this tag is not copied for
the new shell, but directly used and released by it when it exits. If this tag is not present, a copy of the path of
the caller is made if the caller is associated to a shell. Otherwise, a minimal path will be created that contains
only the current directory and the C assign.

NP_ExitCode and NP_ExitData define a function that is called when the shell process exits. This
mechanism is described in more detail in section 10.1.1.

The return code of the System() function is −1 in case creating the shell failed. In such a case
IoErr() delivers an error code providing more details on the cause of the failure. Otherwise, if the com-
mands were executed synchronously, the return code is the result code of the last command in the shell
executed, and IoErr() is set to the error code set by the last command executed. If an asynchronous shell
was created, the result code is 0 on success, and IoErr() will be set to 0.

System() is used to implement a couple of essential system functionalities, and all Shell commands
and system functions that create a shell go through this function. This includes the NewShell and Run shell
commands and the Shell icon on the Workbench. The initial CLI interpreting S:Startup-Sequence
is also created through the System() function from AmigaDOS version 47 onward.

The Run command creates a new shell process by the following:

SystemTags(NULL,SYS_Input,instream,SYS_Output,Output(),
SYS_UserShell,TRUE,TAG_DONE);

where the input stream instream is a string stream (see section 5.7.2) containing the commands to be
executed; they are taken from the command line of Run, or to be more precise, from the input buffer of its
input file handle.

Even though SYS_Asynch is not set, the System() function detaches the created shell because its
first argument is NULL, see above. Surprisingly, it is the System() call and not the Run command that
prints the CLI number of the created shell on the console in this particular case.

The NewShell command and also the Shell program on the Workbench uses System() as follows:

SystemTags(NULL,SYS_InName,window_arg,
SYS_CmdStream,Open(from_arg,MODE_OLDFILE),
SYS_Output,ZERO,
SYS_Asynch,TRUE,SYS_UserShell,TRUE,
NP_Name,"Shell Process",TAG_DONE);

where the window argument and the from argument are coming from the command line arguments of the
NewShell command. That is, System() receives a console as new input file handle, and a command
stream which is by default “S:Shell-Startup”. Setting SYS_Asynch to TRUE ensures that the shell
continues to read commands from its input file handle as soon as the command file depletes. AmigaDOS ver-
sion 45 and below used a custom mechanism for NewShell that was undocumented and is now deprecated.
The Boot Shell is created likewise except that NP_Name is set to “Initial CLI”.

The Execute() function described in section 15.2.2 is approximately equivalent to

SystemTags(NULL,SYS_CmdStream,cmd,
SYS_Input,in,SYS_Output,out,SYS_UserShell,FALSE,
NP_Priority,0,TAG_DONE)?DOSTRUE:DOSFALSE;

Creating and Controlling the Shell 321

where cmd is a string stream (see section 5.7.2) containing the commands to be executed, constructed from
the first argument of Execute(), and in and out are its second and third argument. The difference of
System() and Execute() is the returned result, and that the above function returns immediately while
Execute() with a non-NULL command string blocks until the Shell terminates.

Under AmigaDOS version 45 and before, this function closed the stream provided by SYS_Input in
case the new shell could not be created, even if synchronous execution is requested. This was fixed in
AmigaDOS version 47.

Your Resources, My Resources Beware how the System() function manages resources you
pass in. In general, for synchronous operations, resources such as streams are used, but not released.
For asynchronous operations, the streams you provide are in the responsibility of the created shell and
released when the shell terminates, even if they were the resources of your process. The System()
function also creates an asynchronous shell if the command argument is NULL, regardless of the
SYS_Asynch tag. For details, please study this section carefully.

15.2.2 Execute Shell Scripts (Legacy)
The Execute() function creates a new AmigaDOS shell, which then executes commands from a string,
and once the string depletes, continues executing commands from an input stream. This function is obsolete,
and should be replaced by System() which is more flexible.

success = Execute(commandString, input, output)
D0 D1 D2 D3

BOOL Execute(STRPTR, BPTR, BPTR)

This function is a deprecated function to create AmigaDOS shells and interpret shell scripts that has been
superseded by System(), see section 15.2.1.

The first argument is a string containing a shell script with lines separated by line feed characters. If this
argument is NULL and thus no command string is present, a new Shell is created and run asynchronously in
the background, i.e. Execute() returns then immediately. The new Shell receives its input, and thus its
commands from the file handle provided as second argument. This stream is closed when the background
process terminates. The output goes to a clone of the output stream output, obtained through an algorithm
similar to the one in section 5.7.3 if it is interactive. Otherwise, the console of the caller is used as output
stream, and if that stream does not exist, output will be disregarded by providing a NIL: handle to the shell
created. In particular, output will not be closed, but remains available to the caller as only a clone of this
handle will form the output of the Shell.

If the first argument is non-NULL, the Execute() command is synchronous and will not return until
the Shell completed its job. It first reads commands from the command string, and once this depletes, checks
whether the input handle is ZERO. If so, the Shell terminates at this point. Otherwise, it switches over
reading commands from the stream provided by input until this stream reaches its EOF, or an EndCLI
command terminates the Shell explicitly. The output of the Shell goes through the output stream provided
as third argument. If the third argument is ZERO, and the input stream is interactive, AmigaDOS opens “*”
from the input stream handler, otherwise attempts to open the console from the console process of the caller,
or if that is not possible, disregards all output by providing a NIL: handle as output. In this mode, neither
input nor output will be closed when the function returns.

Unlike System(), this function returns DOSTRUE on success and DOSFALSE in case creating the Shell
failed. This implies that the result code of the last command executed is not available to the caller — instead,
if the Shell could be launched, DOSTRUE is returned as success indicator. It also always executes commands
through the Boot Shell, and not through a custom or user shell.

322 Rom Kernel Reference Manual: DOS

Except for the similarity in name, the Execute() function has nothing in common with the Execute
command described in section 15.1.10. One does not depend on the other, i.e. C:Execute is not necessary
for Execute(), and Execute does not run into Execute() either, but rather modifies the current input
stream of the Shell. Under AmigaDOS version 34 and below, Execute() was based on the Run command,
but this dependency has been removed long since. Since AmigaDOS 36, Run depends on the System()
function.

Under AmigaDOS version 36 and up to version 45, this function closed the input stream in case it
could not create a new Shell.

15.2.3 Run a Command Overloading the Calling Process
The RunCommand() runs a shell command from a process, and overloads the process with the command.

rc = RunCommand(seglist, stacksize, argptr, argsize) /* since V36 */
D0 D1 D2 D3 D4

LONG RunCommand(BPTR, ULONG, STRPTR, ULONG)

This function runs a command from the calling process, and provides for this command its own stack and
its own arguments. It does not create a new process nor a new shell, but executes the command as part of the
caller. The AmigaDOS Shell uses this function to execute loaded commands within its context.

The seglist argument is a BPTR to the chained list of segments of the executable to start, for example
as returned by LoadSeg() for disk-based commands, or as the seg_Seg element of resident commands,
see section 15.6.

The stacksize argument is the size of the stack in bytes to be provided to the command; this has to
be provided by the caller as this function does not attempt to identify the minimum stack size necessary. The
Shell takes the stack size from cli_DefaultStack, see section 15.3, and multiplies it by 4. It additionally
searches the seglist for the stack cookie, see section 11.5.2, and from that potentially increases the size.
The Task structure of the caller, in particular its elements tc_Upper and tc_Lower are also updated to
reflect the new position and size of the stack. Thus, programs can depend upon that their stack size is given
by task->tc_Upper - task->tc_Lower, regardless whether they were started from the shell or the
Workbench.

The argptr and argsize arguments provide command line arguments that are passed to the com-
mand. They are provided through several mechanisms: First, the CPU register a0 is loaded with argptr
and register d0 is filled with argsize. Second, the pr_Arguments element of the process is temporarily
replaced by argptr, see also chapter 10, and thus the arguments are made available to GetArgStr().
Third, a buffer for the input file handle pr_CIS of the caller is allocated and filled with a copy of the ar-
gument line; more on the file handle structure is in section 5.7.1. Thus, buffered read operations as those
listed in section 5.6 will retrieve the arguments. This step is necessary to make the arguments available to
ReadArgs(), see section 15.5.1, the AmigaDOS argument parser.

The ReadArgs() function, and probably many other parsers require that the argument is terminated by
a newline, hex 0x0a. While it is possible to provide an argument string containing more than one newline
character, ReadArgs() will ignore all arguments behind the first newline. However, some commands such
as Run will make use of the entire string.

All changes performed by RunCommand() on the caller and its resources, namely the stack, the modi-
fications of the input file handle and storage of the arguments and the modified stack are reverted when the
called command returns.

As the program name is not part of the command line arguments, it is advisable to set the path and file
name of the loaded program by SetProgramName() upfront, more on this function in section 15.3.4. The
startup code of many C compilers will construct argv[0] from it.

Creating and Controlling the Shell 323

This function returns the result code of the called command, or −1 if it failed to allocate resources such
as the input file handle buffer or the stack. IoErr() remains its value from the called command, or is set to
ERROR_NO_FREE_STORE if resources could not be allocated.

15.2.4 Checking for Signals
The CheckSignal() function tests whether particular signals, as for example those to break process or a
shell script, are set in the process of the caller.

signals = CheckSignal(mask) /* since V36 */
D0 D1

ULONG CheckSignal(ULONG)

This function tests those signals that are set in the mask and returns their state. Typical signals to check
for are defined in dos/dos.h and include those bits that are set by the Ctrl-C through Ctrl-F console
key combinations. The function returns all signals set in the process and the mask, and clears the signals in
the mask. This is unlike the exec function SetSignal() which returns the complete signal mask of the
process, and not only those requested in the argument. A typical example is

if (CheckSignal(SIGBREAKF_CTRL_C))
break; /* abort the command */

which checks whether the user pressed Ctrl-C, and also clears the corresponding signal. This function
does not alter IoErr().

15.2.5 Request a Function of the Shell
The DoShellMethod function requests from the shell of the calling process a specific function. The
DoShellMethodTagList() function belongs to the same entry point of dos.library, though uses a dif-
ferent calling convention that receives the tag list as an explicit pointer instead of a variably sized argument
list.

ptr = DoShellMethodTagList(method, tags) /* since V47 */
D0 D0 A0

APTR DoShellMethodTagList(ULONG, struct TagItem *)

ptr = DoShellMethod(method, Tag1, ...)

APTR DoShellMethod(ULONG, ULONG, ...)

This function requests the from the shell of the calling process the execution of a function identified by
method. The arguments to the shell are provided in the tag list, or by a list of tags terminated by TAG_DONE.
The return value of the shell is provided in ptr, a secondary return code is provided in IoErr().

The AmigaDOS Shell supports the following methods defined in dos/shell.h:
SHELL_METH_METHODS returns a const array of methods the shell supports. This is an array of

ULONGs, each representing a method ID. The array is is terminated by a 0UL. Every shell shall support this
method.

SHELL_METH_GETHIST is a method of the AmigaDOS Shell that provides read-only access to the
history. It does not take any arguments. The returned pointer is a MinList structure, see exec/lists.h.
Each node in this list consists of a HistoryNode structure, defined in dos/shell.c:

324 Rom Kernel Reference Manual: DOS

struct HistoryNode {
struct MinNode hn_Node;
UBYTE *hn_Line;

};

The hn_Line is a pointer to a command in the history of the Shell. This command is not terminated by
a newline, but only by a NUL. The caller shall not alter this list.

SHELL_METH_CLRHIST erases the entire history of the AmigaDOS Shell. This method does not take
any arguments.

SHELL_METH_ADDHIST adds an entry to the tail of the AmigaDOS Shell history and make it accessible
to the user. This method takes a single tag, namely SHELL_ADDH_LINE. The argument of this tag is a
const UBYTE * to a NUL-terminated string, and defines the entry to be added to the history. The Shell
copies the provided string, and can strip initial or trailing spaces. It can also limit the size of the history
buffer by releasing the oldest entry or entries from the head of the list. This method returns a non-zero result
on success, or NULL on error.

SHELL_METH_FGETS retrieves a single line from the console the Shell runs in, while offering access
to TAB expansion and access to the history. The difference between this method and the FGets() function
is that while the latter provides elementary line editing functions of the console, it does not have access to
Shell internal states such as the path of the caller required for TAB expansion7. If this Shell method is used,
TAB expansion is available based on the path and configuration of the Shell.

This method takes a single optional Boolean tag, SHELL_FGETS_FULL, defined in dos/shell.h. If
this tag is DOSFALSE, which is the default, then the Shell is instructed to read a string from the console that
corresponds to a path relative to the current directory of the caller. TAB expansion will only scan the current
directory for matches. This mode is useful for requesting a file or multiple files from the user, and it is for
example used by the AmigaDOS argument parser, ReadArgs(), when the input is a question mark (“?”)
and more input is required from the user.

If SHELL_FGETS_FULL is non-zero, then a full command line is requested from the Shell. This implies
that the first argument of the input requested from the console is a command, and is thus located somewhere
in the path of the caller. Thus, when performing TAB expansion within the first argument, the entire path is
scanned, and not just the current directory.

This method returns a pointer to a NUL-terminated string as result; as this string is kept within Shell
internal buffers, the caller shall make a copy of the string before calling another method of the Shell.

If DoShellMethod() is called from a process that is not part of a shell, it returns NULL and sets
IoErr() to ERROR_OBJECT_WRONG_TYPE.

15.2.6 Find a Shell Process by Task Number
The FindCliProc() function finds a process by its task number.

proc = FindCliProc(num) /* since V36 */
D0 D1

struct Process *FindCliProc(ULONG)

This function returns a process given its task number. Note, however, that AmigaDOS only assigns task
numbers to shells and commands run within or from shells and not to other processes, such as those started
from the Workbench, handlers, file systems or device drivers. Thus, this function is not quite as useful as it
seems.

7Readers beware: TAB expansion and the history are not console features, but Shell features.

Creating and Controlling the Shell 325

The num is the task number that identifies the process to locate. It is stored in the pr_TaskNum element
of the process structure, see chapter 10.

This function returns a pointer to the process structure whose task number is num. If no such process
exists, this function returns NULL. However, even if it returns a non-NULL result code, it is possible that the
process has already exited and no longer exists when the function returns. Furthermore, dos.library does not
attempt to protect its process table within this function, and there is no semaphore protecting it. Therefore,
this function shall only be called while task switching is disabled with Forbid() and its return value is
only valid as long as task switching is disabled.

This function does not alter IoErr(), even if no process is found.

15.2.7 Retrieve the Size of the Process Table
The MaxCli() function returns the size of the process table.

number = MaxCli() /* since V36 */
D0

LONG MaxCli(void)

This function returns the number of entries the process table can hold. However, this information is
of limited value for various reasons: First, this information does not correspond to the number of running
processes, but only describes the number of entries the process table is able to hold. Second, only shells and
commands run within or from shells are recorded in the process table, and other processes as those started
from the Workbench, or handlers, file systems or device drivers do not enter this table. Third, the size of
this table changes dynamically depending on how many shell processes are active, even under the feet of the
caller.

As dos.library does not protect the process table from modifications, this function shall only be called
while task switching is disabled with Forbid(), and its return value is only valid as long as task switching
remains disabled.

15.3 The CLI Structure
The CommandLineInterface structure is the public interface of a shell, see section 15.3.7 for its def-
inition. Every command started from a shell has access to this structure through the pr_CLI BPTR in its
process structure, the latter is documented in chapter 10. As commands run by the shell only overlay the
shell process by the RunCommand() function specified in section 15.2.3, the process structure of a shell
command is actually the process of the shell.

The functions listed in this section provide accessor functions to the CommandLineInterface struc-
ture. Altering or requesting properties of the shell through these functions should be preferred to modifying
the CLI structure directly.

15.3.1 Obtaining the Name of the Current Directory
The GetCurrentDirName() function copies the current directory of the shell into the provided buffer if
such a shell exists, or retrieves the current directory of the calling process otherwise.

success = GetCurrentDirName(buf, len) /* since V36 */
D0 D1 D2

BOOL GetCurrentDirName(STRPTR, LONG)

326 Rom Kernel Reference Manual: DOS

This function checks whether the caller is a shell command. If so, it copies the string the shell prints
through the %S token of the prompt as current directory into the supplied buffer, see also section 15.3.5. That
is, the function copies cli_SetName of the CLI structure (see section 15.3.7), into buf. If the current
directory path fits into len bytes including a terminating NUL byte, then this function returns DOSTRUE and
sets IoErr() to 0. Otherwise, it truncates the name, sets IoErr() to ERROR_LINE_TOO_LONG, but still
returns DOSTRUE. The Shell does not update cli_SetName itself, i.e. the element this function depends
upon. Rather, the CD, SwapCD, PushCD and PopCD commands keep it consistent when changing the
current directory. However, if a command changes pr_CurrentDir without updating cli_SetName,
or calls SetCurrentDirName() without updating the current directory of its processes, then the string
supplied by this function may not correspond to the current directory the shell actually uses.

If the caller is not a shell command, then the function uses the lock representing the current directory
of the calling process, namely pr_CurrentDir, and converts it to a string by NameFromLock(). This
function, see section 7.3.1, also truncates its result to len bytes and, if truncation was performed, sets
IoErr() to ERROR_LINE_TOO_LONG and returns DOSFALSE if the directory name does not fit into len
bytes. On success, the function returns a non-zero result code, but it does not set IoErr() consistently.

This function had a defect in AmigaDOS version 36 by not handling zero-sized buffers correctly. This
was fixed in version 37. Even the latest versions return DOSTRUE if the caller is run from a shell, though the
supplied buffer is too short and the directory name was truncated.

15.3.2 Set the Current Directory Name
The SetCurrentDirName() updates the buffer within which the shell keeps the string representing the
current directory. It does not update the lock representing the current directory.

success = SetCurrentDirName(name) /* since V36 */
D0 D1

BOOL SetCurrentDirName(STRPTR)

This function updates the string printed as current directory by the %S token of the shell prompt, see also
section 15.3.5; this string represents the path of current directory the shell assumes to operate in. If the caller
is executing from a shell, it copies the supplied string into the cli_SetName element of the CLI structure
of the shell, and potentially truncates it to the size of this buffer. Even if the string is truncated, the function
returns DOSTRUE. It does not update IoErr() in either case. For legacy reasons, the size of this buffer
is limited, and thus the buffer may not reflect the full directory name supplied. While in principle the size
of the cli_SetName buffer can be changed when creating a CLI structure with AllocDosObject()
introduced in section 16.1.1, AmigaDOS ignores the buffer size supplied there.

If the caller is not a shell command, this function returns DOSFALSE without setting an error code.

This function does not attempt to synchronize the lock pr_CurrentDir of the calling process with
the supplied path. If the two are not consistent, the path the shell could print as part of the prompt would be
incorrect. Thus, any attempt to change cli_SetName through this function shall also update the current
directory by calling CurrentDir().

15.3.3 Obtaining the Current Program Name
The GetProgramName() function copies the name of the currently executed program into a buffer.

success = GetProgramName(buf, len) /* since V36 */
D0 D1 D2

BOOL GetProgramName(STRPTR, LONG)

The CLI Structure 327

This function fills buf with the what the shell assumes to be the file name of the currently executed
command. Unlike what the function name suggests, the program name can also be a path including directory
components if this is what was entered as command. The file name is taken from cli_CommandName of the
CLI structure, see section 15.3, where the shell deposits it before executing a program. If the program name
including NUL termination requires more than len bytes, this function first truncates it and sets IoErr()
to ERROR_LINE_TOO_LONG. If the name including a terminating NUL byte fits into len bytes, the name
is copied and the function sets IoErr() to 0. In either case, even if the program name is truncated, the
function returns DOSTRUE.

If this function is not called from a shell command, the function installs an empty string in buf if len is
at least 1, returns DOSFALSE and sets IoErr() to ERROR_OBJECT_WRONG_TYPE.

The startup code of many C compilers use this function, or the equivalent element of the CLI structure,
to fill argv[0], the name of the running program.

The shell buffer that keeps the current command name is unfortunately due to legacy reasons limited in
size. Even though the shell uses internally a longer buffer and is thus not limited in the path length of the
commands it executes, the ability of the shell to communicate long file names to the caller is restricted, and
thus the command name retrieved from this function may not reflect the correct file name.

15.3.4 Set the Current Program Name
The SetProgramName() sets the assumed name of the currently executed program.

success = SetProgramName(name) /* since V36 */
D0 D1

BOOL SetProgramName(STRPTR)

If this function is called from a shell command, it installs the supplied string as program name into
cli_CommandName, see section 15.3, and returns DOSTRUE. If the supplied string does not fit into the
shell internal buffer, it is truncated without this function indicating failure. Unlike what the function name
suggests, the program name is a path and can therefore also contain directory components.

This function is mainly intended to be used by the shell to communicate the name of the executing
program to the program startup code, for example to supply argv[0] of C programs.

If this function is not called from a shell command, it returns DOSFALSE. This function does not change
IoErr() in any case.

15.3.5 Obtaining the Shell Prompt
The GetPrompt() function copies the prompt format string with all formatting instructions into a caller
supplied buffer.

success = GetPrompt(buf, len) /* since V36 */
D0 D1 D2

BOOL GetPrompt(STRPTR, LONG)

If this function is called from a shell command, it copies the prompt format string including a terminating
NUL into buf if it fits into len bytes, potentially truncating it if it does not. If truncation was performed,
IoErr() is set to ERROR_LINE_TOO_LONG, otherwise to 0. In either case, even if the string was trun-
cated, the function returns DOSTRUE.

If this function is not called from a shell command, an empty string is copied into buf if len is at least 1,
and IoErr() is set to ERROR_OBJECT_WRONG_TYPE and the function returns DOSFALSE.

328 Rom Kernel Reference Manual: DOS

The shell prompt provided by this function is the un-expanded prompt including format strings as it
is provided by the Prompt command, and not the expanded prompt currently printed by the shell. The
AmigaDOS Shell recognizes the following strings:

%S is replaced by the path of the current directory as returned by GetCurrentDirName().

%N is substituted with the CLI number, which is the closest analog of a process ID AmigaDOS has to offer.
This is taken from pr_TaskNum of the process running the shell, see also chapter 10.

%R represents the return code of the last executed command as contained in cli_ReturnCode.

%% is the percent (“%”) sign itself.

The AmigaDOS Shell also expands variables as described in section 15.1.5 in the prompt, executes
commands in backticks, see section 15.1.7, and injects its output into the printed prompt. Any “%” sign
included in expanded variables or backticks is not a formatting command but stands for itself.

15.3.6 Setting the Shell Prompt
The SetPrompt() sets the shell prompt format string.

success = SetPrompt(name) /* since V36 */
D0 D1

BOOL SetPrompt(STRPTR)

If called from a shell command, this function updates the shell prompt format string to name, potentially
truncating it to the size of the shell internal buffer. It returns DOSTRUE even if the prompt is truncated.

If this function is not called from a shell command, it returns DOSFALSE. In does not change IoErr()
in any case.

The shell prompt provided to this function may contain all format strings described in 15.3.5, such as
%S for the current directory, or shell variables and back-ticks to construct a prompt dynamically. The shell-
internal buffer size for the prompt is unfortunately limited. If longer prompts are required, they could be
placed in a local shell variable which is expanded when the prompt is printed on the console.

15.3.7 Retrieving the CLI Structure
The Cli() function returns a pointer to the CommandLineInterface structure describing properties of
the shell within which the calling process is executing, or NULL in case the process is not run from a shell.

cli_ptr = Cli() /* since V36 */
D0

struct CommandLineInterface *Cli(void)

This function returns a pointer to the CommandLineInterface structure that describes properties of
the shell the calling process runs in. The function returns NULL if the caller is not part of a shell process.
This structure, defined in dos/dos.h, looks as follows:

struct CommandLineInterface {
LONG cli_Result2;
BSTR cli_SetName;
BPTR cli_CommandDir;

The CLI Structure 329

LONG cli_ReturnCode;
BSTR cli_CommandName;
LONG cli_FailLevel;
BSTR cli_Prompt;
BPTR cli_StandardInput;
BPTR cli_CurrentInput;
BSTR cli_CommandFile;
LONG cli_Interactive;
LONG cli_Background;
BPTR cli_CurrentOutput;
LONG cli_DefaultStack;
BPTR cli_StandardOutput;
BPTR cli_Module;

};

Even though this function was introduced in AmigaDOS 36, a BPTR to the CommandLineInterface
structure is also found in the pr_CLI element of the process structure, see chapter 10.

Some elements of this structure point to string buffers of unspecified size and should therefore not be
altered manually as an attempt to copy an over-sized string into them could overwrite other system structures.
Instead, the accessor functions from sections 15.3.1 to 15.3.6 should be preferred for reading, and also for
updating them.

The elements of this structure are as follows:

cli_Result2 is the IoErr() the last executed command of the shell left, or the shell created itself
when failing to interpret or execute a command line. This element is for example used by the Why command
to print a textual description of the error. The Shell also copies it into the $Result2 shell variable.

cli_SetName is a BPTR to a BSTR containing the path of the current directory. This string is used
to generate a shell prompt; the AmigaDOS Shell substitutes the “%S” format directive of the prompt by the
string stored here. The CD command and its PushCD, PopCD and SwapCD variants update this element.
This element should be accessed through GetCurrentDirName() and SetCurrentDirName(), see
sections 15.3.1 and 15.3.2.

cli_CommandDir contains a linked list of directories that are scanned for commands and scripts. It is
a BPTR to the following (undocumented, but trivial) structure:

struct PathComponent {
BPTR pc_Next;
BPTR pc_Lock;

};

where pc_Next is the BPTR to the next directory in the path or ZERO for the end of the list, and pc_Lock
is a lock of the directory that will be scanned for a matching command file.

The current directory is always the first component of the path and not included in the above list. It is
thus checked first for matching files, even if cli_CommandDir is ZERO. The C: directory is always the
last component of a path and neither explicitly included in the above list.

The Path command is used to print and adjust the path stored in this list.

cli_ReturnCode is the return code of the last executed command, i.e. the value the command left in
the d0 CPU register when existing to the shell. The Shell also copies this value to the $RC shell variable.

cli_CommandName is a BPTR to a BSTR containing the file name of the currently executing com-
mand. The shell places here the unaltered string provided by the user as command, and therefore the string
is either the name of a resident segment, a file name in the path, or can include directory components and

330 Rom Kernel Reference Manual: DOS

then is a path relative to the current directory of the shell. It is typically used by the startup code of C com-
pilers to fill the argv[0] argument. This element should be accessed through GetProgramName() and
SetProgramName(), see sections 15.3.3 and 15.3.4.

cli_FailLevel contains the threshold at which executed commands will cause an abortion of their
containing shell script. The value is deposited here by the FailAt command. If a command exits with
return code larger or equal than the cli_FailLevel, this will cause termination of the currently executing
script.

cli_Prompt contains a BPTR to BSTR that is used by the shell to generate the command prompt of
interactive shells. The formatting directives the AmigaDOS Shell recognizes are listed in section 15.3.5. This
element should be accessed by GetPrompt() and SetPrompt(), see section 15.3.5 and 15.3.6.

cli_StandardInput is a BPTR to a file handle that is the primary source from which the shell
reads command lines and also the default input handle the shell provides to its clients in the absence of
input redirection. This file handle typically corresponds to a console window within which the shell is
executed. The Run command will deposit here a string stream (see section 5.7.2) containing the command
or commands to run in background. The file handle provided through the SYS_Input or SYS_InName
tags of the System() function will be placed here. Once this stream is exhausted, the shell terminates.

cli_CurrentInput is a BPTR to a file handle from which the shell is currently reading command
lines. This stream is either coming from the SYS_CmdStream or SYS_CmdName tags of the System()
function (see 15.2.1), or a string stream constructed from its first argument. Also, the Execute command,
see section 15.1.10, places here the file handle of the original or processed shell script that is to be executed.
Once this file is exhausted, the shell will close it. This happens, for example, if a script reaches the EOF or is
aborted by the Exit command. Depending on how the shell was created and configured, see section 15.7.1,
the shell then sets cli_CurrentInput to cli_StandardInput if the two are different and continues
execution from there, or in other configurations, terminates.

cli_CommandFile is a BPTR to the BSTR of a temporary shell script that is currently being executed.
The only reason why its path is stored here is to allow the shell to clean up such temporary scripts. Whenever
the Execute command requires processing a script for argument substitution, it creates a temporary script
in T: whose name is stored in cli_CommandFile. Once its execution completes, the shell ensures that
this temporary script is deleted again. For details on how Execute works see section 15.1.10.

cli_Interactive is a Boolean flag that indicates whether the shell is interactive, i.e. requesting
data from the console. It is computed and updated by the shell itself. If this Boolean is non-zero and
cli_Background is DOSFALSE, a prompt is printed before attempting to read a command. If the shell
is executing a script, this element is DOSFALSE and the shell then checks for Ctrl-D to potentially abort a
running script.

cli_Background is a Boolean flag that indicates whether the shell runs in background. This flag
is set by System() and Execute() for shells that are started asynchronously or are equipped with a
non-interactive (non-console) output stream. A synchronous System() call with a non-NULL command
argument, however, will always create a foreground shell. If this flag is cleared, and the shell is interactive,
it prints prompts for requesting commands from the user. A shell not running in background also prints a
message when its input stream reaches the EOF and it terminates8.

cli_CurrentOutput is currently not used by the shell. It is initialized with the same file handle as
cli_StandardOutput.

cli_DefaultStack is the minimum stack in long words the shell allocates for commands before
executing them. The Shell also checks commands for stack cookies, see section 11.5.2, that may enlarge the
stack further. This element is set by the Stack command. Note that this element is not the stack size of the
shell process itself, but a lower limit of the stack size of its clients.

8While [7] documents that this flag determines whether the shell terminates when its current input reaches an EOF, this is not correct
since AmigaDOS version 36. Instead, the startup flags from table 15.1, section 15.7.1 do.

The CLI Structure 331

cli_StandardOutput is the file handle the shell provides as default output handle to its clients, and
to which it prints prompts and other messages. This handle is copied by the System() function from the
SYS_Output tag or obtained by opening the file name provided by the SYS_OutName tag. If none of
the two are available, System() will derive an suitable output stream from the input stream or the console
handler of its caller, see 15.2.1.

cli_Module is a BPTR to the singly linked list of segments of the command currently executed. The
shell also uses this BPTR to release loaded, non-resident commands. It is either filled with the chained
segment list returned by LoadSeg() (see section 11.3.1), or an element of the list of resident segments, see
section 15.6. A common technique for implementing load and stay resident commands is to set this BPTR to
ZERO to prevent the shell from releasing the memory of the loaded program.

Even though the CommandLineInterface structure is typically constructed by AmigaDOS, e.g.
through the System() function, it is sometimes necessary to create it manually. This structure shall always
be constructed through AllocDosObject() as it contains some internal elements required by extended
shell features, see section 16.1.1 for details. If allocated by other means, the AmigaDOS shell will lack some
of its features. Access to TAB expansion and the shell history is through the DoShellMethod() function
specified in section 15.2.5, and not through the CLI structure.

The Cli() function does not change IoErr().

15.4 Accessing Shell Variables
The functions in this section provide access to local and global shell variables, get and set them, or check
whether a particular variable is defined.

Local variables and aliases are represented as a LocalVar structure defined in section 15.4.3 which is
linked into the pr_LocalVars list of the Process structure specified in chapter 10.

Global variables are files in a directory hierarchy of the ENV assign, which exists typically as an external
link in the RAM-Handler. The functions in this section also allow to make changes to global variables
permanent such that they survive a reboot. For that, the file representing the variable is updated in ENV: and
ENVARC:, which is usually the link target of the former. Section 4.3.3 introduces these assigns.

15.4.1 Reading a Shell Variable
The GetVar() function reads the contents of a global or local shell variable or alias and copies its contents
to a buffer.

len = GetVar(name, buffer, size, flags) /* since V36 */
D0 D1 D2 D3 D4

LONG GetVar(STRPTR, STRPTR, LONG, ULONG)

The name argument is the name of the variable to retrieve; this name may contain one or multiple
forward slashes (“/”) which structure variables hierarchically similar to directories in file systems. It is not
case-sensitive. For global variables, this hierarchy is mapped to directories within the ENV assign. There
variables are represented as files that may also be accessed through the file system functions of dos.library.
Unless specified otherwise, this function first checks for local shell variables first, but if no matching variable
is found, it checks for a global variable of the provided name.

The buffer and size arguments specify a buffer and its length into which the contents of the variable
or alias is copied. It is advisable to store only printable characters in variables, in which case a NUL or line
feed character truncates the contents of the variable. However, variables may also contain binary data; such
binary data is, however, only copied if it is requested explicitly. If a variable does not fit into the buffer, it is

332 Rom Kernel Reference Manual: DOS

truncated without setting an error code, though non-binary variables are always NUL-terminated. The size
argument includes the byte necessary for termination.

The flags argument determines the type of variable to access, and whether binary contents of the
variable is made accessible. The following flags are defined in dos/var.h:

The lowest 8 bits of flags identify the nature of the variable. If set to LV_VAR, this function reads
variables, if set to LV_ALIAS, it reads aliases. Aliases are always local to the shell and cannot be global.

If the GVF_GLOBAL_ONLY flag is set, then this function only returns contents of global variables, and
local variables are ignored. Aliases are never global.

If the GVF_LOCAL_ONLY flag is set, then this function only returns contents of local variables and
ignores any global variables.

If the GVF_BINARY_VAR flag is set, then copying the contents of variables into the supplied buffer
does not stop at newline (0x0a) or NUL characters, but attempts to transfer the entire variable into the buffer,
potentially truncating it if necessary.

If the GVF_DONT_NULL_TERM flag is set along with GVF_BINARY_VAR, then this function does not
attempt to NUL-terminate the supplied buffer. Rather the entire variable, if possible, is copied into buffer.
Otherwise, even binary content is NUL-terminated.

On success, this function returns the size of the supplied variable after truncation is applied if necessary.
The size does not include the terminating NUL, if one is included. On success, this function sets IoErr()
to the entire size of the variable in the database without truncation, including any bytes beyond a terminating
newline or NUL.

On error, −1 is returned and IoErr() is set to an error code; it is set to ERROR_BAD_NUMBER if len
is 0, or ERROR_OBJECT_NOT_FOUND if the variable could not be found. Any other error code resulting
from reading from ENV: is also forwarded to the caller through IoErr().

AmigaDOS version 36 returned the full size of the variable, not the number of characters that could be
read. This was changed in version 37 which also sets IoErr(). The flag GVF_DONT_NULL_TERM only
worked for local variables up to version 37. This was fixed in version 39.

15.4.2 Setting a Shell Variable
The SetVar() assigns a value to a local or global shell variable or an alias, potentially creating a new
variable, or potentially deleting it.

success = SetVar(name, buffer, size, flags) /* since V36 */
D0 D1 D2 D3 D4

BOOL SetVar(STRPTR, STRPTR, LONG, ULONG)

This function assigns the value in buffer to the variable or alias named name, possibly creating it if it
does not exist, or deleting it if buffer is NULL.

The name argument is the name of the variable to create, update or delete. It is not case-sensitive. The
name may contain one or multiple slashes (“/”) which corresponds to a hierarchy of variables that work
similar to directories and paths on regular file systems; this hierarchy is represented by directories in ENV:
for global variables, but is also available for local variables. This function potentially creates levels in the
hierarchy, i.e. sub-directories, if necessary.

The buffer and size arguments are the contents of the variable and the size of the contents. It is
generally advisable to only include printable characters in variables, even though they may include also
binary data which can be retrieved by setting the GVF_BINARY_VAR for GetVar(). If size is −1,
then the buffer contains a NUL-terminated string and this function determines the string size itself. The
terminating NUL of such a string does not become part of the variable value.

Accessing Shell Variables 333

If buffer is NULL, then a matching variable is deleted. It is then equivalent to DeleteVar().

The flags argument determines the type of the variable to be set or created. The following flags are
defined in dos/var.h:

LV_VAR sets, creates or deletes a regular shell variable, local or global.

LV_ALIAS sets, creates or deletes an alias. Aliases can only be local. This is mutually exclusive to the
above.

If GVF_GLOBAL_ONLY is set, then a global variable is created, deleted or updated. This flag shall not
be combined with LV_ALIAS. If GVF_GLOBAL_ONLY is not set, and buffer is not NULL, this function
only updates or creates local variables; it even creates a local variable if a global variable of the same name
already exists. If GVF_GLOBAL_ONLY is not set, and buffer is NULL, it first attempts to delete a local
variable, and if none is found, attempts to delete a global variable of the matching name.

If GVF_LOCAL_ONLY is set, then only a local variable is created, deleted or updated. This flag only
makes a difference if buffer is NULL as all other operations default to local variables anyhow.

If GVF_SAVE_VAR is set, and a global variable is set or deleted, the change will be made permanent by
mirroring it in the ENVARC: directory9.

This function returns a non-zero return value in case of success. IoErr() is then not set consistently.
On error, this function returns DOSFALSE and IoErr() is set to an error code. If a variable is to be
deleted by setting buffer to NULL, and this variable does not exist, this function will set IoErr() to
ERROR_OBJECT_NOT_FOUND.

Releases prior to AmigaDOS version 47 did not clear the e protection bit of the file(s) created in ENV: or
ENVARC:. If a variable name contained two slashes such as “//”, releases prior to AmigaDOS version 47
crashed.

Furthermore, SetVar() depends on the file system responsible to the directory the ENV assign points
to to support both MODE_READWRITE as mode of the Open() function specified in section 5.3.1, as well
as the SetFileSize() function, see section 5.4.4. While both the FFS and the RAM-Handler implement
these functions and ENV usually points to a directory in the latter, some third-party file systems may not. In
such a case, SetVar() can fail silently when setting a global variable.

Additionally, SetVar() has up to and including AmigaDOS version 47 a potential race condition if
two processes attempt to modify or read the same global variable concurrently. While the file system imple-
menting ENV should provide sufficient protection for writing data concurrently into a file, SetVar() uses
a two-step process in which the data is written first, and then the variable is truncated to its target size which
may happen concurrently with a second process either writing to, or reading from the same variable.

15.4.3 Finding a Shell Variable
The FindVar() locates a local shell variable or alias of the calling process.

var = FindVar(name, type) /* since V36 */
D0 D1 D2

struct LocalVar * FindVar(STRPTR, ULONG)

This function finds the administration structure corresponding to a local shell variable or alias of the
calling process. It does not provide access to global variables which are represented as files in the ENV
assign.

The name argument specifies the name of the local variable or alias to locate. It is not case-sensitive.
This name may contain forward slashes (“/”) to structure variables in hierarchies.

9[1] does not document this flag, even though it is present and working.

334 Rom Kernel Reference Manual: DOS

The type argument defines whether a local shell variable or alias is to be found. The following types
from dos/var.h are available:

LV_VAR requests the function to locate a local shell variable.

LV_ALIAS request the function to find an alias. This is mutually exclusive to the above.

Only the least significant bits of type are relevant, all other bits, in particular GVF_GLOBAL_ONLY, are
ignored.

If a matching variable or alias is found, a pointer to a LocalVar structure, defined in dos/var.h is
returned:

struct LocalVar {
struct Node lv_Node;
UWORD lv_Flags;
UBYTE *lv_Value;
ULONG lv_Len;

};

This structure shall never be allocated nor modified by the caller as it may grow in future releases. Instead,
local variables shall only be created through SetVar().

The elements of this structure are as follows:

lv_Node is a node structure as defined in exec/nodes.h. It chains all local variables and aliases of a
process in the pr_LocalVars element of the process structure, see chapter 10. The lv_Node.ln_Name
element is the full path of the variable, including all directory elements and its name, separated by forward
slashes (“/”). The type of the node, namely lv_Node.ln_Type identifies whether this structure describes
a variable or an alias. It can be either LV_VAR or LV_ALIAS.

lv_Flags contains flags. Currently, only a single flag is used here, and that is GVF_BINARY_VAR. If
this flag is set, then a non-printable text was set as contents of the variable. However, this flag is currently
only set, but never used by AmigaDOS; instead, the flags argument of GetVar() determines whether
the variable contents is interpreted as text or as binary value.

lv_Value is a pointer to the value of the variable. This value is not a NUL-terminated string, but rather
an array of bytes whose size is found in lv_Len.

On success, this function does not alter IoErr(). If no matching variable or alias is found, this function
returns NULL and sets IoErr() to ERROR_OBJECT_NOT_FOUND.

15.4.4 Deleting a Shell Variable
The DeleteVar() deletes a global or local shell variable or alias.

success = DeleteVar(name, flags) /* since V36 */
D0 D1 D2

BOOL DeleteVar(STRPTR, ULONG)

This function removes a shell variable or alias from the local or global pool of shell variables. It is
equivalent to SetVar(name,NULL,0,flags) introduced in section 15.4.2.

The name argument is the name of the variable or alias to remove. It is not case-sensitive. This name
may contain slashes (“/”) that work similar to path separators. This allows variables to form a hierarchy
similar to files in a file system. Without additional flags, this function first attempts to find a local variable
and then deletes it if it exists. If no such variable exists, the function attempts to find a global variable of the
same name and attempts to delete it. It does not delete directories of variables.

Accessing Shell Variables 335

The flags argument provides information on which type of variables or alias are to be deleted. The
following flags are honored:

LV_VAR deletes a regular shell variable.
LV_ALIAS deletes an alias. Aliases can only be local. This is mutually exclusive to the above.
If GVF_GLOBAL_ONLY is set, then only a global variables is to be deleted; the function then does not

attempt to find a local variable of the given name.
If GVF_LOCAL_ONLY is set, then only a local variable is to be deleted.
If GVF_SAVE_VAR is set, and a global variable is deleted, the change will be made permanent by also

deleting the variable in the ENVARC assign.

This function returns a non-zero return value in case of success. IoErr() is then not set consistently. On
error, this function returns DOSFALSE and IoErr() is set to an error code. This function will set IoErr()
to ERROR_OBJECT_NOT_FOUND if an attempt is made to delete a non-existing variable or alias.

15.5 Command Line Argument Parsing
The functions in this section support applications in parsing arguments from the command line. Because the
entire command line except the command name is delivered literally to programs run from the shell, it is
possible to use custom algorithms to extract arguments from it, e.g. in order to deliver them in the form of an
argv[] array to the main() function of a C program.

The functions in this section have the advantage that they are aware of the delicate syntax of the Amiga-
DOS Shell and its quoting and escaping rules as laid out in section 15.1.4; they also integrate a simple help
system for command line tools. Because argument parsing is provided as a service of AmigaDOS, command
line tools do often not need to be linked with startup code provided by C compilers, allowing such tools to
remain small and memory efficient.

15.5.1 Parsing Command Line Arguments
The ReadArgs() function parses one or multiple arguments from the command line of the caller using a
template, and writes them into a user-supplied array.

result = ReadArgs(template, array, rdargs) /* since V36 */
D0 D1 D2 D3

struct RDArgs *ReadArgs(STRPTR, LONG *, struct RDArgs *)

This function is the generic argument parser of AmigaDOS, and highly recommended for all command
line tools as it provides a consistent interface to shell commands. The arguments a command expects is
encoded in a human-readable template supplied as first parameter, and parsed arguments are placed into
array. If rdargs is NULL, then ReadArgs() retrieves its input from the buffer of the standard input of
the calling process. Other sources are possible, and the function is not restricted to the input stream. This
function requires that the command line is terminated by a newline character (0x0a).

The template parameter specifies the arguments the parser shall retrieve from its input. It describes
their names by keywords, their type, whether they are optional or mandatory, and whether the keyword is
required on the command line to fill the argument, or whether an argument can also be matched by position.

Each command line argument to be filled is represented by a keyword, and an optional abbreviation that
is separated from the full keyword by an equals-sign (“=”), e.g. “QUICK=Q”. Additional options defining
the type and parsing rule of the argument may follow the keyword or, if present, the abbreviation, and are
separated from them by a forwards slash (“/”). Most options can be combined, and are then also separated
from each other by slashes. Such options describe whether a particular argument is mandatory, optional,

336 Rom Kernel Reference Manual: DOS

numerical, whether the keyword is required to match an argument or whether arguments are filled by position.
The complete list of options is found below. For example, QUICK=Q/S indicates a Boolean switch matching
the keyword QUICK or Q on the command line, and the option the /S indicates that it is a switch. The
keywords are separated by commas (“,”) from each other.

ReadArgs() retrieves keywords and arguments one by one through the ReadItem() function in-
troduced in section 15.5.3, and through that function implements the quoting and escaping rules from sec-
tion 15.1.4. It then matches keywords on the command line to keywords in the template; a keyword either
stands for itself for Boolean flags, or is followed by its value, either separated by spaces, tabulators or an
equals-sign (“=”), i.e. FROM=org or FROM org on the command line assigns to the keyword FROM in the
template the value org. If no keyword is present, then remaining arguments that do not explicitly require
keywords are filled left to right from the command line.

Upon return, each argument is placed in one of the elements of the array argument of ReadArgs(),
the first argument into the first element, the second into the second, in the order they appear in the template.
While this is formally an array of LONGs, the actual type of an element depends on the nature of the argu-
ment as specified through the options following the keyword, and can be a UBYTE *, a UBYTE ** or a
LONG * casted to LONG instead. The array shall be created and zero-initialized upfront by the caller of
ReadArgs(), and it shall be large enough to hold one entry per keyword in the template.

The following options are supported:

/S The argument is a Boolean switch. The corresponding entry in array will be set to 0 if the keyword
is not present on the command line, and set to a non-zero value if it is present at least once.

/T The argument is a Boolean switch which expects an explicit argument to set its state10. If the argument
is On or Y, the entry in array will be set to DOSTRUE. If the argument is Off or N, the entry in
array will be set to DOSFALSE. The acceptable values for this argument are not localized and rather
hard-coded.

/K This argument is only filled in if its keyword appears on the command line, arguments without /K and
without /S are also matched by position. For example, if the template is FROM/K, then its element in
array is not filled in unless FROM appears on the command line. Remaining command line arguments
are filled to non-/K keyword slots left to right.

/A This argument is required. If it is not present on the command line, ReadArgs() returns an error.

/N The argument is a number. If the argument is present on the command line, then the corresponding
element in array is filled with a pointer to a LONG. If the argument is not present, the element
in array remains NULL. This allows the caller to identify numeric arguments that have not been
provided.

/M This keyword matches multiple strings. Any command line argument that could not be matched to
the template will be associated to this keyword. Clearly, at most one /M keyword may be specified in
a template. The corresponding entry in array consists of a pointer to an array of UBYTE *s, each
of them contains one of the matching arguments of the command line. The last entry in this array is
NULL, indicating its end. For example, if the template is FROM/M,TO, then a command line such as
a b c TO d will fill the second element of array with “d”, but the first 3 will match FROM. Thus,
the first element of array will be a pointer to an array of 4 pointers, the first of which will point to
the NUL-terminated string “a”, the second to “b”, the third to “c” and the forth pointer will be NULL.

If there are also /A keywords in the template, i.e. arguments that are required, and some of them are not
yet matched to anything on the command line, then ReadArgs() will fill them from the end of the
M keywords. This allows templates such as FROM/A/M,TO/A where the final, last argument on the

10[1] and also the autodocs state that /T defines a Boolean toggle that changes its value with each appearance, but this information is
not correct.

Command Line Argument Parsing 337

command line fills the TO keyword even without the keyword explicitly appearing on the command
line. The Copy command is a typical application of such a template as it requires one destination
directory, but also one or many source files to copy.

/F The entire rest of the command line is matched to this argument, even if keywords appear in it. The
corresponding entry in array is filled with a single pointer to a string. Such templates are used, for
example, by the Alias command as the rest of the command line can form a command by itself and
can contain keywords.

Without any option, the keyword is a non-required string argument that is matched from the command line
either by the keyword or by position. The corresponding entry in array is in that case a UBYTE *, that is a
pointer to a NUL-terminated string that is filled in if the argument is present, or remains NULL if the argument
is not found on the command line.

The rdargs parameter customizes ReadArgs() and provides an alternative source of the command
line through the RDArgs structure defined below. The same structure is also used for internal resource
management of ReadArgs(). If NULL is passed in here, this function will allocate and initialize a RDArgs
structure itself, and the command line to be parsed will be taken from the buffer of the input file handle of
the calling process, i.e. pr_CIS (see section 5.6 and chapter 10).

To customize command line parsing, a RDArgs structure as documented in dos/rdargs.h shall be
allocated through AllocDosObject(), see section 16.1.1, and shall be initialized as specified below. This
structure reads as follows:

struct RDArgs {
struct CSource RDA_Source; /* Select input source */
LONG RDA_DAList; /* PRIVATE. */
UBYTE *RDA_Buffer; /* Optional buffer. */
LONG RDA_BufSiz; /* Size of RDA_Buffer (0..n) */
UBYTE *RDA_ExtHelp; /* Optional extended help */
LONG RDA_Flags; /* Flags for any required control */

};

Its most relevant part is the RDA_Source structure, which allows to provide an alternative source for
the string to be parsed. It is also documented in dos/rdargs.h and is defined as follows:

struct CSource {
UBYTE *CS_Buffer;
LONG CS_Length;
LONG CS_CurChr;

};

In this structure, CS_Buffer points to the string representing the command line to be parsed, and
CS_Length is the size of this string in characters. The CS_CurChr element is the index of the first char-
acter in the string to be considered for parsing. This element is typically set to 0 upfront, but if ReadArgs()
is used for parsing a longer string buffer in multiple calls, this element may be carried over from a previous
parse. If CS_Buffer is NULL, ReadArgs() will retrieve the command line from the file handle buffer of
pr_CIS of the calling process, as if the rdargs argument of ReadArgs() was set to NULL.

The RDA_DAList element of the RDArgs structure is private to ReadArgs() and shall not be read
or written to. This element is initialized to NULL by AllocDosObject().

The RDA_Buffer element contains a buffer which will be used by ReadArgs() to store parsed data.
This buffer space will be used to store parsed arguments, pointers to parsed numbers for the /N option, or
arrays of pointers to the parsed arguments for the /M option. If RDA_Buffer is NULL, then ReadArgs()
will supply one instead. The size of this buffer in bytes is in RDA_BufSiz. ReadArgs() will allocate

338 Rom Kernel Reference Manual: DOS

more buffers itself if the initially supplied buffer is not large enough, or none is provided. Typically, callers
would leave the allocation of the buffer to ReadArgs() unless memory allocation should be avoided alto-
gether and the size of the supplied command line is known to be limited.

The RDA_ExtHelp string is an optional extended help string. If the command line consists of a single
question mark, then first ReadArgs() prints its template argument to the standard output of the caller,
and requests arguments again by reading from the standard input. If yet another question mark is provided
as input and RDA_ExtHelp is not NULL, then this extended help is printed and a third attempt is made to
read command line arguments. This feature allows users to request help on the called command, and enter
the command line arguments again after reading the template and the extended help.

The RDA_Flags element allows callers to further refine the functionality of ReadArgs(). The avail-
able flags are defined in dos/readargs.h and are as follows:

RDAF_STDIN is defined, but not in use.

RDAF_NOALLOC If this flag is set, it instructs ReadArgs() to never allocate or extend its buffer.
Only the buffer supplied through RDA_Buffer will be used. If this buffer overflows, parsing aborts and
IoErr() is set to ERROR_NO_FREE_STORE.

RDAF_NOPROMPT If this flag is set, the single question mark as request for help is not honored but taken
as a literal argument on the command line, that is, command line help through the supplied template
parameter or RDA_ExtHelp is not provided.

On success, ReadArgs() returns a RDArgs structure, either the same as passed in through rdargs, or
one that was created by this function; as this structure administrates the resources acquired during argument
parsing, it shall be released by FreeArgs(), see section 15.5.2, once all arguments have been interpreted
and worked on. FreeArgs() shall be called regardless whether the RDArgs structure was implicitly
allocated by the ReadArgs() call, or upfront through AllocDosObject(). Note that the strings and
string arrays pointed to by the array are part of the resources released by FreeArgs().

On failure, this function returns NULL. All resources such as buffers allocated through ReadArgs()
will be released. If a custom rdargs structure was provided by the caller through the rdargs parameter,
then this structure is not released; instead FreeDosObject() (see 16.1.2) shall be called to dispose a user
provided structure.

Beside errors related to input and output operations, the following additional error codes can be returned
in IoErr() on failure:

ERROR_NO_FREE_STORE indicates that either the function failed to allocate storage for its buffers, or
extending its buffer was explicitly disabled through the RDAF_NOALLOC flag and the supplied buffer space
was not large enough.

ERROR_KEY_NEEDS_ARG indicates that the template required a particular argument to be present,
namely through the /A option, though the supplied command line did not define a value for this argument.

ERROR_LINE_TOO_LONG indicates that the supplied command line was too long and could not be
processed. This happens for example if a /M (multi-argument) keyword is present in the template and too
many arguments are supplied.

15.5.2 Releasing Argument Parser Resources

The FreeArgs() function releases all resources allocated by ReadArgs().

FreeArgs(rdargs) /* since V36 */
D1

void FreeArgs(struct RDArgs *)

Command Line Argument Parsing 339

This function releases all resources acquired by the ReadArgs() argument parser. The rdargs argu-
ment shall be the return value of ReadArgs(). FreeArgs() releases all temporary buffers associated to
the rdargs structure, and in case it was allocated by ReadArgs(), also the structure itself. If a custom
allocated RDArgs structure was passed into ReadArgs(), then first FreeArgs() shall be called to re-
lease the system-allocated resources, and then the structure itself shall be disposed by FreeDosObject()
introduced in 16.1.2 at a later point.

As FreeArgs() potentially releases all elements of the array argument of ReadArgs() as part of
its resources, the contents of this array are no longer usable afterwards. If array is supposed to be reused
for another ReadArgs() call, all its elements shall be set to zero again.

From AmigaDOS version 39 onward, this function clears the RDA_Buffer element of rdargs upfront,
which can point to one of the resources that are about to be released. While this makes a rdargs struc-
ture allocated through AllocDosObject() safe to reuse for another ReadArgs() call, it also makes a
custom allocated buffer installed there unavailable. Thus, if such a custom buffer is supposed to be reused,
RDA_Buffer must be reinitialized11.

15.5.3 Reading a Single Argument from the Command Line
The ReadItem() reads a single item from the command line or from a provided CSource structure.

value = ReadItem(buffer, maxchars, input) /* since V36 */
D0 D1 D2 D3

LONG ReadItem(STRPTR, LONG, struct CSource *)

This function reads a single argument from the command line, i.e. the buffer of the input file handle of
the calling process, or the supplied CSource structure. This structure is defined in dos/rdargs.h and
specified in section 15.5.1.

An argument is delimited by spaces, tabulators, semicolons (“;”) or equals-signs (“=”), unless they are
enclosed in double quotes. A newline or EOF always terminates an argument, within or outside of quotes.
Section 15.1 provides more details on the Shell syntax.

If an argument is quoted, the first class of escape sequences listed in section 15.1.4 are applied, and the
quotes are removed from the argument before it is copied into the buffer. This includes the sequences *",
*E, *N and **. Such escape sequences are not relevant outside of quotes, and the asterisk there stands for
itself.

Once an argument delimiter is found, ReadItem() terminates; while a line feed, semicolon or EOF is
moved back into the source, spaces, tabulators or equal-signs are removed from the input buffer before this
function returns12.

The buffer argument provides a user-supplied buffer into which the parsed off argument is copied.
This buffer has a capacity of maxchars; if this buffer overflows, ReadItem() aborts parsing and returns
ITEM_ERROR. It does not attempt to allocate an extension buffer, unlike ReadArgs().

The input argument provides an alternative source for the command line to be parsed; this source
consists of a buffer pointer, a character count and an offset in the form of a CSource structure defined in
section 15.5.1.

This function returns the following result codes defined in dos/dos.h:

ITEM_EQUAL an equals-sign (“=”) was found as delimiter. This may be used as an indication that the
parsed string establishes a keyword, and not an argument.

11[7] recommends to zero RDA_Buffer manually. This is no longer necessary, though re-installing a custom buffer is.
12Unlike what is stated in [1] only a subset of the delimiters is unread.

340 Rom Kernel Reference Manual: DOS

ITEM_ERROR the supplied user buffer is too small or the source run out of data or run into a newline
before a matching closing double quote was found for an opening double quote.

ITEM_NOTHING no argument could be retrieved because the source run into the end of the command
line, i.e. either a newline, semicolon or EOF.

ITEM_UNQUOTED an unquoted item was found and retrieved from the command line.
ITEM_QUOTED a quoted item was found and retrieved.

ReadItem() does not set IoErr(), even if ITEM_ERROR is returned.

15.5.4 Find an Argument in a Template
The FindArg() function finds the index of a keyword in a ReadArgs() compatible template.

index = FindArg(template, keyword) /* since V36 */
D0 D1 D2

LONG FindArg(STRPTR, STRPTR)

This function scans a template as provided to ReadArgs() for a specific keyword and returns the (zero-
based) count of the keyword within the template. See section 15.5.1 for how templates look like.

The template argument a pointer to a NUL-terminated C string defining the template; the syntax of the
template is specified in section 15.5.1.

The keyword argument provides a keyword that is to be found within the template. It is provided as a
pointer to a NUL-terminated C string. Matching the keyword to the template is case-insensitive.

This function returns a zero-based index which argument in the template matches the supplied keyword
matches, i.e. 0 for the first keyword, 1 for the second and so on. It returns −1 if no matching argument is
found in the template. IoErr() remains unmodified, even if no matching keyword is found in the template.

15.6 Resident Segments
To ease access to often used program code, AmigaDOS administrates a list of resident segments. This list
includes resident commands, and thus allows the Shell to execute them quickly without requiring to load them
from disk; but also ROM-resident system segments such as the Shell are placed there during the initialization
of AmigaDOS.

The list of resident segments should not be confused with the exec list of resident modules kept in
SysBase->ResModules, even though its purpose is quite similar13.

Segments enter this list in multiple ways: First, commands whose p protection bit (see section 7.1) is set
may be added to this list explicitly through the Resident command. This bit indicates that the command is
“pure”, which means that it does not alter its code or data, and its code can be executed from several processes
at once. Unfortunately, AmigaDOS makes no attempt to verify these requirements and thus depends on the
compiler or user to indicate such pure commands correctly.

Second, if a command has the p and h protection bits set, it is automatically added to the list of resident
segments at the first time such a command is executed. This allows users to indicate often used commands
that then stay resident automatically. The h stands for “hold”, meaning that a command will be held resident
once used.

Third, the AmigaDOS Shell adds its own built-in commands during initialization to this list. This includes
elementary commands such as CD or Execute that are contained in the Kickstart and do not need to be
loaded from disk.

13This duplication of structures is again a historic accident due to the origin of AmigaDOS.

Resident Segments 341

Fourth, some non-command segments are added to the list during initialization of AmigaDOS through
System-Startup, which is discussed in more detail section 17.4. These include the CON-Handler, the RAM-
Handler, the FFS which is represented by a resident segment named “FileHandler”, and — finally – the
Shell.

The latter is even added three times to this list. First, as “shell”, which is the shell that is used by
default by the Shell icon and the System() function. A user shell may replace this entry and thus become
accessible by the Shell icon on the Workbench. Second, as “BootShell”, which shall remain unchanged.
It always refers to the shell that booted the system, and is also the shell that is used by the Execute()
function discussed in section 15.1.10. Third, as “CLI”, which is only present for legacy reasons and not used
by the system at all, unless requested explicitly by the SYS_CustomShell tag of the System() function,
see section 15.2.1. Unlike the above two entries of the resident list, it uses BCPL binding and as introduced
in section 11.5.4.

A resident segment is described by the Segment structure defined in dos/dos.h:

struct Segment {
BPTR seg_Next;
LONG seg_UC;
BPTR seg_Seg;
UBYTE seg_Name[4];

};

This structure shall never be allocated by a user program, it is created by AddSegment() instead, see
section 15.6.2 more details. The elements of this structure have the following meaning:

The seg_Next element is a BPTR to the next segment in the list of resident segments; it is ZERO for
the last resident segment. Thus, resident segments form a singly linked list. This BPTR shall not be modified
by the user.

The seg_UC element is a use counter, or a type identifier. If the value is positive, the resident segment
represents a disk-based command that had been added to the list either implicitly by the shell due to a set h
bit, or had been made resident explicitly.

In such a case, seg_UC is incremented every time the segment is used, e.g. when the shell locates
the command on the resident segments and executes its code, and decremented once the segment is not used
anymore, e.g. if the resident command terminates execution. It is confusingly initially 1 (not 0) if the segment
is unused. Resident commands with a seg_UC counter larger than 1 cannot be unloaded as they are currently
in use14.

Despite these regular entries used for resident disk-based commands, the following special values for
seg_UC exist; they are also defined in dos/dosextens.h:

The value CMD_INTERNAL indicates a command that is available for execution, but whose code is part
of the ROM. The AmigaDOS Shell adds these commands to the resident list during its initialization.

Segments indicated by the use counter set to CMD_SYSTEM are not commands that could be executed,
but rather segments of system components. The RAM-Handler, the CON-Handler and the FFS there named
“FileHandler” are indicated as system segments. These segments cannot be executed and are not found
by the Shell when scanning the resident list for commands.

Segments with a seg_UC smaller or equal than CMD_DISABLED are neither found by the Shell; they are
temporarily disabled. This type is created if the Resident command is used to remove a built-in command
or a system segment.

The seg_Seg element is a BPTR to the segment list corresponding to the loaded or resident command
or system segment. It is a segment list as returned by LoadSeg(), see also chapter 11 and section 11.3.1.

The seg_Name is not only 4 characters long as indicated, but a variable length field. It contains the
name of the command or system segment as BSTR.

14To add to the confusion, the Resident command prints not seg_UC, but seg_UC-1.

342 Rom Kernel Reference Manual: DOS

15.6.1 Find a Resident Segment by Name
The FindSegment() locates a resident segment by name.

segment = FindSegment(name, start, system) /* since V36 */
D0 D1 D2 D3

struct Segment *FindSegment(STRPTR, struct Segment *, LONG)

This function locates the segment named name in the list of resident segments, using a case-insensitive
string comparison. This function scans either the entire list if start is NULL, or at all segments following
the segment pointed to by start. This allows continuing a scan for another segment of the same name. It
returns the resident segment found, or NULL in case no matching segment is found. Note that the returned
pointer is a Segment structure as defined in section 15.6, and not a BPTR to a segment of a binary executable
as returned by LoadSeg().

The system flag indicates whether the function scans for regular segments or system/internal segments.
If system is DOSFALSE, only regular entries with a positive seg_UC counter are located. If system is
DOSTRUE, only system or built-in segments whose seg_UC value is negative are found. In the latter case,
the above function does not attempt to filter out disabled segments; if required, this shall be done by the
caller.

This function neither increases the use counter of a found resident segment and thus, it cannot guarantee
that the segment will be unloaded by another process at the time the function returns. Thus, this function
shall be called while a Forbid() is active, and the caller shall increment seg_UC for non-system segments
it attempts to use before calling Permit().

Unlike regular segments, system segments cannot go away, they can only be marked as CMD_DISABLED,
and thus seg_UC need not to be altered by the caller.

This function does not alter IoErr() on success, and it sets it to ERROR_OBJECT_NOT_FOUND in
case no matching segment could be found.

15.6.2 Adding a Resident Segment
The AddSegment adds a segment to the list of resident segments and makes it available to other processes.

success = AddSegment(name, seglist, type) /* since V36 */
D0 D1 D2 D3

BOOL AddSegment(STRPTR, BPTR, LONG)

This function adds the segment list seglist, e.g. as returned by LoadSeg(), under the name given
by name to the list of resident segments. The seg_UC type and use counter is initialized to type.

The name is copied and its original buffer may be released or reused after the function returns, but the
segment becomes part of the system database of resident segments.

The value of type shall be selected as follows: For regular pure executables15 that are made resident and
by that available to other processes, type shall be set to 1.

For system segments that are not commands, type shall be set to CMD_SYSTEM; this value is defined
in dos/dosextends.h. Note that such segments cannot be safely unloaded anymore and remain resident
for the lifetime of the system.

While other values such as CMD_INTERNAL and CMD_DISABLED are possible, they do not serve a
practical purpose. The first one indicates commands that are provided by the AmigaDOS Shell, and this value

15The official autodocs and [1] are wrong in this regard, they suggest 0, but this value is incorrect and neither used by the Shell nor
the Resident command.

Resident Segments 343

shall only be used by the ROM Shell. The second value indicates system segments or built-in commands that
are currently disabled. It is only used by the Resident command on an attempt to remove system or
internal segments.

On success, this function returns a non-zero value and does not alter IoErr(). On error, it returns
DOSFALSE and sets IoErr() to ERROR_NO_FREE_STORE.

15.6.3 Removing a Resident Segment
The RemSegment() function removes a resident segment from the system list of resident segments and
makes it unavailable to other processes. It also releases all resources associated to this segment.

success = RemSegment(segment) /* since V36 */
D0 D1

BOOL RemSegment(struct Segment *)

This function attempts to remove the resident segment provided as argument from the AmigaDOS list
of resident segments. If an attempt is made to remove a system segment, an internal command or a regular
resident command that is currently in use, DOSFALSE is returned and the resident segment remains in the list.
Otherwise, the segment is removed, and all its resources are released, including the segment list associated
to the resident segment which is purged through UnLoadSeg().

The resident segment to be removed is typically acquired by FindSegment(). However, any other
process can attempt to unload the same resident segment at the same time, causing a race condition. There-
fore, a caller shall stop multitasking with Forbid(), then locate the segment with FindSegment(), and
if this function succeeds, unload the found segment with RemSegment(). Then, finally, Permit() shall
be called to re-enable multitasking.

If the segment passed in cannot be removed because it is in use or is a system segment, this function
returns DOSFALSE and sets IoErr() to ERROR_OBJECT_IN_USE. On success, it returns DOSTRUE16.

15.7 Writing Custom Shells
AmigaDOS allows adding custom shells to the system that may optionally also replace the AmigaDOS Shell.
A shell is a resident system segment, see section 15.6, similar to the CON-Handler or the RAM-Handler on
the same list. When launching a shell with the System() function of section 15.2.1, a custom shell may
be requested by providing the name of its resident segment to the SYS_CustomShell tag. A custom shell
may even replace the AmigaDOS Shell it by making it resident under the name “shell”. On the AmigaDOS
Shell, the following command will perform this step:

resident shell MyShell replace system

where MyShell is the file name of the new shell. However, a shell is not a regular program and requires
to go through a custom startup mechanism.

First of all, AmigaDOS supports a BCPL shell under the name “CLI” which will be initialized as BCPL
program using the BCPL runtime binding protocol explained in section 11.5.4. AmigaDOS also supports
C and assembler based shells under the names “shell” and “BootShell”. A user shell replacing the
“shell” entry in the resident segment list will thus follow the C/Assembler binding.

Regardless of whether the Shell is run as BCPL or C program, it receives a startup-package in the form of
a DosPacket structure similar to handlers and file systems. The startup code from section 11.5.4 provides a

16Due to a defect in the current version of dos.library it unfortunately also sets IoErr() to the same error code on success.

344 Rom Kernel Reference Manual: DOS

minimal interface for BCPL runtime binding and is also safe to use for shells implemented in C or assembler.
The example code in this section assumes that this startup code is used as initial segment of the shell code; it
will call the main() function of the provided example.

Even though there is no need to interpret the elements of the startup packet as of AmigaDOS version 47
anymore, the following information is provided for the sake of completeness:

If dp_Type is non-zero, and dp_Res1 and dp_Res2 are both 0, this is a regular shell startup, and this
is the only startup that still exists in AmigaDOS version 47, thus no particular test for dp_Type needs to
be made above version 45. Under AmigaDOS versions 36 to 45, the following legacy startup types existed:
if dp_Type was 0, then this used to indicate the creation of the “Initial CLI” booting the system, and if
dp_Res1 and dp_Type were non-zero, this used to indicate the creation of a shell through the NewShell
command. Under AmigaDOS version 34 and before, dp_Type was a pointer to a BCPL function that
performed the initialization of the shell.

In addition, the AmigaDOS Shell launches instances of itself as new processes, for example to implement
pipes or the run-back operator (“&”), see sections 15.1.2 and 15.1.3, and to indicate this private startup
mechanism, the AmigaDOS Shell uses an even different combination of values in dp_Type, dp_Res1
and dp_Res2. As this is a shell-internal mechanism that is not imposed by AmigaDOS, it will not to be
documented here. Custom shells may use whatever mechanism they seem fit if they need to start instances
of itself, provided it does not conflict with the above identification of the AmigaDOS startup packet.

Next, the shell shall allocate all system resources it requires, and if this step fails, the startup code shall
set the dp_Res1 element of the startup packet to 0, place an error code in dp_Res2, then reply the packet
by sending it back to dp_Port and exit.

If this first initialization succeeds, the segment array of the calling process in pr_SegList needs to
be reorganized, see also chapter 10. The regular process startup code of AmigaDOS places the segment list
of running program in index 3 of this array, though commands executed by the shell will require this entry
themselves, and thus the shell shall move its own segment from entry 3 to entry 4.

Initialization continues with dos.library function CliInitRun() which extracts parameters from the
startup packet and from that initializes the CommandLineInterface structure representing the shell.
This structure keeps the publicly accessible status of the shell, it is specified in section 15.3.7.

The CliInitRun() function returns a LONG that identifies whether the initialization of the CLI struc-
ture was successful. If bit 31 is clear, and IoErr() is equal to the pointer to the shell process, i.e. to
FindTask(NULL), initialization failed, and the packet was already replied17 by CliInitRun(). In this
case, the shell shall release all its resources and exit immediately.

If no failure was reported from CliInitRun(), its return value configures the shell, and defines when
to reply the startup packet. More on this in section 15.7.1. At this point, the shell is initialized as far as
AmigaDOS is concerned and can start its work.

The following code implements a minimal shell startup code:

#include <exec/types.h>
#include <exec/alerts.h>
#include <dos/dos.h>
#include <dos/dosextens.h>
#include <proto/exec.h>
#include <proto/dos.h>
#include <string.h>

/* Shell startup bits: */
/* Not defined by any include, see */

17This communication protocol is surely needlessly bizarre, and this case a legacy of Kickstart 2.0 and not part of the Tripos shell
startup.

Writing Custom Shells 345

/* the next section for their meaning */
#define FN_VALID 31
#define FN_ASYNC 3
#define FN_SYSTEM 2
#define FN_USERINPUT 1
#define FN_RUNOUTPUT 0
/* Additional shortcuts */
#define FROM_SYSTEM ((1L << FN_VALID) | (1L << FN_SYSTEM))
#define IS_ASYNC ((1L << FN_VALID) | (1L << FN_ASYNC))

void __asm main(register __a0 struct DosPacket *pkt)
{

struct DosLibrary *DOSBase;
struct ExecBase *SysBase = *(struct ExecBase **)(4L);
struct Process *proc = (struct Process *)(FindTask(NULL));

/* C startup needs to wait for the */
/* startup packet manually */
if (pkt == NULL) {

struct Message *msg;
WaitPort(&proc->pr_MsgPort);
msg = GetMsg(&proc->pr_MsgPort);
pkt = (struct DosPacket *)(msg->mn_Node.ln_Name);

}
/* check the packet for validity */
if (pkt->dp_Type == 0 || pkt->dp_Res2 || pkt->dp_Res1) {

/* Some other form of startup, not from the Os */
Alert(AN_CLIObsolete|AT_DeadEnd);

} else {
LONG fn;
BPTR *segs;
struct CommandLineInterface *cli;
/* Perform shell initialization, here an example */
DOSBase = (struct DosLibrary *)OpenLibrary("dos.library",47);
if (DOSBase == NULL) {

/* Initialization failed, return a meaningful */
/* error by replying the packet */
pkt->dp_Res1 = 0;
pkt->dp_Res2 = ERROR_INVALID_RESIDENT_LIBRARY;
PutMsg(pkt->dp_Port,pkt->dp_Link);
/* Done with it */
return;

}
/* fixup the segment array */
segs = BADDR(proc->pr_SegList);
/* move shell’s seg list to the next slot */
if (segs[4] == NULL) {

segs[4] = segs[3];
segs[3] = NULL;

}
/* Perform system initialization through */

346 Rom Kernel Reference Manual: DOS

/* the dos.library */
fn = CliInitRun(pkt);
/* Was this an error? */
if (fn > 0 && IoErr() == (LONG)proc) {

/* An error, release resources and die */
CloseLibrary((struct Library *)DOSBase);
/* The Packet is already replied */
return;

}
if ((fn & IS_ASYNC) == IS_ASYNC) {

/* check for async system call */
/* so reply now */
ReplyPkt(pkt,pkt->dp_Res1,pkt->dp_Res2);
pkt = NULL;

}
/* Main function continues */
pkt = ShellMain(pkt,fn,SysBase,DOSBase);

cli = Cli();
/* Shutdown for run and System(NULL,...) */
if (!(fn & (1L << FN_VALID)))

fn = (1L << FN_RUNOUTPUT) | (1l << FN_ASYNC);

/* Shutdown code */
Flush(Output());
if (!(fn & (1L << FN_USERINPUT)))

Close(cli->cli_StandardInput);
if (fn & (1L << FN_RUNOUTPUT))

Close(cli->cli_StandardOutput);
/* if not yet replied, do finally now */
if (pkt)

ReplyPkt(pkt,cli->cli_ReturnCode,cli->cli_Result2);
}

}

15.7.1 Initializing a new Shell

The CliInitRun() function initializes a process and its CommandLineInterface structure from a
shell startup package.

flags = CliInitRun(packet) /* since V36 */
D0 A0

LONG CliInitRun(struct DosPacket *)

This function is part of the shell initialization. The packet is the DosPacket the shell received as
startup information; the function initializes from it all elements of the CommandLineInterface structure
stored in the pr_CLI BPTR of the calling process.

The arguments of the shell startup packet are intentionally not documented here, and AmigaDOS may
change or extend how the packet is populated in the future.

Writing Custom Shells 347

CliInitRun() returns a collection of flags packet in a 32-bit LONG value. Unfortunately, these flags
are not defined in any of the official AmigaDOS headers; instead, the following names for these bits are
suggested here:

Table 15.1: CliInitRun() flags
Acronym Bit Number Notes
FN_VALID 31 indicates that remaining bits are valid
FN_ASYNC 3 asynchronous execution intended
FN_SYSTEM 2 shell terminates on EOF of cli_CurrentInput
FN_USERINPUT 1 if 0, close cli_StandardInput on exit
FN_RUNOUTPUT 0 if 1, close cli_StandardOutput on exit

If bit FN_VALID flags is 0 and IoErr() equals pointer to the pointer of the process structure of the
caller, then initialization failed. At this point, the passed in packet has already been replied, and the shell shall
only release the resources it acquired so far and exit. In all other cases, packet has not yet been returned to
the caller yet.

If the bit FN_VALID of flags is 0 and IoErr() does not equal the pointer to the process structure
of the caller, then initialization was successful. In such a case, the startup packet shall only be replied
after the first command to be executed by the shell has been loaded, leaving the dp_Res1 and dp_Res2
unaltered from the values left by CliInitRun(). When the shell terminates, the shell shall close the
cli_StandardOutput and cli_StandardInput file handles of the CommandLineInterface
structure. This type of startup is used when the shell is instructed to execute commands in the background,
e.g. by the Run command, and if Execute()Execute() or System() are called with NULL as its first
argument and SYS_Asynch is not set, see section 15.2.1.

The reason for delaying the startup packet until after loading of the first command is to avoid unnecessary
head movements of floppies as otherwise two processes could attempt to access the disk simultaneously: the
shell starting a command with Run, and the shell loading the command in the background.

If the bits FN_VALID and FN_ASYNC are set, then asynchronous command execution is requested. The
shell shall then reply the startup packet immediately, leaving dp_Res1 and dp_Res2 unaltered from the
values left by CliInitRun(). If FN_VALID is set and FN_ASYNC is not set, then the startup packet
shall only be replied when the last command of the shell returned. Then, dp_Res1 shall be set to the return
code of the last command as found in cli_ReturnCode, and dp_Res2 shall be set to the error code the
command left in cli_Result2. The FN_ASYNC bit reflects the value of SYS_Asynch of the System()
call.

If bits FN_VALID and FN_SYSTEM are set then the shell shall terminate if the cli_CurrentInput
runs into an EOF and there is no higher level script to continue executing from. This corresponds to the
case where the first argument of System() is non-NULL. In such a case, the commands from this string are
executed, which is delivered through a string stream placed in cli_CurrentInput. Once done, the shell
stops and returns. Shells created this way are never interactive, i.e. cli_Interactive shall always be
DOSFALSE.

If the FN_VALID flag is set and FN_SYSTEM is reset, then the shell continues to read commands from
cli_StandardInput once cli_CurrentInput depletes and there is no higher level script to con-
tinue executing from. Only if the two input streams are equal and and EOF condition is detected, the shell
terminates. This corresponds to the case where the shell was initiated through Execute()with a non-NULL
command string.

If bits FN_VALID and FN_USERINPUT are set, then the shell shall not close cli_StandardInput
when terminating. If FN_VALID is set and FN_USERINPUT is reset, then cli_StandardInput shall
be closed on exit.

348 Rom Kernel Reference Manual: DOS

If the bits FN_VALID and FN_RUNOUTPUT are set, then cli_StandardOutput shall be closed
when the shell process terminates. Otherwise, if FN_VALID is set and FN_RUNOUTPUT is reset, then the
cli_StandardOutput shall remain open. Note that the FN_RUNOUTPUT logic is the inverse of the
FN_USERINPUT logic.

A successful startup with FN_VALID reset is thus approximately equivalent to the bit combination of
FN_RUNOUTPUT and FN_ASYNC, except that the elements of the CommandLineInterface structure
are initialized differently and the startup packet is replied at a different stage.

The following source code implements a main program of a very primitive shell which lacks many fea-
tures such as variable expansion, redirection, resident commands, a configurable prompt, it does not even
scan the path. This main program fits to the shell startup code in section 15.7.

/* A rather primitive shell main program */
struct DosPacket *ShellMain(struct DosPacket *pkt,LONG fn,

struct ExecBase *SysBase,
struct DosLibrary *DOSBase)

{
struct CommandLineInterface *cli = Cli();
UBYTE cmd[256];
UBYTE args[256];
LONG result;
LONG ch;

do {
do {

/* Compute the interactive flag */
cli->cli_Interactive = (!cli->cli_Background &&

cli->cli_CurrentInput ==
cli->cli_StandardInput &&

(fn & FROM_SYSTEM) != FROM_SYSTEM)?
DOSTRUE : FALSE;

SelectInput(cli->cli_CurrentInput);
SelectOutput(cli->cli_StandardOutput);

if (cli->cli_Interactive) {
if (!cli->cli_Background) {

Printf("SimpleShell > ");
Flush(Output());

}
} else {

/* Check for script termination */
if (CheckSignal(SIGBREAKF_CTRL_D)) {

PrintFault(ERROR_BREAK,"SHELL");
break;

}
}

/* Read the command */
SetIoErr(0);
cmd[0] = 0;
cli->cli_Module = 0;

Writing Custom Shells 349

ch = FGetC(Input());
UnGetC(Input(),ch);
result = ReadItem(cmd,sizeof(cmd),NULL);
if (result == ITEM_UNQUOTED || result == ITEM_QUOTED) {
cli->cli_Module = LoadSeg(cmd);
/* Reply to pkt if not done so */
if (pkt && !(fn & (1L << FN_VALID))) {

ReplyPkt(pkt,pkt->dp_Res1,pkt->dp_Res2);
pkt = NULL;

}
if (FGets(Input(),args,sizeof(args))) {

if (cli->cli_Module) {
SetProgramName(cmd);
cli->cli_ReturnCode =

RunCommand(cli->cli_Module,
cli->cli_DefaultStack << 2,
args,(LONG)strlen(args));

cli->cli_Result2 = IoErr();
if (cli->cli_ReturnCode >= cli->cli_FailLevel &&

!cli->cli_Interactive) {
Printf("%s failed : %ld\n",cmd,cli->cli_ReturnCode);
break;

}
if (cli->cli_Module)

UnLoadSeg(cli->cli_Module);
} else {

cli->cli_Result2 = IoErr();
cli->cli_ReturnCode = 10;
PrintFault(cli->cli_Result2,cmd);
if (cli->cli_ReturnCode >= cli->cli_FailLevel &&

!cli->cli_Interactive)
break;

}
}

}
/* abort on system */
if (((fn & FROM_SYSTEM) == FROM_SYSTEM) &&

(cli->cli_CurrentInput == cli->cli_StandardInput))
break;

} while(ch != -1);

/* cleanup command file left by execute */
{

UBYTE *commandfile = BADDR(cli->cli_CommandFile);
if (commandfile && *commandfile) {

SetProtection(commandfile+1,0);
DeleteFile(commandfile+1);
commandfile[0] = 0;

}

350 Rom Kernel Reference Manual: DOS

}

if (cli->cli_CurrentInput == cli->cli_StandardInput) {
/* endcli only if its an interactive CLI */
if (!cli->cli_Background)

Printf("SimpleShell terminating...");
break;

} else {
/* Script is done, revert input */
Close(cli->cli_CurrentInput);
cli->cli_CurrentInput = cli->cli_StandardInput;
/* If coming from System(), close down */
if ((fn & FROM_SYSTEM) == FROM_SYSTEM) {

break;
} else {

cli->cli_FailLevel = 10;
}

}
} while(1);

return pkt;
}

Historically, two additional functions existed to initialize a shell in AmigaDOS version 36 to version 45.
CliInit() had to be called by the Initial CLI and not only initialized the shell to read from the
S:Startup-Sequence script, it also initialized dos.library and mounted all ROM-resident handlers.
These tasks are now taken over by a Kickstart module of its own, System-Startup, which in its final step,
creates the Initial CLI through the System() function. Section 17.4 provides more details on this
module.

The second function to initialize a shell was CliInitNewShell() which was exclusively used by
a shell created by the NewShell command. In the latest version of AmigaDOS, NewShell also calls
through System() and thus only depends on CliInitRun().

The shell startup mechanism under AmigaDOS 34 and below was even different. There, dp_Type was
a pointer to a BCPL function the shell had to call to get initialized by AmigaDOS.

Writing Custom Shells 351

352 Rom Kernel Reference Manual: DOS

Chapter 16

Miscellaneous Functions

In this section, miscellaneous functions are specified that logically do not belong into any other section.
These are constructor and destructor functions for AmigaDOS objects, and functions for error handling.

16.1 Object Constructors and Destructors
Some AmigaDOS objects shall not be allocated manually through AllocMem() or other generic memory
allocation functions. This is either because the generic functions do not initialize such objects fully, or
because the objects contain internal elements beyond the end of their documented structure such that the
sizeof operator of the C language does not describe their true size. A paired destructor function destroys
such objects and releases all resources associated to them.

16.1.1 Allocating a DOS Object
The AllocDosObject() function constructs instances of various objects used by dos.library and initial-
izes their elements. The functions listed in this section all take a type ID that describes the type of the object
to be created, and additional arguments that are used to initialize this object. The functions all correspond to
the same entry in dos.library and only differ in their name and their calling conventions.

The AllocDosObject() and AllocDosObjectTagList() functions are identical and take ad-
ditional parameters in the form of a tag list. The second function only exists to following naming conventions
and to allow tools to automatically generate prototypes for the third.

The AllocDosObjectTags() function receives the tag list in the form of a variably sized argument
list consisting of tags and whose last tag shall be TAG_DONE terminating the list.

ptr = AllocDosObject(type, tags) /* since V36 */
D0 D1 D2

void *AllocDosObject(ULONG, struct TagItem *)

ptr = AllocDosObjectTagList(type, tags) /* since V36 */
D0 D1 D2

void *AllocDosObjectTagList(ULONG, struct TagItem *)

ptr = AllocDosObjectTags(type, Tag1, ...) /* since V36 */

void *AllocDosObjectTags(ULONG, ULONG, ...)

Object Constructors and Destructors 353

The above functions all create objects of dos.library and initialize them according to the tag list. The
type argument provides the type of the object to be constructed; types are defined in dos/dos.h:

Table 16.1: AllocDosObject() type IDs

Type Description
DOS_FILEHANDLE construct a FileHandle structure, as in 5.7.1
DOS_EXALLCONTROL construct a ExAllControl structure, see 7.1.4
DOS_FIB construct a FileInfoBlock structure, see 7.1
DOS_STDPKT construct a StandardPacket structure, as in 12.2.2
DOS_CLI construct a CommandLineInterface structure, see 15.3
DOS_RDARGS construct a RDArgs structure, as defined in section 15.5.1

The DOS_FILEHANDLE type creates a FileHandle structure as introduced in section 5.7.1. This
structure describes an opened file and shall only be created through this function as it contains some hidden
internal elements. Creating this structure is documented to take one parameter, namely ADO_FH_Mode
defined in dos/dostags.h, which is the mode in which the file is to be opened. This tag takes an argument
from table 5.1 of section 5.3.1 which corresponds to the second argument of the Open() function specified
in the same section. It defaults to ACTION_FINDINPUT, i.e. the the file handle describes a file that is
opened non-exclusively. File handles are typically created by dos.library only. However, even though this
tag may sound useful1, nothing in the initialization of the handle currently depends on its value.

The DOS_EXALLCONTROL type creates an ExAllControl structure used to iterate over directory
contents, see section 7.1.4; no additional tags are required.

The DOS_FIB type creates a FileInfoBlock structure as defined in section 7.1, no further tags are
necessary. This structure may also be manually constructed as it does not contain any hidden elements.
However, the structure shall be aligned to long word boundaries. If the memory is taken from the stack, the
macro D_S() in section 2.4 should be used to ensure alignment.

The DOS_STDPKT type creates a StandardPacket structure used for communication between clients
and handlers or file systems. It is an aggregate of a Message and a DosPacket structure that are chained
correctly to each other. The DosPacket structure is discussed in section 12.2.1. There is no need to
use a StandardPacket for handler communication provided the DosPacket is aligned to a long word
boundary and linked to a Message, see section 12.2.2. AllocDosObject() does actually not return a
pointer to the StandardPacket itself, but rather to its DosPacket element. This constructor does not
take any additional tags.

The DOS_CLI type creates a CommandLineInterface structure as defined in section 15.3.7. While
it was possible to construct this structures manually in previous versions of AmigaDOS, this is no longer the
case from AmigaDOS 47 onward as it has been extended by private elements. A shell which is equipped with
a manually constructed CommandLineInterface structure will not offer the full functionality of regular
AmigaDOS Shells.

While the sizes of various buffers of the created structure can be set by the following tags, they are actually
not particularly useful. Nothing in the CLI structure indicates the actual buffer sizes and the AmigaDOS Shell
therefore uses hard-coded limits instead:

ADO_PromptLen is the size of the cli_Prompt buffer containing the formatting string of the prompt,
in bytes.

ADO_CommNameLen defines the size of the cli_CommandName buffer in bytes, containing the file
name of the currently loaded command.

ADO_CommFileLen selects the size of the cli_CommandFile buffer in bytes; this buffer holds the
name of a temporary script file generated by Execute.

1Tags that would create string streams would be even more useful.

354 Rom Kernel Reference Manual: DOS

ADO_DirLen defines the size of the cli_SetName buffer in bytes which contains the path of the
current directory.

The DOS_RDARGS type creates a RDArgs structure used by the ReadArgs() function for command
line argument parsing, see section 15.5.1. This constructor is also called internally by dos.library, but if
a custom RDArgs structure is required for parsing, for example, from an alternative source and not the
standard input, AllocDosObject() shall be used to create one. No tags are defined for this object.

AllocDosObject() returns on success the pointer to the constructed object. Note that for the type
DOS_STDPKT this is a pointer to a DosPacket structure and not to the StandardPacket structure. The
AllocDosObject() function does not alter IoErr() on success. On error, this function returns NULL
and sets IoErr() to ERROR_NO_FREE_STORE.

16.1.2 Releasing a DOS Object
The FreeDosObject() function destroys an AmigaDOS object created by AllocDosObject() and
releases the resources associated to it.

FreeDosObject(type, ptr) /* since V36 */
D1 D2

void FreeDosObject(ULONG, void *)

This function destroys an object created by AllocDosObject(). The type argument is one of the
types from table 16.1 in section 16.1.1, and ptr is a pointer to the object to be destroyed. In case type is
DOS_STDPKT, the ptr argument shall be a pointer to the DosPacket element of the StandardPacket
aggregate.

In AmigaDOS versions 37 and before, releasing a CommandLineInterface structure did not free all
buffers associated this structure and thus caused a memory leak. This was fixed in version 39.

Passing NULL as ptr performs nothing, the function exits in this case without performing any action.
This function does not set IoErr().

16.2 Reporting Errors
While AmigaDOS identifies errors by a unique ID returned by IoErr(), only printing a number as error
report is not very helpful. dos.library provides multiple functions to generate human readable error messages,
either for printing them on the console, or by creating a requester with an error message on a screen.

16.2.1 Display an Error Requester
The ErrorReport function creates an error requester based on an error code and a file system object such
as a file handle or a lock and waits for the response of the user who may either abort or retry an activity.

status = ErrorReport(code, type, arg1, device) /* since V36 */
D0 D1 D2 D3 D4

BOOL ErrorReport(LONG, LONG, ULONG, struct MsgPort *)

This function creates an error requester either on the Workbench screen, or on the same screen as the
window given by the pr_WindowPtr of the calling process. If pr_WindowPtr is −1, then no requester
is shown and the function returns immediately with a non-zero return code, indicating that cancellation of
the activity is desired.

Reporting Errors 355

This function is implicitly called by most functions of dos.library in case of error, and thus rarely needs
to be called by the user explicitly. However, ErrorReport() may also used by file systems to generate
error requesters2, and in such a case, it checks the pr_WindowPtr of the file system process and not that
of the file system client; thus, such requesters cannot be easily suppressed by application programs.

The code argument is an error identifier returned by IoErr(). Only a subset of the error codes listed
in section 10.2.9 and defined in dos/dos.h are supported by this function; all others result in a non-zero
return code, indicating cancellation of the activity. Table 16.2 lists the error codes for which this function is
able to create a requester:

Table 16.2: Errors supported by ErrorReport()

Error Description
ERROR_DISK_NOT_VALIDATED Reports that a disk is corrupt and not validated
ERROR_DISK_WRITE_PROTECTED Reports that a disk is write protected
ERROR_DISK_FULL Reports that a volume is filled completely
ERROR_DEVICE_NOT_MOUNTED A particular handler or file system is not mounted
ERROR_NOT_A_DOS_DISK A volume does not carry a valid file system
ERROR_NO_DISK No physical medium is inserted in the drive
ABORT_DISK_ERROR Reports that a medium has a physical read/write error
ABORT_BUSY Requests to insert a particular medium into the drive

The error ABORT_BUSY is defined in dos/dosextens.h and shows a requester that the user MUST
replace a particular volume of a drive. It is generated if a file system needs to write out its dirty buffers to a
volume that is no longer inserted into the drive managed by it. This type of error and thus this error report is
only generated by file systems and never forwarded to applications by means of IoErr().

ABORT_DISK_ERROR is also never directly forwarded to user code and thus does neither appear as
return value of IoErr(). It shows a requester that a particular volume has a read/write error; file sys-
tems generate this error if access to a medium fails on the physical level. Same as the above, this code
is only intended to be used by file systems and not by application code. The symbol is again defined in
dos/dosextens.h.

The type argument defines the type of the AmigaDOS object passed in as arg1; it provides an addi-
tional source of information used to generate the error requester. This information is used for example to
include a device or volume name in the requester. The following types, defined in dos/dosextens.h are
supported by this function:

Table 16.3: Error sources supported by ErrorReport()

Type Description
REPORT_STREAM arg1 is a BPTR to a FileHandle structure (section 5.7.1)
REPORT_LOCK arg1 is a BPTR to a FileLock structure (section 6.4)
REPORT_VOLUME arg1 is a BPTR3to a DosList structure (chapter 8)
REPORT_INSERT arg1 is a regular pointer to an absolute path

If type is REPORT_INSERT, then arg1 shall be a pointer to a path that is split at a colon (“:”) to
extract a volume or device name. This type is used by dos.library when attempting to locate an entry on the
device list from an absolute path failed.

The device argument is a (regular) pointer to a MsgPort structure that is only used if type is
REPORT_LOCK and arg1 is ZERO, thus the lock representing the root of a file system; device is also
used if the error indicates that the faulting volume is not accessible. This port is assumed to be a MsgPort
of a file handler that is contacted with ACTION_CURRENT_VOLUME of section 14.7.1 to learn about the

2The FFS does not make use of this service and builds requesters itself, though checks its own pr_WindowPtr as well.
3Unlike what the official documentation and [1, 7] say, this is a BPTR, not a regular pointer.

356 Rom Kernel Reference Manual: DOS

name of the currently inserted volume4. This mechanism is for example used when reporting errors through
a DevProc structure whose lock and port are passed into the error report, see section 8.2.1.

Finally, for the error ERROR_DEVICE_NOT_MOUNTED and the type REPORT_INSERT, dos.library
attempts to find out whether a request for particular volume should be suppressed completely, and for that
calls the VolumeRequestHook() function of section 16.2.2. If it returns DOSFALSE, no requester is
shown and ErrorReport() aborts immediately, indicating cancellation.

The ErrorReport() function returns a Boolean indicator whether the currently ongoing operation
shall be aborted or retried. If the result code is DOSFALSE, the operation shall be retried. This result code
is also implicitly generated if the user inserts a medium into a drive while the requester is shown. If the
requester is suppressed because the pr_WindowPtr of the calling process is set to −1, or the system run
out of memory, or an error not listed in table 16.3 is reported, then this function always returns DOSTRUE,
requesting to abort the operation. On return, this function also sets IoErr() to the error identifier in code.

16.2.2 Receive Information when a Volume is Requested
The VolumeRequestHook() function is called by dos.library whenever it attempts to request the user to
insert a volume.

res = VolumeRequestHook(volume) /* since V47 */
D0 D1

LONG VolumeRequestHook(UBYTE *volume)

This function is not supposed to be called by clients, it is rather called by dos.library and provided to be
patched by application programs that want to learn whenever AmigaDOS is about to show a requester to ask
for a specific volume.

The argument this function receives is the name of the volume AmigaDOS is about to ask for, without
a trailing colon (“:”). If this function returns DOSTRUE, then dos.library progresses to show a requester to
ask the user to insert volume. If this function returns DOSFALSE, the requester is suppressed as if the user
pressed “Cancel”, thus refused to insert the volume.

The purpose of this function is to provide assign-wedge functionality that allows users to create an assign
to a directory at the first time it is accessed by a program, or to suppress requesters to a volume that is never
going to be inserted.

16.2.3 Generating an Error Message
The Fault() function fills a buffer with an error message from an error code and an initial string.

len = Fault(code, header, buffer, size) /* since V36 */
D0 D1 D2 D3 D4

LONG Fault(LONG, STRPTR, STRPTR, LONG)

4If the faulting volume is not accessible, dos.library also attempts to find the name of the handler responsible for the volume, lock
or file handle. It does so by matching the port from these objects, namely dol_Task, fl_Task or fh_Type to the ports of the file
systems recorded in the device list. This silently assumes that the port which locks, file handles or volumes provide as contact point
is identical to the port the file system leaves in dol_Task of its DosList, though this assumption is not necessarily true if the file
system uses multiple ports to communicate to its clients. Again, this is probably a defect and instead of testing the port, mp_Task of
the candidate ports should be checked. The algorithm that is used if no matching file system is found is even weirder as the code then
assumes to find an exec device unit number in IoErr(), probably as part of a legacy Tripos interface which required the file system
to deposit its unit here before calling ErrorReport(). The FFS, however, no longer uses this function and thus does not require this
legacy interface.

Reporting Errors 357

This function fills the buffer that is size bytes long with an optional header, followed by a string
generated from the error code given as first argument. The generated string does not include a line feed.

If header is non-NULL, it is first copied into the buffer followed by a colon and a space (“: ”). The
colon and space are not copied if header is NULL. This is followed by a (localized) error message created
from code. If code is 0, the buffer is left untouched and nothing is inserted into it. If no localized error
message is available, the numeric value of the error is inserted instead.

The size of buffer shall not be 0. The byte for the NUL terminator of the string to be created shall be
included in size.

Due to a defect present even in AmigaDOS version 47, the return value of this function is unlike docu-
mented not the number of characters inserted into the buffer and is thus not usable. As a workaround, use
strlen() on the buffer if code is non-zero; if it is 0, the buffer has not been modified:

if (code) {
Fault(code,header,buffer,size);
len = strlen(buffer);

} else {
len = 0;

}

Fault() does not change IoErr().

16.2.4 Printing an Error Message
The PrintFault() function prints an error message consisting of a header and a description of an error
code over the error output stream of the calling process.

success = PrintFault(code, header) /* since V36 */
D0 D1 D2

BOOL PrintFault(LONG, STRPTR)

This function implements elementary error reporting by printing an error message over the error output
pr_CES of the calling process, see chapter 10. If that stream does not exist, the error is reported over the
standard output stream pr_COS of the caller. Under AmigaDOS version 45 and before, this function always
printed over the standard output.

If header is non-NULL, this string is printed first, followed by a colon and a space (“: ”). Otherwise,
nothing is printed upfront. If a textual description of the error code code is available, it is printed behind it,
followed by a line feed. Otherwise, just a generic error message consisting of the provided error number is
printed.

If code is 0, nothing is printed at all and IoErr() remains unaltered. Otherwise, this function sets
IoErr() to code.

This function returns a Boolean success code. If the error is 0, or a description of the error is available,
this function returns a non-zero success code. Otherwise, this function returns DOSFALSE.

16.2.5 Printing a String to the Error Stream
The PutErrStr() function writes a string to the error output stream of the calling process.

error = PutErrStr(str) /* since V47 */
D0 D1

LONG PutErrStr(STRPTR)

358 Rom Kernel Reference Manual: DOS

This function writes the NUL terminated string str over the error output pr_CES of the calling process.
If this stream does not exist, this function writes the string over the standard output pr_COS. The process
structure and the file handles it contains are explained in detail in chapter 10.

This function returns 0 on success, or ENDSTREAMCH on an error. The latter constant is defined in
dos/stdio.h and equals to −1. The error code IoErr() is only adjusted if the buffer of the used file
handle is flushed. Except for the target stream, this function is similar to the FPuts() function introduced
in section 5.6.7.

Reporting Errors 359

360 Rom Kernel Reference Manual: DOS

Chapter 17

The DOS Library

This chapter documents dos.library base structure and structures linked from it. These structures should not
be accessed directly as the library provides accessor and manipulator functions for its elements.

17.1 The Library Structure
The dos.library base structure is documented in dos/dosextens.h and looks as follows:

struct DosLibrary {
struct Library dl_lib;
struct RootNode *dl_Root;
APTR dl_GV;
LONG dl_A2;
LONG dl_A5;
LONG dl_A6;

/* the following elements exist from V36 onwards */
struct ErrorString *dl_Errors;
struct timerequest *dl_TimeReq;
struct Library *dl_UtilityBase;
struct Library *dl_IntuitionBase;

};

The elements of this library are as follows:

The dl_lib element forms a regular exec library structure as it is defined in exec/libraries.h.

The dl_Root pointer points to the RootNode structure documented in section 17.2. This structure
contains global objects of the library1. The RootNode is created along with dos.library and this pointer
remains constant throughout the life time of the system.

The dl_GV is the pointer to the (fake) BCPL Global Vector which contains a table of BCPL functions
dos.library provides to (legacy) BCPL components. Today, nothing should depend on this vector anymore as
all AmigaDOS components have been rewritten in C or assembler, and no particular advantage can be taken
from the functions in this vector as its functions are also accessible as regular functions in dos.library.

The dl_A2, dl_A5 and gl_A6 elements are the initializers for the BCPL runtime system. They are
not relevant nowadays anymore. dl_A2 is a pointer to the Global Vector and thus identical to dl_GV.
dl_A5 is a function pointer to the BCPL function caller, and dl_A6 is a pointer to the BCPL “return from

1The reason why this information is not directly located in the library is that dos.library is historically a thin wrapper around Tripos
that was referenced from the library.

The Library Structure 361

subroutine” function. These functions reorganize the stack to align it to the BCPL convention of the stack
growing towards higher addresses.

The dl_Errors pointer provides (localized) strings for all messages dos.library generates, including
error messages. This element is private and shall not be accessed. Instead, localized error messages can be
retrieved by the Fault() function of section 16.2.3.

The ErrorString structure is actually documented as follows in dos/dosextens.h:

struct ErrorString {
LONG *estr_Nums;
UBYTE *estr_Strings;

};

dl_Errors points to an array of the above structures. The estr_Nums element points to two long words
identifying the range of error codes (or rather message codes as not only error messages are in this structure)
covered by one ErrorString structure. The first long word is the lower (first) error code in the range, the
second the upper (inclusive) end of the range. The last element in the array is identified by a lower end of 0.

The estr_Strings points to an array of bytes that contains the sizes and the localized versions of the
error messages as one long array of UBYTEs. Each error message is represented by a single byte that gives its
length including the terminating NUL, followed by the NUL-terminated message itself. If Fault() requires
a particular message, its skips each message by adding the length+1 until either the requested message is
found, or the end of the current ErrorString element is reached. However, for all practical purposes,
dl_Errors shall be left alone and instead Fault() shall be used to retrieve a particular message.

The dl_TimeReq element is a private pointer to a timerequest structure dos.library uses for func-
tions such as Delay() in section 3.1.3 or for retrieving the system time in DateStamp(), see 3.1.1.
If a particular process requires it, dos.library first makes a copy of this timerequest structure, fills in
pr_MsgPort of the caller as reply port of the request, and then calls through DoIO() of timer.device
to implement the required function. Similar to all other elements of dos.library, this element shall not be
accessed directly, but only through services offered by the library.

The dl_UtilityBase element provides a pointer to utility.library dos.library uses for parsing tag lists
and performing elementary arithmetic.

The dl_IntuitionBase is the pointer to the intuition.library that is used to generate requesters.

17.2 The Root Node
The RootNode structure is accessible from the dl_Root pointer in the DosLibrary structure and pro-
vides global information of the library. It is also defined in dos/dosextens.h:

struct RootNode {
BPTR rn_TaskArray;
BPTR rn_ConsoleSegment;
struct DateStamp rn_Time;
LONG rn_RestartSeg;
BPTR rn_Info;
BPTR rn_FileHandlerSegment;

/* The following elements have been added in V36 */
struct MinList rn_CliList;
struct MsgPort *rn_BootProc;
BPTR rn_ShellSegment;
LONG rn_Flags;

};

362 Rom Kernel Reference Manual: DOS

The rn_TaskArray element is a BPTR to the (legacy) Tripos process table, and is part of the complete
table reachable through rn_CliList. Instead of going through this element, the FindCliProc() func-
tion specified in section 15.2.6 shall be used. This first array consists of a long word that indicates the size
of the first part of the table, all remaining entries of the array are pointers to the pr_MsgPort of Process
structures (see chapter 10) or NULL if the corresponding entry is not used. This array is indexed by the CLI
number, and thus only processes that are associated to a shell are listed here.

The rn_ConsoleSegment is the segment of the BCPL entry point of the shell. Despite its name, it is
in no correspondence to the CON-Handler or the console.device. Even though this pointer is initialized,
it is no longer used. Instead, the shell is located as part of the resident segments by the FindSegment()
function which is described in section 15.6.1. The corresponding resident segment whose BPTR is stored
here has the name “CLI”.

The rn_Time contains the current time of the system, it is updated every time DateStamp() (see
section 3.1.1) is called; applications shall not copy the time and date from here, but rather call through the
above function to retrieve it.

The rn_RestartSeg is obsolete and no longer used. AmigaDOS version 34 and before stored here a
BPTR to a segment that performed validation of inserted disks. If this validator found an invalid bitmap, see
section 13.6.4, it loaded the “L:Disk-Validator” from disk which then recomputed the bitmap by a full
disk scan. With the introduction of the FFS in AmigaDOS version 34, disk validation became part of the file
system, even though this element remained in use for the BCPL-based OFS.

The rn_Info element is a BPTR to the DosInfo structure described in section 17.3. Like the
RootNode, it remains constant throughout the lifetime of the system and contains additional global in-
formation.

The rn_FileHandlerSegment element is the BPTR to the segment of the ROM default Amiga-
DOS file system. Only the expansion.library function AddDosNode() function still accesses
this element, but it should be considered obsolete and private. It is populated by the resident segment
“FileHandler”, and is even updated if a newer version of the FFS is found in the RDB of the booting
disk. From AmigaDOS version 34 onward, file systems should be obtained through the FileSystem.resource
and not through this BPTR which only provides the FFS.

The rn_CliList contains the full process table containing all shell processes; its entries are accessible
through FindCliProc(). The total number of CLIs found in here is returned by MaxCli(), see sec-
tion 15.2.7. This element is a MinList structure as defined in exec/lists.h. Each node on this list
keeps a consecutive range of shell processes and looks as follows:

struct CliProcList {
struct MinNode cpl_Node;
LONG cpl_First;
struct MsgPort **cpl_Array;

};

This structure shall not be allocated by the user; instead, it is potentially created by dos.library if the
current process table is too small when launching a new shell through System() or Execute().

The cpl_Node is a MinNode structure that queues all CliProcList nodes in the rn_CliList.

The cpl_First element is the CLI number of the first shell in this node, and thus the process number
of the shell kept in cpl_Array[1].

The cpl_Array element contains the number of entries in the table and pointers to the pr_MsgPorts
of the Process structures running shells. The first element cpl_Array[0] entry is the number of shell
processes administrated in this node and is typically 20. All remaining entries are pointers to MsgPort
structures, namely the pr_MsgPort of the processes executing the shells; the process structure is defined
in chapter 10.

The Root Node 363

The cpl_Array of the first CliProcList structure is also accessible through rn_TaskArray, and
the nodes kept in rn_CliList are part of an extension that overcomes the limitation of at most 20 shells
in AmigaDOS version 34 and before.

The rn_BootProc element is a pointer to the MsgPort of the file system that booted the system. This
is not necessarily the file system whose segment is recorded in rn_FileHandlerSegment. It is different
if the booting file system is not the ROM-based FFS and neither an updated version of it from the RDB. This
pointer is used to initialize the pr_FileSystemTask of all processes AmigaDOS creates, and thus the
file system responsible for the ZERO lock.

The rn_ShellSegment is a pointer to the C segment of the shell. This pointer is also not used
anymore, but is still initialized. It corresponds to the resident segments “shell” and “BootShell”, where
the former may be replaced by a custom user-provided shell and the latter is always the shell that booted the
system. In AmigaDOS version 47, the shell segment is located via FindSegment() instead.

The rn_Flags element contains flags that configure AmigaDOS. There is currently only one publicly
accessible flag defined here, namely RNF_WILDSTAR. If this flag is set, the pattern matcher discussed in
chapter 9 supports the asterisk “*” as a synonym for “#?”, i.e. the pattern that matches a sequence of arbitrary
characters. While this seemingly brings AmigaDOS closer to other contemporary operating systems, it is a
rather bad choice as the asterisk is also the file name of the current console and the escape character of the
AmigaDOS Shell. It is therefore recommended not to set this flag.

17.3 The DosInfo Structure
The DosInfo structure is pointed to by the rn_Info element of the RootNode. It contains the device list
structure discussed in chapter 8 and the resident segments of section 15.6.

struct DosInfo {
BPTR di_McName; /* NOT the resident segments */
BPTR di_DevInfo;
BPTR di_Devices;
BPTR di_Handlers;
APTR di_NetHand; /* actually, a BPTR */

/* the following elements are new in AmigaDOS 36 */
struct SignalSemaphore di_DevLock;
struct SignalSemaphore di_EntryLock;
struct SignalSemaphore di_DeleteLock;

};

The include file dos/dosextens.h also defines the name di_ResList for the di_McName ele-
ment. Unlike what this name suggests, di_McName is not the list of resident segments. It is actually not
used.

The di_DevInfo element is a BPTR to the first entry of the device list introduced in chapter 8. This is a
BPTR to a DosList structure which form a singly linked list whose head is here. However, client programs
should not access this BPTR directly, but rather go through the functions provided in section 8.3.

The di_Devices and di_Handlers elements are Tripos legacies and not in use by any version of
AmigaDOS.

The di_NetHand element contains the resident segments, despite its name. This element is neither an
APTR as the official includes suggest, but is rather a BPTR. It points to a Segment structure as introduced
in section 15.6, and all resident segments are queued here in a singly linked list. This list of resident segments
should not be accessed through this element, but through the functions in section 15.6.

The di_DevLock, di_EntryLock and di_DeleteLock semaphores are private to dos.library.
They are used by the LockDosList() and related functions of section 8.3.1.

364 Rom Kernel Reference Manual: DOS

17.4 The AmigaDOS Boot Process
For starting the system, AmigaOs initializes the resident modules stored in SysBase->ResModules in
the order of decreasing priority. The last module that is initialized in this way is the strap module. It
locates the boot volume, and either performs boot-point or boot-block booting, see [5] for more details. The
boot code of the host adapter responsible for the boot volume, or the bootstrap code from the boot block
either loads an alternative operating system, a self-booting program, or starts AmigaDOS by initializing the
resident module named dos.library.

The boot code in the host adapter ROM or in the boot block therefore includes a InitResident()
call which starts dos.library. In AmigaDOS version 36, this process was augmented by also setting a flag in
expansion.library that prevents opening the boot console immediately. The standard boot block on floppies
created by the Install command, in fact, performs only the above two steps. Even though continuing
AmigaDOS initialization from AmigaOs initialization is rather minimal, dos.library is not part of the exec
module initialization chain, even though it is represented as a resident modules.

dos.library then first builds a minimal instance of its library lacking lacking many resources. Under Ami-
gaDOS version 45 and before, initialization is completed through the shell running the InitialCLI. The
shell startup code, see section 15.7, received a startup packet that requested the shell to call CliInit().
This function then completed the initialization of AmigaDOS, including opening a console window as stan-
dard output and S:Startup-Sequence script as input. The shell then starts the system by reading com-
mands from this file.

This changed in version 47 which separates AmigaDOS initialization from the initialization of the boot
shell. There, instead, dos.library searches the list of resident modules for the System-Startup module,
and initializes a Process from it whose purpose is to complete the initialization of the system, see sec-
tion 17.4.1. The final step of this process is to create a boot shell through the System() function which
then starts executing S:Startup-Sequence. Thus, the System-Startup module can be roughly
compared to the init process of Unix like systems.

17.4.1 The System-Startup Module
The first step of System-Startup is to complete the initialization of dos.library; this includes allocating
the DosInfo structure (see section 17.3) and initializing it. Next, the task array rn_CliList is initialized
and linked into the RootNode structure described in section 17.2.

In the following step, the DosList structures created by autobooting devices stored in expansion.library
are carried over into the device list, more on the DosList structure is found in chapter 8. This mounts all
devices that were recorded in expansion. The first one added to this list will become the boot volume.

The System-Startup process then locates the FFS in the exec list of resident modules. It is repre-
sented there as a module named “filesystem”. If an autobooting host adapter loaded a newer version of
the FFS from the Rigid Disk Block (RDB), this version replaces the ROM version. It is then also used to
update the mount entries of all other devices using the FFS, for example the disk drive DF0. From this file
system, or the ROM version of the FFS if no newer version was found, a resident segment (see 15.6) named
“FileHandler” is created and linked into the DosInfo structure.

In the next step, System-Startup creates the mount entries for PRT, PAR, SER and PIPE, and then
starts the file system of the boot device. This is possibly, but not necessarily the FFS found in the previous
step. While the FFS is only a file system, it also contributes to the bootstrap process by checking whether
a valid system time is available, and if not so, initializes the date and time of AmigaDOS from the creation
date of the boot volume.

After devices, the system assigns are created, namely L, FONTS, DEVS, LIBS, S, C, SYS and ENVARC.
The latter is a late-binding assign pointing to “SYS:Prefs/Env-Archive”.

After the file system of the boot device has been started in the previous step, at this point all remaining
file systems are started and thus their devices become accessible as well.

The AmigaDOS Boot Process 365

Next, another set of ROM-resident handlers are mounted, namely CON and RAW. The corresponding han-
dler segment is taken from the exec resident module “con-handler”, but as devices are already running at
this point, System-Startup also looks into the L directory of each running device to locate a newer ver-
sion replacing the ROM version, unless ROM Updates are explicitly disabled in the boot menu. Thus, the boot
device can replace the ROM version of the handler, similar to the FFS which can be updated from the RDB.
The RAM device is mounted next; its segment is also taken either from the ROM module “ram-handler”,
or from the L: directory of mounted devices if they contain a newer version of the handler and ROM Updates
are permitted.

Locating the boot shell is the next step, namely as “shell” from the exec resident modules, or from
the L: directories if permissible. However, due to AmigaDOS version 34 legacies, this time the disk-based
module is named “Shell-Seg”. This segment is placed in the elements rn_ConsoleSegment and
rn_ShellSegment of the RootNode structure, and the resident segments “CLI”, “BootShell” and
“shell” are created from it.

Unless disabled in the boot menu, System-Startup now checks for updates of ROM modules on
mounted volumes. If a resident module is a library, the LIBS directories are scanned, and for devices,
the DEVS directories are checked. Even intuition.library can be replaced by a disk based version, though the
procedure is more involved because intuition is already working at this point. However, version 47 of intuition
was extended by the ability to shut itself down for replacement. If a newer disk-based version is found, the
ROM-based library is torn down, the existing library entry points are patched to a call to Alert(), and the
new library base is installed into dos.library and the BCPL Global Vector. File systems should therefore not
buffer the intuition library base in its code, but rather open it only when needed.

In the next step, AGA extensions are enabled if the boot menu was displayed in a 31kHz DblPPAL or
DblNTSC mode. This step is would usually be performed by SetPatch, though is already executed here;
it allows users to show the boot console on a VGA monitor even without requiring to load SetPatch in
order to trace or debug the Startup-Sequence if the ECS/OCS resolutions cannot be displayed.

This is followed by initializing all resident ROM modules of lower priority than dos.library marked as
RTF_AFTERDOS. That includes for example audio.device and mathffp.library. Note that these modules are
not necessarily coming from ROM, they could have been replaced by disk-based modules by the ROM update
mechanism executed before.

The next step consists of loading the system preferences from DEVS:System-Configuration and
installing them into intuition. While this is a legacy mechanism that is overloaded by the IPrefs program,
it enables users to already customize the boot console to a limited degree, such as setting its colors and the
shape of the mouse pointer. The boot console is opened next, using the AUTO mode of the CON-Handler, see
section 13.2.1. This delays opening the console window, and by that also of the intuition screen it appears
on, until some program attempts to print text on the console.

Unless booting from S:Startup-Sequence is disabled, this file is now opened to become the com-
mand stream of the Shell. Next, it is checked whether the boot code of the autobooting device or the code
in the boot block of a floppy indicated the AmigaDOS version 36 boot protocol by testing a private flag in
expansion.library. If this flag is not set, a legacy boot block is assumed and the console and boot screen is
forced open by printing a carriage return (0x0d) character. For the legacy boot protocol, the current directory
of the boot shell is changed to ZERO as compatibility measure for old applications. Otherwise, this lock is
set to the root directory of the boot device, i.e. to SYS:.

In the following, System-Startup checks whether logging was enabled in the boot menu. If so, the
“syslog” module is located either from the list of resident modules, or from the L: directory if ROM
Updates are permitted and a newer version is available there. If it is found and enabled, the “debug” shell
variable is set to “on”, and a the syslog process is started. This process continuously monitors the exec
debug output function, namely RawPutChar(), though which diagnostic information is written by many
debugging tools. By that, diagnostic output is redirected to the file RAM:syslog where it can be inspected
by the user. One source of diagnostic output is the Shell itself which echos all commands it executes if the
“debug” variable is found enabled.

366 Rom Kernel Reference Manual: DOS

If tracing was enabled in the boot menu, the shell variable “interactive” is set to “on”. This variable
is also tested by the AmigaDOS Shell; if it is set, the Shell requests confirmation for each single command
it executes. This allows users to trace through the Startup-Sequence and therefore identify problems
more easily.

As final step, the InitialCLI, that is, the Boot Shell, is launched through a System() function call.
Unless executing S:Startup-Sequence is disabled, the command stream is opened from this file and
provided to the Shell for execution. Once this Shell is running, the System-Startup process terminates
and leaves it to the Shell to continue the boot process and boot the system to the Workbench.

The AmigaDOS Boot Process 367

368 Rom Kernel Reference Manual: DOS

Bibliography

[1] Commodore-Amiga Inc: AmigaDOS Manual, 3rd Edition Random House Information Group (1991)

[2] Motorola MC68000PM/AD Rev. 1: Programmer’s Reference Manual. Motorola (1992)

[3] Yu-Cheng Liu: The M68000 Microprocessor Family. Prentice-Hall Intl., Inc. (1991)

[4] Dan Baker (Ed.): Amiga ROM Kernel Reference Manual: Libraries. 3rd. ed. Addison-Wesley Publish-
ing Company (1992)

[5] Dan Baker (Ed.): Amiga ROM Kernel Reference Manual: Devices. 3rd. ed. Addison-Wesley Publishing
Company (1992)

[6] Ralph Babel: Das Amiga-Guru-Buch: Das Referenzwerk (German Edition), Ralph Babel, Taunusstein
(1989)

[7] Ralph Babel: The Amiga Guru Book. Ralph Babel, Taunusstein (1993)

[8] Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language, 2nd edition, Prentice Hall
(1988)

[9] ECMA: Control Functions for Coded Character Sets. ECMA International (1998)

[10] Brian Sawert The Programmer’s Guide to SCSI, Addison-Wesley Publishing Company (1998)

[11] Rob Andrews (Ed.): Historical sources for the TRIvial Operating System (sic!), available online at
https://github.com/borb/tripos, (2020), retrieved 2024.

[12] Commodore-Amiga: AmigaDOS Technical Reference Manual, (1985)

[13] Phillip Lindsay: An Example of a AmigaDOS Handler in C, in: Amiga Technical Support, AmigaLib-
Disk #38, (1986)

[14] Phillip Lindsay: Grab disks from system device list, in: Amiga Technical Support, AmigaLibDisk #56,
(1987)

[15] Carolyn Scheppner: Re: CURSOR POSITION REPORT, in: Amiga Technical Support, AmigaLibDisk
#56, (1987)

[16] Carolyn Scheppner: NEW PACKETS AND STRUCTURES IN 1.2 AMIGADOS, in: Amiga Technical
Support, AmigaLibDisk #65, (1987)

BIBLIOGRAPHY 369

https://github.com/borb/tripos

Index

* (file name), 22, 24, 24, 94, 109, 110, 114, 130,
142, 147, 157, 212, 218, 252, 307, 308,
310, 311, 319, 320, 322, 364

.BRA, 317

.DEF, 316

.DEFAULT, 316

.DOL, 317

.DOLLAR, 317

.DOT, 316

.K, 316

.KET, 316, 317
_NOMERGE Hunk, 195
__MERGED Hunk, 194

ABORT_BUSY, 356, 356
ABORT_DISK_ERROR, 356, 356
AbortPkt(), 206, 209
ACCESS_READ, 56
AChain, 131, 131, 132
ACTION_ADD_NOTIFY, 283
ACTION_CHANGE_MODE, 265
ACTION_CHANGE_SIGNAL, 300, 300
ACTION_COPY_DIR, 262
ACTION_COPY_DIR_FH, 263, 263
ACTION_CREATE_DIR, 264, 284
ACTION_CURRENT_VOLUME, 285, 356
ACTION_DELETE_OBJECT, 279, 284
ACTION_DIE, 217, 230, 303, 304
ACTION_DISK_INFO, 62–64, 220, 287, 287,

292, 293, 296, 299, 302
ACTION_DROP, 299
ACTION_END, 217, 255, 255, 300
ACTION_EXAMINE_ALL, 268, 269–271
ACTION_EXAMINE_ALL_END, 270, 270, 271
ACTION_EXAMINE_FH, 271
ACTION_EXAMINE_NEXT, 267, 268, 269
ACTION_EXAMINE_OBJECT, 266, 267–269,

271
ACTION_FH_FROM_LOCK, 254, 261
ACTION_FINDINPUT, 252, 252–255, 265, 354
ACTION_FINDOUTPUT, 253, 253, 265, 284

ACTION_FINDUPDATE, 254, 254, 265, 284
ACTION_FLUSH, 303, 303
ACTION_FORCE, 217, 225, 298, 298, 300
ACTION_FORMAT, 232, 288, 289, 302
ACTION_FREE_LOCK, 265
ACTION_FREE_RECORD, 260
ACTION_INFO, 286, 287
ACTION_INHIBIT, 126, 284, 301
ACTION_IS_FILESYSTEM, 302
ACTION_LOCATE_OBJECT, 261, 262, 303
ACTION_LOCK_RECORD, 259
ACTION_MAKE_LINK, 272, 284
ACTION_MORE_CACHE, 231, 301
ACTION_NIL, 213, 304, 304
ACTION_PARENT, 262
ACTION_PARENT_FH, 263
ACTION_QUEUE, 217, 297, 297–299
ACTION_READ, 217, 223, 255, 256, 256, 291,

297, 298, 300
ACTION_READ_LINK, 84, 273, 273, 274
ACTION_READ_RETURN, 305
ACTION_REMOVE_NOTIFY, 285, 285
ACTION_RENAME_DISK, 284, 288
ACTION_RENAME_OBJECT, 278, 284
ACTION_SAME_LOCK, 264
ACTION_SCREEN_MODE, 291
ACTION_SEEK, 217, 257
ACTION_SERIALIZE_DISK, 284, 289, 302
ACTION_SET_COMMENT, 281, 284
ACTION_SET_DATE, 281, 284
ACTION_SET_FILE_SIZE, 217, 258, 284
ACTION_SET_OWNER, 230, 282, 284
ACTION_SET_PROTECT, 280, 284
ACTION_SHOWWINDOW, 299
ACTION_STACK, 217, 297, 297–299
ACTION_STARTUP, 213
ACTION_TIMER, 305
ACTION_UNDISK_INFO, 296
ACTION_WAIT_CHAR, 256, 291, 297, 298,

306
ACTION_WRITE, 217, 257, 284, 300

370 Rom Kernel Reference Manual: DOS

ACTION_WRITE_PROTECT, 290
ACTION_WRITE_RETURN, 305
ACTIVATE, 106, 108
AddBootNode, 93
AddBuffers(), 101, 124, 231, 301
AddDosEntry(), 117, 119
AddPart(), 81, 140
AddSegment(), 342, 343
ADO_FH_Mode, 354
al_Lock, 98
al_Next, 98
Alias, 308, 311, 314, 314, 332–336
Alias Substitution, 314
ALink, 175, 177, 178
AllocDosObject(), 7, 44, 45, 73, 208, 327, 332,

338–340, 353, 353–355
AllocDosObjectTagList(), 353
AllocDosObjectTags(), 353
AllocFunc(), 173
ALT, 220
an_Child, 132
an_Flags, 132
an_Info, 132
an_Lock, 132
an_Parent, 132
AN_QPktFail, 206
an_String, 132
AnchorPath, 130, 131, 131–134, 136
ap_Base, 131, 131
ap_BreakBits, 132, 134
ap_Buf, 132, 133, 133, 134
ap_Flags, 132, 133, 134
ap_FoundBreak, 132, 133
ap_Info, 133, 134
ap_Last, 131, 131
ap_Strlen, 132, 133, 134
APF_DIDDIR, 131, 132
APF_DirChanged, 132
APF_DODIR, 131, 132, 132, 134
APF_DODOT, 132
APF_DOWILD, 132
APF_FollowHLinks, 132, 134
APF_ITSWILD, 132
APF_NOMEMERR, 132
APTR, 7
Assign, 21, 23, 25, 25, 26, 72, 80, 84, 93, 95, 97,

109–111, 113–115, 118–122, 126, 141,
147, 153, 155, 158, 161, 212, 365

AssignAdd(), 98, 121, 123
AssignLate(), 122
AssignList, 97, 98, 212

AssignLock(), 112, 119, 121, 121
AssignPath(), 121
AttemptLockDosList(), 112, 112–114, 117, 118,

304
AUTO, 217, 219, 220, 221
Automatic Link Vector (ALV), 195, 196, 198
AUX-Handler, 37, 104, 218, 220

Back-tick Expansion, 314
BACKDROP, 219
BADDR(), 7
BAUD, 104, 221, 222, 226, 228
BckLink (FFS), 237, 240, 243
BCPL stack frame, 142
Bitmap (FFS), 248
Bitmap Block, 248, 250
Bitmap Extension Block, 248, 250
BLink, 175, 177, 178
BlkCnt (FFS), 239, 244
BLOCKSIZE, 100, 229, 229
BLOCKSPERTRACK, 100
BMExt (FFS), 236
BMFlag (FFS), 236
BMKeys (FFS), 236, 250
BMNext (FFS), 250
Boot Block, 232, 248
Boot Shell, 13, 24–26, 319–322, 367
BOOTBLOCKS, 105
BOOTPRI, 102
BootShell (resident), 191, 319, 320, 342, 344,

364, 366
bpsf_PreviousStack, 142
bpsf_StackSize, 142
BPTR, 7, 7, 8
BSTR, 8
BUF_FULL, 40
BUF_LINE, 40
BUF_NONE, 40
BUFFERS, 101, 229
BUFMEMTYPE, 101, 101

CHANGE_FH, 58
CHANGE_LOCK, 58
ChangeMode(), 58, 265
CheckSignal(), 324
Chksum (Boot Block), 232
Chksum (FFS), 235, 237, 239, 242, 244–246,

248
CLI, 342, 344, 363
Cli(), 142, 329, 332
cli_Background, 331, 331
cli_CommandDir, 330, 330

INDEX 371

cli_CommandFile, 317, 331, 354
cli_CommandName, 328, 330, 354
cli_CurrentInput, 316, 317, 331, 348
cli_CurrentOutput, 331
cli_DefaultStack, 323, 331
cli_FailLevel, 331
cli_Interactive, 331
cli_Module, 332
cli_Prompt, 331, 354
cli_Result2, 330
cli_ReturnCode, 330
cli_SetName, 327, 330, 355
cli_StandardInput, 318, 331, 331, 348
cli_StandardOutput, 331, 332, 348, 349
CliInit(), 351, 365
CliInitNewShell(), 351
CliInitRun(), 345, 347, 348, 351
CliProcList, 363, 364
CLOSE, 218
Close(), 31, 175, 177, 180, 181, 255
CMD_DISABLED, 342, 343
CMD_INTERNAL, 342, 343
CMD_SYSTEM, 342, 343
CmtBlk (FFS), 238, 241, 244
Code (Boot Block), 233
CommandLineInterface, 142, 144, 147, 326, 329,

330, 345, 347, 348, 354, 355
Comment (FFS), 237, 240, 242, 245, 246
Comment Block, 238, 241, 244, 245
CompareDates(), 16
Compound Command (Shell), 309
CON-Handler, 1, 12, 24, 26, 35–37, 46, 63, 64,

95, 96, 108, 109, 154, 213, 214, 217,
218, 218, 222, 223, 252, 288, 290, 291,
298, 300, 304, 309, 342, 344, 363, 366

Console, 12, 24, 29, 218
CONSOLE (device), 24
CONTROL, 104, 221, 222, 226, 228
Cooked Mode, 37, 222, 223
cpl_Array, 363, 364
cpl_First, 363
cpl_Node, 363
CreateDir(), 57, 264
CreateNewProc(), 140–144, 145, 145, 148, 149,

159, 171, 174, 320
CreateProc(), 140–142, 145, 148, 149, 174
CS_Buffer, 338
CS_CurChr, 338
CS_Length, 338
CSI, 224, 225, 226
CSource, 338, 340

CurrentDir(), 28, 57, 141, 152, 152, 327

D_S() macro, 8, 72, 108, 134, 208, 354
dat_DateTime, 19
dat_Flags, 18, 19
dat_Format, 17, 19
dat_Stamp, 17, 19
dat_StrDate, 18, 19, 20
dat_StrDay, 18, 19, 20
dat_StrTime, 18, 19, 20
Data (FFS), 248
Data Block, 247
Data1st (FFS), 239
DataBlk (FFS), 240, 244
DateStamp (struct), 15, 15–17, 19, 70, 79, 97,

236, 237, 246, 282
DateStamp(), 16, 362, 363
DateTime, 17, 18, 19
DateToStr(), 18, 18
DCache (FFS), 236, 237
de_Baud, 104
de_BlocksPerTrack, 100, 100
de_BootBlocks, 105, 232
de_BootPri, 102
de_BufMemType, 101, 231
de_Control, 104
de_DosType, 103, 103, 126
de_HighCyl, 101, 105, 231
de_Interleave, 101, 101, 105, 105, 231, 233
de_LowCyl, 101, 105
de_Mask, 102, 247, 256, 257, 301
de_MaxTransfer, 102, 256, 257
de_NumBuffers, 101, 229, 231
de_PreAlloc, 101
de_Reserved, 100, 105, 235, 248
de_SecOrg, 100
de_SectorsPerBlock, 100, 100, 101, 233
de_SizeBlock, 100, 100, 105, 229, 233
de_Surfaces, 100, 105
de_TableSize, 99, 116
Delay(), 16, 362
Deleted Block, 250
DeleteFile(), 69, 77, 83, 280
DeleteVar(), 334, 335
DEVICE, 99, 222, 227, 229
Device List, 21, 25, 55, 65, 93, 93, 95–98, 106,

111–114, 117–123, 125, 126, 212, 286,
288, 302–304, 356, 357, 364, 365

Device name, 23
DeviceList (structure), 94, 212
DeviceNode, 94, 118

372 Rom Kernel Reference Manual: DOS

DeviceProc(), 110, 121, 153, 211, 304
DevInfo, 94
DevProc, 106, 109, 110, 357
dg_BufMemType, 231
dg_Cylinders, 231
dg_Heads, 231
dg_SectorSize, 231
dg_TrackSectors, 231
di_DeleteLock, 364
di_Devices, 364
di_DevInfo, 364
di_DevLock, 364
di_EntryLock, 364
di_Handles, 364
di_NetHand, 364
Directory, 12, 27
Directory Cache Block, 245
DIRECTSCSI, 105
dl_A2, 361
dl_A5, 361
dl_A6, 361
dl_Errors, 362
dl_GV, 361
dl_IntuitionBase, 362
dl_lib, 361
dl_Root, 361
dl_TimeReq, 362
dl_UtilityBase, 362
DLT_DEVICE, 95, 96, 98, 115, 120
DLT_DIRECTORY, 95, 97, 120
DLT_LATE, 95, 120
DLT_NONBINDING, 95, 120
DLT_PRIVATE, 95
DLT_VOLUME, 95, 97, 118, 120, 286
dol_assign, 97
dol_AssignName, 97
dol_DiskType, 97
dol_GlobVec, 96, 96, 98, 162, 212
dol_Handler, 96, 96, 98, 108, 212
dol_handler, 96
dol_List, 95, 97
dol_Lock, 95, 97
dol_LockList, 97, 262, 266
dol_Name, 95, 96, 288
dol_Next, 95
dol_Priority, 96, 98
dol_SegList, 96, 103, 108, 212
dol_StackSize, 96, 98
dol_Startup, 96, 98, 115–117, 213, 222, 229, 230
dol_Task, 95, 95, 97, 108, 206, 212, 217, 253,

303, 304, 357

dol_Type, 95, 96, 97, 120
dol_volume, 97
dol_VolumeDate, 97
DoPkt(), 140, 143, 205, 206, 207, 209, 210, 251,

289, 296–300, 303
DOS_CLI, 354, 354
DOS_EXALLCONTROL, 354, 354
DOS_FIB, 354, 354
DOS_FILEHANDLE, 354, 354
DOS_RDARGS, 354, 355
DOS_STDPKT, 354, 354, 355
DosEnvec, 98, 99, 100, 102, 103, 116, 126, 230
DoShellMethod(), 324, 325, 332
DoShellMethodTagList(), 324
DosInfo, 95, 363, 364
DosLibrary, 5, 361
DosList, 64, 93, 94, 95, 98, 108, 111–115, 117–

120, 123, 212, 213, 222, 230, 253, 261,
262, 285, 286, 288, 289, 303, 304, 364

DosPacket, 117, 153, 154, 192, 205, 206, 207,
207–209, 211, 213, 214, 224, 225, 251,
305, 344, 347, 354, 355

DOSTYPE, 96, 103
DosType (Boot Block), 232
dp_Link, 207
dp_Port, 207
dp_Res1, 207, 210
dp_Res2, 207, 210
dp_Type, 207, 251
DriveGeometry, 231
ds_Days, 15
ds_Minute, 15
ds_Tick, 15
DTF_FUTURE, 18
DTF_SUBST, 18
DupLock(), 56, 56, 72, 107, 110, 146, 147, 262
DupLockFromFH(), 55, 60, 60, 263
dvp_Flags, 107
dvp_Lock, 107, 110
dvp_Port, 107, 110
DVPB_ASSIGN, 109

eac_DiskKey, 269, 270
eac_Entries, 73
eac_LastKey, 73, 269
eac_MatchFunc, 73, 74, 269
eac_MatchString, 73, 74, 269
ed_Comment, 74
ed_Days, 74
ed_Mins, 74
ed_Name, 74

INDEX 373

ed_Next, 74
ed_Prot, 74
ed_Size, 74
ed_Ticks, 74
ed_Type, 74
EHANDLER, 96, 98, 98, 99, 104, 221, 222
ENABLENSD, 105
EndNotify(), 88, 91, 285
ENDSTREAMCH, 41, 42, 42, 359
Entries (FFS), 246
ENVF_DISABLENSD, 105, 105
ENVF_SCSIDIRECT, 105, 231, 233
ENVF_SUPERFLOPPY, 105, 231
EOF, 24, 29, 33, 34
ERROR_ACTION_NOT_KNOWN, 33, 34, 36,

154, 217, 269, 271, 303
ERROR_BAD_HUNK, 156, 163, 164, 193, 194,

201
ERROR_BAD_NUMBER, 75, 76, 153, 333
ERROR_BAD_STREAM_NAME, 154
ERROR_BAD_TEMPLATE, 137, 153
ERROR_BREAK, 132–134, 157
ERROR_BUFFER_OVERFLOW, 133, 157
ERROR_COMMENT_TOO_BIG, 155, 281
ERROR_DELETE_PROTECTED, 69, 156
ERROR_DEVICE_NOT_MOUNTED, 109, 155,

156, 287, 356
ERROR_DIR_NOT_FOUND, 154
ERROR_DIRECTORY_NOT_EMPTY, 155, 280
ERROR_DISK_FULL, 156, 356
ERROR_DISK_NOT_VALIDATED, 155, 356
ERROR_DISK_WRITE_PROTECTED, 155,

156, 290, 356
ERROR_FILE_NOT_OBJECT, 154, 157
ERROR_GLOBALS, 153
ERROR_INVALID_COMPONENT_NAME,

121, 122, 155, 290
ERROR_INVALID_LOCK, 155, 287
ERROR_INVALID_RESIDENT_LIBRARY,

154
ERROR_IS_SOFT_LINK, 78, 84, 85, 156, 242,

273, 279, 281–283
ERROR_KEY_NEEDS_ARG, 153, 339
ERROR_LINE_TOO_LONG, 80, 81, 86, 137,

154, 274, 327, 328, 339
ERROR_LOCK_COLLISION, 51, 156
ERROR_LOCK_TIMEOUT, 156
ERROR_NO_DEFAULT_DIR, 154
ERROR_NO_DISK, 64, 155, 156, 287, 356
ERROR_NO_FREE_STORE, 121, 122, 153,

324, 339, 344, 355

ERROR_NO_MORE_ENTRIES, 72, 75, 109,
133, 136, 156, 268

ERROR_NOT_A_DOS_DISK, 64, 156, 287, 356
ERROR_NOT_EXECUTABLE, 157
ERROR_NOT_IMPLEMENTED, 156
ERROR_OBJECT_EXISTS, 57, 118, 121, 122,

154, 264, 279
ERROR_OBJECT_IN_USE, 31, 55, 56, 154,

254, 279, 304, 344
ERROR_OBJECT_LINKED, 156
ERROR_OBJECT_NOT_FOUND, 154, 252,

264, 273, 275, 279, 333, 334, 336, 343
ERROR_OBJECT_TOO_LARGE, 154
ERROR_OBJECT_WRONG_TYPE, 155, 275,

325, 328
ERROR_QPKT_FAILURE, 153
ERROR_READ_PROTECTED, 69, 156
ERROR_RECORD_NOT_LOCKED, 52, 156
ERROR_RENAME_ACROSS_DEVICES, 155
ERROR_REQUIRED_ARG_MISSING, 153
ERROR_SEEK_ERROR, 155, 258
ERROR_TASK_TABLE_FULL, 153
ERROR_TOO_MANY_ARGS, 154
ERROR_TOO_MANY_LEVELS, 85, 137, 138,

155
ERROR_UNLOCK_ERROR, 157
ERROR_UNMATCHED_QUOTES, 154
ERROR_WRITE_PROTECTED, 69, 156
ErrorOutput(), 145, 151, 151
ErrorReport(), 143, 286, 355, 357
ErrorString, 362
Escape Sequence (Shell), 310
ExAll(), 67, 68, 73, 73, 75–77, 107, 110, 153,

156, 242, 268–270
ExAllControl, 73, 269, 270, 354
ExAllData, 74, 269
ExAllEnd(), 75, 76, 76, 270
Examine(), 67, 68, 71, 71, 72, 78, 107, 110, 266
ExamineFH(), 71, 72, 271
EXCLUSIVE_LOCK, 55, 56, 58, 60, 65, 261
Execute (command), 316, 331
Execute(), 321, 322, 322, 323, 342, 363
Exit(), 142, 145, 149
ExNext(), 67, 68, 72, 72, 73, 76, 156, 242
EXT_ABS, 198, 203
EXT_ABSREF16, 199
EXT_ABSREF8, 199
EXT_COMMON, 198, 203
EXT_DEF, 198
EXT_DREF16, 199, 199
EXT_DREF32, 199, 199

374 Rom Kernel Reference Manual: DOS

EXT_DREF8, 199, 199
EXT_REF16, 199
EXT_REF32, 198
EXT_REF8, 199
EXT_RELCOMMON, 199, 203
EXT_RELREF32, 199
EXT_RES, 198
EXT_SYMB, 198
External Link, 68, 70, 84, 84, 85, 230, 272, 312,

332

Fast File System (FFS), 5, 6, 13, 15, 21–23, 26,
35, 50, 59, 62–65, 67, 68, 70, 71, 74–
76, 78, 79, 83, 86, 88, 95–97, 100, 101,
103–105, 117, 124–126, 130, 135,
154, 155, 162, 192, 213, 230, 230–
242, 244–248, 250, 254, 272, 274, 275,
281–283, 289, 301, 303, 306, 334, 342,
363–365

FAT File System, 104, 105
Fault(), 357, 362
FGetC(), 42
FGets(), 43, 325
fh_Arg1, 45, 252, 253
fh_Arg2, 45
fh_Buf, 45
fh_End, 45
fh_Func1, 45
fh_Func2, 45
fh_Func3, 45
fh_Link, 44
fh_Port, 44, 252–255
fh_Pos, 45
fh_Type, 41, 44, 71, 205, 211, 214, 252, 357
fib_Comment, 70, 74, 266, 271
fib_Date, 70, 74
fib_DirEntryType, 68, 74, 84, 266, 268
fib_DiskKey, 68, 266–269
fib_EntryType, 70, 266
fib_FileName, 68, 74, 133, 271
fib_NumBlocks, 70
fib_OwnerGID, 71, 266
fib_OwnerUID, 71, 266
fib_Protection, 68, 78
fib_Reserved, 71
fib_Size, 70, 74
FIBB_ARCHIVE, 69
FIBB_DELETE, 69, 69
FIBB_EXECUTE, 69
FIBB_HOLD, 70
FIBB_PURE, 69

FIBB_READ, 69
FIBB_SCRIPT, 69
FIBB_WRITE, 69
File, 12, 29
File Extension Block, 244
File Header Block, 239, 244–247
File System, 5, 12, 21, 23, 25–27, 34, 35, 55, 59,

62, 65, 79, 82, 93, 97, 99, 103, 106,
107, 111, 115, 124, 125, 142, 158, 162,
191, 205, 211, 213, 214, 217, 230, 251,
285, 287, 301–303, 355, 356

FileExt (FFS), 240
FileHandle, 8, 12, 12, 30–43, 44, 44–48, 52, 55,

58, 60, 61, 71, 77, 80, 109, 110, 141,
142, 144, 146, 148–153, 155, 158, 159,
164, 173, 175, 176, 179–181, 205, 211,
214, 217–219, 221, 222, 228, 252–258,
260, 263, 265, 271, 285, 286, 291, 304,
306, 317–324, 331, 332, 338, 340, 348,
354–356, 359

FileInfoBlock, 8, 23, 68, 71, 72, 74, 78, 84, 130–
133, 240, 246, 266–269, 271, 281, 354

FileLock, 12, 65, 97, 110, 206, 211, 214, 252,
262–266, 272

FilePart(), 81, 82, 140
FileSysStartupMsg, 98, 98, 99, 115–117, 213,

222, 229, 230
FILESYSTEM, 96, 98, 98, 103, 106
FileSystem.resource, 96, 103, 106, 363
FindArg(), 341
FindCliProc(), 141, 325, 363
FindDosEntry(), 95, 111–113, 114, 115
FindSegment(), 343, 344, 363, 364
FindVar(), 334
fl_Access, 65, 261
fl_Key, 65, 262, 264
fl_Link, 65, 97, 261
fl_Task, 65, 65, 206, 211, 214, 261, 262, 265,

266, 357
fl_Volume, 65, 261
FLAGS, 99
Flush(), 38, 40, 41, 41, 47
FN_ASYNC, 348, 348, 349
FN_RUNOUTPUT, 348, 349, 349
FN_SYSTEM, 348, 348
FN_USERINPUT, 348, 348, 349
FN_VALID, 348, 348, 349
FORCELOAD, 96, 103, 106
Format(), 125, 125, 126, 289
FORMAT_CDN, 17
FORMAT_DEF, 17

INDEX 375

FORMAT_DOS, 17
FORMAT_INT, 17
FORMAT_USA, 17
FPrintf(), 11, 48
FPutC(), 41
FPuts(), 42, 42
FRead(), 39, 40, 48
FreeArgs(), 339, 339
FreeDeviceProc(), 107, 109, 110
FreeDosEntry(), 118, 119, 120, 120
FreeDosObject(), 339, 340, 355
FreeFunc(), 173
freeseg() (MANX), 186
FSkip(), 47
fssm_Device, 99, 99, 101, 116, 222
fssm_Environ, 99, 99, 116, 229
fssm_Flags, 99
fssm_Unit, 99, 222
FWrite(), 39, 40
FWritef(), 49

GetArgStr(), 144, 159, 159, 323
GetConsoleTask(), 109, 110, 142, 157
GetCurrentDir(), 141, 152
GetCurrentDirName(), 326, 329, 330
GetDeviceProc(), 23, 72, 85, 93, 94, 106, 107–

112, 114, 117, 118, 121, 123, 124,
126, 190, 206, 211–214, 252, 264, 272,
279–283, 304

GetFileSysTask(), 111, 111, 158
GetProgramDir(), 158
GetProgramName(), 327, 331
GetPrompt(), 328, 331
GetVar(), 332, 333, 335
Global Vector, 38, 50, 96–98, 140, 141, 149, 153,

162, 177, 191, 191, 192, 212, 229, 361,
366

GLOBVEC, 98, 98, 140, 162, 171, 191, 222
GVF_BINARY_VAR, 333, 333, 335
GVF_DONT_NULL_TERM, 333
GVF_GLOBAL_ONLY, 333, 334–336
GVF_LOCAL_ONLY, 333, 334, 336
GVF_SAVE_VAR, 334, 336

HANDLER, 96, 98, 98, 221
Handler, 5, 12, 21, 23, 34, 35, 37, 44, 84, 93, 96–

98, 106, 107, 110, 115, 117, 162, 191,
205, 207, 208, 211, 212, 214, 217, 251,
252, 290, 301, 302, 305

Hard Link, 55, 68, 70, 72, 78, 79, 82, 83–85,
132, 155, 230, 236, 237, 240–243, 247,
254, 260, 271, 272, 279–284

Hash (FFS), 235, 237, 240
Header (FFS), 247
HIGHCYL, 101
HistoryNode, 324
HTSize (FFS), 235, 235
Hunk, 156, 161, 162–171, 175, 178, 179, 182,

186, 188, 194–203
HUNK_BREAK, 164, 175, 179
HUNK_BSS, 164, 166, 169, 175, 193, 201
HUNK_CODE, 166, 166, 169, 175, 176, 193,

201
HUNK_DATA, 164, 166, 169, 175, 186, 193,

201
HUNK_DEBUG, 164, 170, 194, 201
HUNK_DRELOC16, 193, 197, 199, 201
HUNK_DRELOC32, 164, 193, 196, 199, 201
HUNK_DRELOC8, 193, 197, 199, 201
HUNK_END, 164, 171, 194, 201
HUNK_EXT, 170, 193, 197, 201, 203
HUNK_HEADER, 163, 164, 165, 165, 166, 175,

177–179, 187, 194
HUNK_INDEX, 200, 201, 202, 202, 203
HUNK_LIB, 200, 200–203
HUNK_NAME, 164, 169, 193–195, 201, 203
HUNK_OVERLAY, 164, 175, 177, 178, 178,

179, 182, 186–188
HUNK_RELOC16, 193, 195, 196, 201
HUNK_RELOC32, 164, 167, 167, 182, 193,

196, 197, 201
HUNK_RELOC32SHORT, 164, 167, 193, 201
HUNK_RELOC8, 193, 196, 201
HUNK_RELRELOC32, 164, 168, 193, 195, 196,

201
HUNK_SYMBOL, 164, 169, 170, 193, 197, 198,

201
HUNK_UNIT, 193, 194, 199–201, 203
HUNKB_ADVISORY, 164

ICONIFY, 220
id_BytesPerBlock, 63
id_DiskState, 62
id_DiskType, 63, 126, 232
ID_DOS_DISK, 63, 63
id_InUse, 64, 292
ID_NOT_REALLY_DOS, 64
id_NumBlocks, 63
id_NumBlocksUsed, 63
id_NumSoftErrors, 62
id_UnitNumber, 62
ID_UNREADABLE_DISK, 64
ID_VALIDATED, 63

376 Rom Kernel Reference Manual: DOS

ID_VALIDATING, 62
id_VolumeNode, 64, 292
ID_WRITE_PROTECTED, 62
INACTIVE, 219
Info(), 62, 63, 232, 287
InfoData, 62, 62, 287, 288, 292, 302
Inhibit(), 64, 125, 126, 126, 231, 232, 302
Input(), 38, 141, 150
INTERLEAVE, 101
InternalLoadSeg(), 173, 173, 174, 176, 180, 181
InternalUnLoadSeg(), 174, 174, 176, 181
IoErr(), 10, 30, 32–34, 36, 37, 39–42, 49, 51–

53, 56–58, 60, 61, 64, 71, 72, 75, 77,
78, 80, 81, 86, 90, 109, 110, 112, 113,
118–127, 133, 137–141, 148, 150, 152,
157, 172, 174, 175, 180, 205, 206, 210,
214, 321, 324–330, 332–336, 339, 341,
344, 345, 348, 355, 356, 358, 359

IsFileSystem(), 35, 302
IsInteractive(), 35, 44
ITEM_EQUAL, 340
ITEM_ERROR, 341
ITEM_NOTHING, 341
ITEM_QUOTED, 341
ITEM_UNQUOTED, 341

Joliet Extension, 104

Key (FFS), 68, 100, 233, 246

Large Data Model, 195, 195
Late Binding Assign, 25, 25, 95, 97, 121, 122,

212, 365
LDF_ALL, 111
LDF_ASSIGNS, 111
LDF_DELETE, 111, 112
LDF_DEVICES, 111
LDF_ENTRY, 111, 112
LDF_READ, 111, 112
LDF_VOLUMES, 111
LDF_WRITE, 111, 112
LEN_DATSTRING, 18
Level (overlay), 177
Link (FFS Block), 243
Link (see also Soft Link, Hard Link, External

Link), 82
Link Block, 241, 245, 246
LINK_HARD, 85, 272
LINK_SOFT, 85, 273
LoadSeg(), 145, 156, 161–163, 171, 172–176,

179, 180, 186, 189, 190, 212, 315, 323,
332, 342, 343

LoadSegFuncs, 173, 174
LocalVar, 332, 335
Lock, 8, 12, 31, 46, 50, 55, 55–62, 64, 65, 67,

71–73, 77, 80, 83, 85, 95, 97, 98, 107,
110, 111, 121, 123, 124, 132, 134, 141,
143, 146, 147, 152–155, 158, 159, 206,
211, 217, 252–255, 260–271, 274, 278,
280, 286, 287, 302, 304, 321, 327, 330,
355

Lock(), 28, 56, 65, 68, 71, 72, 79, 83, 107, 133,
154, 211, 261, 303

LOCK_DIFFERENT, 58
LOCK_LOCK, 58
LOCK_SAME_VOLUME, 58
LockDosList(), 111, 112–114, 117, 120, 212,

364
LockRecord(), 51, 52, 259
LockRecords(), 51, 52
LongToStr(), 10, 11
LOWCYL, 101
LV_ALIAS, 333, 334–336
lv_Flags, 335
lv_Node, 335
lv_Value, 335
LV_VAR, 333, 334–336

MakeDosEntry(), 117, 119, 119, 120
MakeDosNode(), 93, 118, 119, 120
MakeLink(), 84, 85, 272
MASK, 102, 102
Master Boot Record (MBR), 104
MatchEnd(), 131, 136
MatchFirst(), 130, 132, 133, 133–136
MatchNext(), 131, 132, 134, 134–136, 155
MatchPattern(), 137
MatchPatternNoCase(), 138
MaxCli(), 326, 363
MAXTRANSFER, 102
Medium Mode, 37, 224, 225
MKBADDR(), 7
MODE_NEWFILE, 30, 31, 60, 69, 253
MODE_OLDFILE, 30, 30, 60, 252, 263
MODE_READWRITE, 30, 30, 31, 60, 254, 263,

334
MOUNT, 106
Mount (command), 24, 93, 96, 98, 100, 102–104,

106, 108, 115
Mountlist, 63, 64, 93, 96, 98, 98–102, 105, 106,

108, 117, 126, 162, 171, 190, 192, 213,
221, 222, 225–231

mt_JMP, 189

INDEX 377

mt_OverlayNode, 188
mt_OvMngrOffset, 188, 189
mt_SymbolOffset, 188, 189
Multi-Assign, 25, 83, 95, 97, 106, 107, 109, 110,

121, 123, 212

NaC (FFS), 238, 241, 244
Name (FFS), 236, 237, 240, 242, 246
NameFromFH(), 80
NameFromLock(), 80, 327
NameX1 (FFS), 237, 240, 243
NameX2 (FFS), 237, 240, 243
NewLoadSeg(), 156, 172, 174
NextBlk (FFS), 246
NextDosEntry(), 112, 113, 113, 114
NextExt (FFS), 244
NIL, 24, 44–46, 71, 94, 109, 110, 114
nm_Class, 90
nm_Code, 90
nm_DoNotTouch, 90
nm_DoNotTouch2, 90
nm_ExecMessage, 90
nm_NReq, 90
NOBORDER, 219, 220
NOCLOSE, 219
NODEPTH, 219, 220
NODRAG, 219, 220
Non-binding Assign, 25, 25, 95, 97, 110, 121,

122, 212
NOSIZE, 219, 220
NOTIFY_CLASS, 90, 284
NOTIFY_CODE, 90, 284
NotifyMessage, 90, 91, 284
NotifyRequest, 88, 90, 283–285, 304
NOWAIT, 227
NP_Arguments, 144, 148
NP_Cli, 144, 147, 148
NP_CloseError, 144, 146
NP_CloseInput, 144, 146
NP_CloseOutput, 144, 146
NP_CommandName, 148
NP_ConsoleTask, 147, 319, 320
NP_CopyVars, 147, 321
NP_CurrentDir, 146
NP_Entry, 146
NP_Error, 146
NP_ExitCode, 144, 148, 148, 321
NP_ExitData, 144, 148, 321
NP_FreeSeglist, 143, 146, 174
NP_HomeDir, 147
NP_Input, 146

NP_Name, 147, 320
NP_NotifyOnDeath, 148
NP_Output, 146
NP_Path, 147, 321
NP_Priority, 147, 320
NP_Seglist, 146, 146
NP_StackSize, 147, 320
NP_Synchronous, 148
NP_WindowPtr, 147
nr_Flags, 89, 90, 284
nr_FullName, 89, 283
nr_Handler, 90, 206, 211, 285
nr_MsgCount, 90
nr_Name, 89, 283
nr_Pad, 90
nr_Port, 90, 91, 284
nr_Reserved, 90
nr_SignalNum, 90
nr_Task, 90
nr_UserData, 89
NRF_MAGIC, 284
NRF_NOTIFY_INITIAL, 90, 284
NRF_SEND_MESSAGE, 89, 90, 90, 284
NRF_SEND_SIGNAL, 89, 284
NRF_WAIT_REPLY, 89, 90, 284
NTRYHUNK Hunk, 195
NULL, 8
NumNtry (FFS), 246, 247
NxtHash (FFS), 237, 240, 243

OFFSET_BEGINNING, 33, 34, 258, 259
OFFSET_CURRENT, 33, 34, 258, 259
OFFSET_END, 33, 34, 258, 259
oh_FileHandle, 176, 176
oh_GV, 176, 177
oh_Jump, 176
oh_Magic, 176
oh_OVTab, 177, 187
oh_Segments, 177
Open(), 27, 30, 30, 44, 69, 83, 107, 154, 171,

173, 175, 181, 205, 211, 212, 228,
252–254, 319, 334, 354

OpenFromLock(), 55, 60, 61, 255
Ordinate (overlay), 177
ot_Count, 188
ot_FilePosition, 179, 180, 187
ot_FirstHunk, 180, 180
ot_FirstSegment, 180
ot_NodeCount, 187
ot_Nodes, 188
ot_Segment, 188

378 Rom Kernel Reference Manual: DOS

ot_SymbolOffset, 187
ot_TrampolineOff, 187, 188
Output(), 42, 49, 142, 150
Overlay Manager, 175, 175, 177
OverlayHeader, 176, 177, 181, 187
OVTab, 177, 178
OwnerID (FFS), 237, 240, 242, 246
OwnKey (FFS), 237, 239, 242, 244, 245

Parent (FFS), 237, 240, 243–246
ParentDir(), 57, 60, 262
ParentOfFH(), 60, 263
ParsePattern(), 130, 136, 137
ParsePatternNoCase(), 73, 130, 137, 138, 269
Path, 21, 307, 315, 321, 325, 330
PathComponent, 330
PathPart(), 81, 140
pc_Lock, 330
pc_Next, 330
Port-Handler, 35, 46, 99, 104, 162, 191, 226,

226, 227, 252, 256, 290
pr_Arguments, 144, 144, 148, 323
pr_CES, 144, 145, 146, 151, 316, 358, 359
pr_CIS, 141, 146, 148, 150, 316, 319
pr_CLI, 142, 147, 319, 326, 347
pr_ConsoleTask, 142, 149, 157, 320
pr_COS, 142, 145, 146, 150, 151, 316, 319, 358,

359
pr_CurrentDir, 141, 152, 211, 327
pr_ExitCode(), 144, 144, 149
pr_ExitData, 144, 144
pr_FileSystemTask, 142, 147, 149, 158, 364
pr_Flags, 143
pr_GlobVec, 141
pr_HomeDir, 143, 147
pr_LocalVars, 144, 147, 332, 335
pr_MsgPort, 140, 192, 206, 209, 211–213, 362
pr_Pad, 140
pr_PktWait, 142, 206, 209
pr_Result2, 141
pr_ReturnAddr, 142, 144, 149
pr_SegList, 140, 141, 161, 345
pr_ShellPrivate, 144
pr_StackBase, 141
pr_StackSize, 141
pr_Task, 140
pr_TaskNum, 141, 326
pr_WindowPtr, 143, 147, 149, 212, 355
PREALLOC, 101
PRF_CLOSEERROR, 144
PRF_CLOSEINPUT, 144

PRF_CLOSEOUTPUT, 144
PRF_FREEARGS, 144
PRF_FREECLI, 144
PRF_FREECURRDIR, 143
PRF_FREESEGLIST, 143
Printf(), 11, 49
PrintFault(), 358
PRIORITY, 98
Process, 12, 21, 24, 27, 139, 139, 141, 142, 145,

148, 158, 159, 171, 206, 207, 209, 332,
363

PROGDIR, 26, 114, 143, 147, 158, 159
PrtBits (FFS), 237, 240, 242, 246
PutErrStr(), 358
PutStr(), 42

Queue-Handler, 214, 228, 229

RAM-Handler, 1, 22, 35, 50, 58–60, 63, 68, 70,
76, 78, 79, 82–85, 88, 157, 230, 230,
254, 273, 275, 281, 282, 286, 332, 334,
342, 344

RAW, 221, 227
Raw Mode, 37, 219, 221, 222, 224, 224, 293
RawDoFmt(), 9, 10, 11, 49
RDA_Buffer, 338, 340
RDA_DAList, 338
RDA_ExtHelp, 339
RDA_Flags, 339
RDAF_NOALLOC, 339
RDAF_NOPROMPT, 339
RDAF_STDIN, 339
RDArgs, 338
Read(), 32, 36, 44, 124, 173, 205, 256, 291
ReadArgs(), 38, 144, 148, 153, 154, 159, 307,

311, 314, 316, 323, 325, 336, 336–341,
355

ReadChar(), 43
ReadFunc(), 173, 180
ReadItem(), 154, 311, 314, 337, 340, 340
ReadLink(), 84, 85, 154–156, 273, 274
ReadLn(), 43
REC_EXCLUSIVE, 51
REC_EXCLUSIVE_IMMED, 51
rec_FH, 52
rec_Mode, 52
rec_Offset, 52
REC_SHARED, 51
REC_SHARED_IMMED, 51
RecordLock, 51, 53
Redirection (Shell), 308
Relabel(), 124, 288

INDEX 379

RemAssignList(), 98, 109, 123
RemDosEntry(), 118, 119, 120
RemSegment(), 344
Rename(), 77, 83, 278, 279
ReplyPkt(), 209
REPORT_INSERT, 356, 356
REPORT_LOCK, 356, 356
REPORT_STREAM, 356
REPORT_VOLUME, 356
RESERVED, 100
Rigid Disk Block (RDB), 24, 173, 230, 231, 365
rn_BootProc, 364
rn_CliList, 363, 363, 365
rn_ConsoleSegment, 363
rn_FileHandlerSegment, 363, 364
rn_Flags, 364
rn_Info, 363
rn_RestartSeg, 363
rn_ShellSegment, 364
rn_TaskArray, 363
rn_Time, 363
RNF_WILDSTAR, 364
Rock Ridge File System, 93, 104
Root Block, 100, 126, 234, 246
Root Directory, 26, 27, 27, 35, 57, 67, 81, 107,

141, 152, 155, 158
Root Node, 165, 173, 175, 175–181, 187, 188
RootBlk (Boot Block), 233
RootNode, 361, 362
RunCommand(), 142, 145, 149, 159, 171, 315,

323, 323, 326
Runtime Binder, 191

SameDevice(), 59
SameLock(), 58, 123, 264
ScanStackToken(), 190
SCREEN, 220
SCSIDIRECT, 105
Section (Assembler Directive), 195
SECTORSIZE, 100
SECTORSPERBLOCK, 100
SECTORSPERTRACK, 100
SecType (FFS), 235, 237, 240, 243, 244, 246
Seek(), 33, 33, 35, 47, 124, 153, 155, 179, 180,

258
seg_Name, 342
seg_Next, 342
seg_Seg, 314, 323, 342
seg_UC, 314, 342, 342, 343
segload() (MANX), 186

Segment, 69, 96, 140, 143, 145, 146, 148, 149,
161, 161, 162, 164–169, 171–177,
179–182, 186, 188–192, 194–199, 304,
314, 315, 323, 332, 342–345

Segment (resident), 158, 319, 320, 341, 342,
342–344, 363, 364

Segment Array, 140, 161, 345
SegmentList, 161, 161, 198, 212, 342
SelectError(), 144, 151, 151
SelectInput(), 141, 150, 150
SelectOutput(), 142, 151, 151
SendPkt(), 208, 208, 209
SeqNum (FFS), 247
SetArgStr(), 144, 159
SetComment(), 78, 242, 281
SetConsoleTask(), 46, 142, 157
SetCurrentDirName(), 327, 327, 330
SetFileDate(), 79, 242, 282
SetFileSize(), 34, 35, 155, 258, 259, 334
SetFileSysTask(), 142, 158
SetIoErr(), 40–43, 141, 157
SetMode(), 37, 37, 222, 291
SetOwner(), 79, 237, 240, 242, 246, 282, 283
SetProgramDir(), 158
SetProgramName(), 323, 328, 331
SetPrompt(), 329, 331
SetProtection(), 78, 83, 280
SetVar(), 333, 335
SetVBuf(), 38, 40, 41, 42
SHARED_LOCK, 55, 56, 58, 60, 65, 261, 262
Shell, 13, 24, 25, 31, 38, 45, 69, 70, 129, 130,

140–145, 147–154, 157, 161, 190, 191,
218, 224, 225, 307, 307–310, 314, 315,
317–333, 336, 342, 344, 345, 347–349,
351, 354, 363, 364

Shell (resident), 191, 320, 342, 344, 364
Shell Script, 13, 24, 26, 69, 83, 307, 310, 315,

315–318, 320, 322, 324, 331, 348
Shell Variable, 144, 147, 149, 307, 308, 311,

312, 312, 314, 315, 317, 319, 321, 329,
330, 332–336

SHELL_FGETS_FULL, 325
SHELL_METH_ADDHIST, 325
SHELL_METH_CLRHIST, 325
SHELL_METH_FGETS, 325
SHELL_METH_GETHIST, 324
SHELL_METH_METHODS, 324
SIGBREAKF_CTRL_C, 132, 224, 228
SIMPLE, 219
Size (FFS), 246, 247
SLink, 175, 177

380 Rom Kernel Reference Manual: DOS

Slink, 178
Small Code Model, 195
Small Data Model, 195, 195, 196
SMART, 219
Soft Link, 55, 68, 70, 72, 75, 78, 79, 82, 83–86,

107, 132–135, 154–156, 230, 241–243,
247, 260, 271–275, 279–283

SplitName(), 28, 82
sprintf(), 9, 10, 11
ST.FILE, 239, 241, 244
ST.LINKDIR, 243
ST.LINKFILE, 243
ST.ROOT, 234
ST.SOFTLINK, 243
ST.USERDIR, 237, 238
ST_LINKDIR, 68, 84, 134
ST_LINKFILE, 68, 84
ST_SOFTLINK, 68, 134
Stack Cookie, 190
STACKSIZE, 96, 98
StandardPacket, 208, 354, 355
StartNotify(), 88, 283
STARTUP, 96, 98, 221, 230
Startup-Sequence, 13, 26, 307, 313, 321, 351,

365–367
String (BCPL), 8
String (C), 8
StrToDate(), 19, 19
StrToLong(), 9, 9, 11, 153
SUPERFLOPPY, 104, 105, 105
SURFACES, 100, 100
SymTab, 178, 182
SYS_Asynch, 319, 320, 320, 321, 348
SYS_CmdName, 320, 331
SYS_CmdStream, 320, 320, 331
SYS_CustomShell, 320, 342
SYS_InName, 319, 320, 331
SYS_Input, 319, 320, 331
SYS_OutName, 320, 320, 332
SYS_Output, 319, 320, 332
SYS_UserShell, 320
System(), 145, 300, 318, 318, 321–323, 331, 332,

342, 344, 348, 351, 363, 365, 367
SystemTagList(), 318
SystemTags(), 318

T.COMMENT, 245, 245
T.DATA, 247, 247
T.DELETED, 250
T.DIRLIST, 245
T.DIRLIST_KEY, 245

T.LIST, 244
T.SHORT, 234, 236, 238–241, 243
TAB Report Sequence, 225, 225
Target (FFS), 242
Task, 12
TRANSPARENT, 226
Type (FFS), 235, 237, 239, 240, 242–245, 247

UnGetC(), 43, 47
UNIT, 99, 221, 222, 227
UnLoadSeg(), 143, 146, 171, 172, 174, 176, 177,

180, 181, 344
UnLock(), 28, 57, 123, 143, 152, 265
UnLockDosList(), 113
UnLockRecord(), 52, 53, 260
UnLockRecords(), 52, 260
UnReadChar(), 43
User Directory Block, 236, 245, 246

Variable Substitution, 312
Version Cookie, 189
VFPrintf(), 48
VFwrite(), 49
Volume, 21, 24
Volume name, 24
VolumeRequestHook(), 357, 357
VPrintf(), 49
vsprintf(), 10, 11
VWritef(), 43

WAIT, 217, 219, 221
WaitForChar(), 32, 35, 36, 36, 227, 291
WaitPkt(), 206, 209, 209
WINDOW, 220
Write(), 32, 32, 44, 45, 124, 257
WriteChar(), 43
WriteChars(), 40
WriteStr(), 43

Yank Buffer, 223

ZERO, 8
ZERO lock, 55, 56–58, 71, 72, 80, 93, 107, 111,

142, 147, 158, 234, 252, 261, 262, 264,
267, 287, 364

INDEX 381

AMIGA ROM Kernel
Reference Manual

AmigaDOS

F I R S T E D I T I O N

A M I G A T E C H N I C A L R E F E R E N C E S E R I E S

The Amiga computers are exciting high-performance
microcomputers with superb graphics, sound,
multiwindow and multitasking capabilities. Their
technologically advanced hardware is designed around
the Motorola 68000 microprocessor family and
sophisticated custom chips. The Amiga’s unique system
software provides programmers with unparalleled
power, flexibility, and convenience in designing and
creating programs.

This volume provides a long missing addendum to the AMIGA ROM Kernel Reference
Manual Series and adds a comprehensive description of the AmigaDOS system component.
The AmigaDOS Reference Manual presents a detailed description of the central I/O and
process subsystem of AmigaOs. This volume covers the latest version of Amiga’s operating
system. It includes:

● An introduction into elementary components of AmigaDOS such as files
and locks

● AmigaDOS handlers and file systems,and how to interface them
● Pattern matching and recursive directory scanning
● A discussion of the AmigaDOS Process management
● A complete breakdown of the Fast File System disk structure
● Direct packet communication and a comprehensive documentation of

DosPackets
● A detailed description of the AmigaDOS executable and link file structure
● The documentation of the AmigaDOS ROM Shell, including a tutorial

and source code for implementing custom shells
● The AmigaDOS startup mechanism

For the serious programmer who wants to take full advantage of the Amiga’s impressive
features, the Amiga ROM Kernel Reference Manual: AmigaDOS is an indispensable source
of information on how to use the AmigaDOS file system, how to interact and implement
handlers and file systems and how to make productive use of the AmigaDOS Shell.

	Introduction
	Preface by Olaf Barthel
	Foreword of the Author
	Acknowledgments

	Language and Type Setting Conventions

	Elementary Concepts
	Purpose of the dos.library
	The DosLibrary Object
	Booleans
	Pointers and BPTRs
	C Strings and BSTRs
	Elementary Conversion Functions
	Convert a String to a Number
	Print Formatted into a Buffer

	Paths
	Files
	Directories
	Locks
	Processes
	Handlers and File Systems
	The AmigaDOS Shell

	Date and Time
	Elementary Time and Date Functions
	Obtaining the Time and Date
	Comparing two Times and Dates
	Delaying Program Execution

	Conversion Into and From Strings
	Converting a Time and Date to a String
	Convert a String to a Date and Time

	Paths and File Names
	Case Sensitivity and Character Encoding
	Maximum Path Length
	Devices, Volumes and Assigns
	Devices
	Volumes
	Assigns

	Relative and Absolute Paths
	Flat vs. Hierarchical File Systems
	Locating Files or Directories
	Open a File From an Overlong File Name

	Files
	What are Files?
	Interactive vs. non-Interactive Files
	Opening and Closing Files
	Opening Files
	Closing Files

	Unbuffered Input and Output
	Reading Data
	Writing Data
	Adjusting the File Pointer
	Setting the Size of a File

	Interactive File and Handler Support
	Test whether an File Handle is Interactive
	Test whether a Path addresses a Handler or File System
	Test Interactive Files for Availability of Data
	Setting the Console Buffer Mode

	Buffered Input and Output
	Buffered Read From a File
	Buffered Write to a File
	Buffered Write to the Output Stream
	Adjusting the Buffer
	Synchronize the File to the Buffer
	Write a Character Buffered to a File
	Write a String Buffered to a File
	Write a String Buffered to the Output Stream
	Read a Character from a File
	Read a Line from a File
	Revert a Single Byte Read
	Macros for Buffered I/O

	Working with File Handles
	The FileHandle Structure
	String Streams
	Cloning File Handles
	An FSkip() Implementation
	An FGet() Implementation

	Formatted Output
	Print Formatted using C-Syntax to a File
	Print Formatted using C-Syntax to the Output Stream
	BCPL Style Formatted Print to a File

	Record Locking
	Locking a Region of a File
	Locking Multiple Regions of a File
	Unlocking a Region of a File
	Unlocking Multiple Records of a File

	Locks
	Obtaining and Releasing Locks
	Obtaining a Lock from a Path
	Duplicating a Lock
	Obtaining the Parent of an Object
	Creating a Directory
	Releasing a Lock
	Changing the Type of a Lock or File Handle
	Comparing two Locks
	Compare two Locks for their Device

	Locks and Files
	Duplicate the Implicit Lock of a File
	Obtaining the Directory a File is Located in
	Opening a File from a Lock

	Retrieve Information on the State of the Medium
	The FileLock structure

	Working with Directories
	Examining Objects on File Systems
	Retrieving Information on an Directory Entry
	Retrieving Information from a File Handle
	Scanning through a Directory Step by Step
	Examine Multiple Entries at once
	Aborting a Directory Scan

	Modifying Directory Entries
	Delete Objects on the File System
	Rename or Relocate an Object
	Set the File Comment
	Setting Protection Bits
	Set the Modification Date
	Set User and Group ID

	Working with Paths
	Find the Path From a Lock
	Find the Path from a File Handle
	Append a Component to a Path
	Find the Last Component of a Path
	Find End of Next-to-Last Component in a Path
	Extract a Component From a Path

	Links
	Creating Links
	Resolving Soft Links

	Notification Requests
	Request Notification on File or Directory Changes
	Canceling a Notification Request

	Administration of Volumes, Devices and Assigns
	The Device List and the Mountlist
	Keywords defining the DosList structure
	Keywords controlling the FileSysStartupMsg
	Keywords controlling the Environment Vector

	Finding Handler or File System Ports
	Iterate through Devices Matching a Path
	Releasing DevProc Information
	Legacy Handler Port Access
	Obtaining the Current Console Handler
	Obtaining the Default File System

	Iterating and Accessing the Device List
	Gaining Access to the Device List
	Attempting Access to the Device List
	Release Access to the Device List
	Iterate through the Device List
	Find a Device List Entry by Name
	Accessing Mount Parameters

	Adding or Removing Entries to the Device List
	Adding an Entry to the Device List
	Removing an Entry from the Device List

	Creating and Deleting Device List Entries
	Creating a Device List Entry
	Releasing a Device List Entry

	Creating and Updating Assigns
	Create, Update or Remove an Assign
	Create or Update a Non-Binding Assign
	Create a Late Binding Assign
	Add a Directory to a Multi-Assign
	Remove a Directory From a Multi-Assign

	File System Support Functions
	Adjusting File System Buffers
	Change the Name of a Volume
	Initializing a File System
	Inhibiting a File System

	Pattern Matching
	Scanning Directories
	Starting a Directory Scan
	Continuing a Directory Scan
	Terminating a Directory Scan

	Matching Strings against Patterns
	Tokenizing a Case-Sensitive Pattern
	Tokenizing a Case-Insensitive Pattern
	Match a String against a Pattern
	Match a String against a Pattern ignoring Case

	Processes
	Creating and Terminating Processes
	Creating a New Process from a TagList
	Create a Process (Legacy)
	Terminating a Process

	Process Properties Accessor Functions
	Retrieve the Process Input File Handle
	Replace the Input File Handle
	Retrieve the Output File Handle
	Replace the Output File Handle
	Retrieve the Error File Handle
	Replace the Error File Handle
	Retrieve the Current Directory
	Replace the Current Directory
	Return the Error Code of the Previous Operation, List of Error Codes
	Setting IoErr
	Select the Console Handler
	Select the Default File System
	Retrieve the Lock to the Program Directory
	Set the Program Directory
	Retrieve Command Line Arguments
	Set the Command Line Arguments

	Binary File Structure
	Conventions and Pseudo-Code
	Executable File Format
	HUNK_HEADER
	HUNK_CODE
	HUNK_DATA
	HUNK_BSS
	HUNK_RELOC32
	HUNK_RELOC32SHORT
	HUNK_RELRELOC32
	HUNK_NAME
	HUNK_SYMBOL
	HUNK_DEBUG
	HUNK_END

	The AmigaDOS Loader
	Loading an Executable
	Loading an Executable with Additional Parameters
	Loading an Executable through Call-Back Functions
	Unloading a Binary
	UnLoading a Binary through Call-Back Functions

	Overlays
	The Overlay File Format
	The Hierarchical Overlay Manager
	HUNK_OVERLAY
	HUNK_BREAK
	Loading an Overlaid Node
	Loading an Overlay Node through Call-Back Functions
	Unloading Overlay Nodes
	Unloading Overlay Binaries
	An Implementation of the Hierarchical Overlay Manager
	The MANX Overlay Manager

	Structures within Hunks
	The Version Cookie
	The Stack Cookie
	Extending the Stack Size from the Stack Cookie
	Runtime binding of BCPL programs

	Object File Format
	HUNK_UNIT
	HUNK_NAME
	HUNK_RELOC16
	HUNK_RELOC8
	HUNK_DRELOC32
	HUNK_DRELOC16
	HUNK_DRELOC8
	HUNK_EXT

	Link Library File Format
	HUNK_LIB
	HUNK_INDEX

	Direct Packet Communication
	Request an Action from a Handler and Wait for Reply
	Asynchronous Packet Interface
	The DosPacket Structure
	Send a Packet to a Handler Asynchronously
	Waiting for a Packet to Return
	Aborting a Packet

	Reply a Packet to its Sender

	Handlers, Devices and File Systems
	The Handler Interface
	Locating a Handler from a Path
	Starting a a Handler
	Handler Main Processing Loop
	Handler Shutdown

	The CON-Handler
	CON-Handler Path for Graphical Consoles
	CON-Handler Path for Serial Consoles
	CON-Handler Startup and Mount Parameters
	CON-Handler Buffer Modes

	The Port-Handler
	Port-Handler Path
	Port-Handler Startup and Mount Parameters

	The Queue-Handler
	Queue-Handler Path
	Queue-Handler Startup and Mount Parameters

	The RAM-Handler
	The Fast File System
	FFS Startup and Mount Parameters
	The Boot Block
	Disk Keys and Sectors
	The Root Block
	The User Directory Block
	The File Header Block
	The Soft and Hard Link Block
	The File Extension Block
	The Comment Block
	The Directory Cache Block
	The Data Block
	The Bitmap Block
	The Bitmap Extension Block
	The Deleted Block

	Packet Documentation
	Packets for File Interactions
	Opening a File for Shared Access
	Opening a File for Exclusive Access
	Opening or Creating a File for Shared Access
	Opening a File from a Lock
	Closing a File
	Reading from a File
	Writing to a File
	Adjusting the File Pointer
	Setting the File Size
	Locking a Record of a File
	Release a Record of a File

	Packets for Interacting with Locks
	Obtaining a Lock
	Duplicating a Lock
	Finding the Parent of a Lock
	Duplicating a Lock from a File Handle
	Finding the Parent Directory of a File Handle
	Creating a new Directory
	Comparing two Locks
	Changing the Mode of a Lock or a File Handle
	Releasing a Lock

	Packets for Examining Objects
	Examining a Locked Object
	Scanning Directory Contents
	Examining Multiple Entries at once
	Aborting a Directory Scan
	Examining from a File Handle

	Packets for Working with Links
	Creating Links
	Resolving a Soft Link

	Packets for Adjusting Metadata
	Renaming or Moving Objects
	Deleting an Object
	Changing the Protection Bits
	Setting the Comment to an Object
	Setting the Creation Date of an Object
	Setting the Owner of an Object

	Packets for Starting and Canceling Notification Requests
	Registering a Notification Request
	Canceling a Notification Request

	Packets Operating on Entire Volumes
	Determining the Currently Inserted Volume
	Retrieving Volume Information from a Lock
	Retrieving Information on the Currently Inserted Volume
	Relabeling a Volume
	Initializing a New File System
	Make a Copied Disk Unique
	Write Protecting a Volume

	Packets for Interactive Handlers
	Waiting for Input Becoming Available
	Setting the Line Buffer Mode
	Retrieving IORequest and Window Pointer from the Console
	Releasing Console Resources
	Stack a Line at the Top of the Output Buffer
	Queue a Line at the End of the Output Buffer
	Force Characters into the Input Buffer
	Drop all Stacked and Queued Lines in the Output Buffer
	Bring the Console Window to the Foreground
	Change the Target Port to Receive Break Signals

	Packets Controlling the Handler in Total
	Adjusting the File System Cache
	Inhibiting the File System
	Check if a Handler is a File System
	Write out all Pending Modifications
	Shutdown a Handler
	Do Nothing

	Handler Internal Packets
	Receive a Returning Read
	Receive a Returning Write
	Receive a Returning Timer Request

	Obsolete and Third-Party Packets

	The AmigaDOS Shell
	The Shell Syntax
	Input/Output Redirection
	Compound Commands and Binary Operators
	Unary Shell Operators
	Quoting and Escaping
	Variables and Variable Expansion
	Pre-defined Shell Variables, Configuring the Shell
	Backtick Expansion
	Alias Substitution
	Command Location and Execution
	The Execute Command

	Creating and Controlling the Shell
	Create New Shells and Execute Scripts
	Execute Shell Scripts (Legacy)
	Run a Command Overloading the Calling Process
	Checking for Signals
	Request a Function of the Shell
	Find a Shell Process by Task Number
	Retrieve the Size of the Process Table

	The CLI Structure
	Obtaining the Name of the Current Directory
	Set the Current Directory Name
	Obtaining the Current Program Name
	Set the Current Program Name
	Obtaining the Shell Prompt
	Setting the Shell Prompt
	Retrieving the CLI Structure

	Accessing Shell Variables
	Reading a Shell Variable
	Setting a Shell Variable
	Finding a Shell Variable
	Deleting a Shell Variable

	Command Line Argument Parsing
	Parsing Command Line Arguments
	Releasing Argument Parser Resources
	Reading a Single Argument from the Command Line
	Find an Argument in a Template

	Resident Segments
	Find a Resident Segment by Name
	Adding a Resident Segment
	Removing a Resident Segment

	Writing Custom Shells
	Initializing a new Shell

	Miscellaneous Functions
	Object Constructors and Destructors
	Allocating a DOS Object
	Releasing a DOS Object

	Reporting Errors
	Display an Error Requester
	Receive Information when a Volume is Requested
	Generating an Error Message
	Printing an Error Message
	Printing a String to the Error Stream

	The DOS Library
	The Library Structure
	The Root Node
	The DosInfo Structure
	The AmigaDOS Boot Process
	The System-Startup Module

