
1

Welcome to Codecraft, the powerful Integrated Development
Environment (IDE) for developing software natively on the Amiga.
Codecraft makes it easy for you as a developer to write code, then
build, execute and debug your resulting program. And everything is at
your fingertips in one unified user interface.

• Shows your project tree as a hierarchical list of source files

• Integrates the AmigaOS 3.2.3 TextEdit for easy modern text
editing

• Builds the project tree invoking your build system

• Runs your resulting program

• Does source level debugging with breakpoints and inspection
of variables

About this User’s Guide

This User’s guide has the following chapters:

Getting Started

Creating a ProjectTree

Building and Running your Program

Build Configurations

Using the Debugger

2

The Debugger Variable Browser

The Debugger Call Stack

Registers View

Memory Browser

Search in Files

Codecraft Settings

About Project Templates

Appendix

3

Getting Started
In this chapter you will learn how to install and start Codecraft for the
first time. You will also become familiar with the user interface and
open an example ProjectTree.

Installing Codecraft

1. Boot your Amiga from your hard disk and wait for Workbench
to load.

2. Insert the Codecraft disk.

3. Double-click on the disk icon.

4. Next double-click on the installer icon to start the installer.

5. Follow the on screen instructions until Codecraft is installed.

Besides installing Codecraft you will need a working compiler and
build system of your choice.

Starting Codecraft

With the installation done you will find your Codecraft at the location
you have chosen. Here you will find the program icon that you need to
double click to start Codecraft.

4

The icon on the right shows the optional Codecraft glow icon -
available on the Codecraft Install Disk.

Getting Familiar with the Codecraft
Window

Codecraft opens up in a window. Codecraft is actually the same as
TextEdit from AmigaOS 3.2 except Codecraft also adds several other
GUI elements to the window. Once you have loaded a ProjectTree it
will look like this:

The window is divided into 4 main parts:

1. The ProjectTree Browser shows a list of files in your
ProjectTree drawer. It also shows sub drawers in a hierarchical

5

tree. It is more like a file browser, and is not integrated to your
build system.

2. The Sourcefile Editor is where you edit your sourcefiles. If
you have used TextEdit (part of AmigaOS 3.2) then it should
feel quite familiar.

3. The Auxillary Browsers provides a lot of extra info. The
Build log browser is useful when you are building. The
Breakpoints, Variable and Call stack browsers are useful when
debugging. These browsers will be covered in more detail in
their respective chapters.

4. The Menus should also be halfway familiar if you have used
TextEdit before. The Project, Edit and Filetype menus all
relate to the individual files and not the ProjectTree. The
ProjectTree, Build and Debug menus are specific to Codecraft.

Opening the Example ProjectTree

Let us open an example ProjectTree. In the ProjectTree menu select
the menu item named “Open”. It will bring up a standard file
requester where you should navigate to the place you have installed
Codecraft There should be a drawer called “Example”. Go into that
drawer and then open the file called “example.ProjectTree”.

As a result the ProjectTree browser will become populated and the
files you had open last time will be reopened. Breakpoints you had set
will be remembered. The example ProjectTree, as installed, will open
as if you were in the middle of working with and will look like the
above screenshot.

6

Creating a ProjectTree
In this chapter you will learn how to create a new ProjectTree. Because
Codecraft offers a lot of flexibility you need to supply a number of
properties before the ProjectTree is useful. But it is easily done in a
few minutes.

However, remember that Codecraft is not a build system nor a
compiler. Please ensure you have installed those before proceeding.

What is a ProjectTree?

Codecraft uses so called ProjectTrees to store and organize the
structure and the settings of a project. The creation of a ProjectTree
is an essential step when setting up a new development project. Later
on, when working, you just open the already existing ProjectTrees.

A ProjectTree is simply stored as a file (with .projecttree extension),
and therefore it can be managed by your source control system
(e.g. git, subversion, cvs), like any other file of your development
project.

The ProjectTree Menu

7

Creating a ProjectTree

When creating a ProjectTree it can be either a completely new project
or one based on existing source code already in a directory
somewhere.

The remainder of this chapter will setup a C language project, but you
can set it up for any language you like. You can even use if for non-
coding projects like documentation writing where the build system
converts say plain text to AmigaGuide or something similar.

To create a new ProjectTree, choose New from the ProjectTree menu.
This will open the New ProjectTree requester.

With this requester, you setup how to create the ProjectTree. That is:

8

• Drawer The drawer of the ProjectTree. This is either your
existing project drawer or a new drawer if you are creating a
new ProjectTree from scratch or from template. If the drawer
doesn’t exist it will be created.

• Name The name of the ProjectTree. This is the name of the
project file in case you want more than one Projecttree inside
the same drawer. But often you will simply name it the same as
the drawer.

• Radio button From existing code The ProjectTree will use
the existing files already in the drawer.

• Radio button From Scratch The ProjectTree is almost
completely empty.

• Radio button From Template The ProjectTree is populated
with the template that you can now select in the list below.

ProjectTree Parameters Requester

To complete the setup of a new ProjectTree, after the New ProjectTree
requester was confirmed Codecraft presents automatically opens the
ProjectTree Parameters requester.

The general parameters are described here, but the build and
debugging parameters are described in their respective chapters.

9

• Project Drawer The drawer of the project, like given in the
New ProjectTree requester. This is not a property, but simply
information of where the ProjectTree is located.

• Contained Files A list of AmigaDos wildcards (e.g. #?), that
Codecraft will use to show files in the ProjectTree browser.
You can think of it as filtered view of your drawer structure.
Drawers are only shown if there are files inside that are visible
according to the wildcards.

Saving the ProjectTree

The ProjectTree is automatically saved whenever you start a build,
switch to another ProjectTree or quit Codecraft.

So, in general, you don’t have to save, but there is a Save All menu item
in the ProjectTree menu that will explicitly save it and all the files.

Opening a ProjectTree

To open an existing ProjectTree you can either choose Open… in the
Project Tree menu, or use the Recent menu to reopen a previously
opened ProjectTree.

10

Building and Running
your Program
In this chapter you will learn how to build your program. If your build
system produces warnings and errors you will learn how to go through
each of those. Finally you will learn how to run your program.

It is actually pretty simple.

The Related ProjectTree Parameters

In the ProjectTree parameters requester you will find several settings
relevant for building and running your program.

• Build Drawer Before building the current directory will be
changed to this location. You can specify an absolute or
relative path, or simply leave it blank to stay in the project
drawer

• Build Command The command used to build your project. It
is typically make or smake or something similar.

11

• Clean Command The command used to clean your project
tree from build files. It is typically make clean or similar.

• Up-to-date Command If supported by your build system,
you can enter a command or script that is executed by
Codecraft before running your application. The command
should check whether the project is up-to-date or needs a
build. A return value of 0 (zero) means that the project is
current, any other return value indicates that a build is
necessary. In that case, Codecraft will show a corresponding
requestor.

The Build Menu

The build menu is where you actually start the build.

• Build This starts you build command as specified in
ProjectTree parameters. First the current drawer is changed to
the project drawer, and from there the current drawer is
changed to your build drawer. Build drawer can be empty,
relative or absolute.

• Clean This starts the clean command. The current drawer is
set up like the Build menu item above.

• Rebuild This menu item simply executes Build and Clean menu
items in succession.

12

• Previous Message Jumps to the previous message in the
build log.

• Next Message Jumps to the next message in the build log.

Viewing the Build Log and Jumping to
Errors

When you have started you build the output from the build system will
start to appear in the build log. The build log is automatically shown,
so you should soon see the messages scroll by.

Limitation: The detection of error and warning messages, is highly
dependent on the compiler. For now we can only jump to messages
from SAS/C, VBCC and E-VO, but if you have examples from other
compilers get in touch, and we will try and add support.

If you double click on a line with warning or error, Codecraft takes
you automatically to the corresponding file and line of code.

The menu items Previous Message and Next Message along with their
shortcuts (Shift) F8 will also bring you to the file and line in question.

Running your Application

There are either two options in the Debug Menu to run your
application:

Run In Debugger
Starts your application for debugging.

Run Without Debugger
Starts your application as if it would be started from Workbench or
CLI.

13

Build Configurations
With Build Configurations, you can switch fast between different build
parameters. To setup multiple Build Configurations of your
ProjectTree, access the Build Configurations in the top of the
ProjectTree Parameters Dialog.

• Duplicate Creates a copy of the current Build Configuration.

• Rename Lets you rename the current Build Configuration.

• Delete Deletes the current Build Configuration.

It is not possible to have no Build Configuration at all. When a new
ProjectTree is created, Codecraft automatically creates a Default Build
Configuration. Also, you can not delete the last Build Configuration.
Build Configurations affect all the ProjectTree Parameters in the Build
and Debugging sections. To maintain configuration-specific parameters,
simply select the appropriate configuration and enter parameters for
Build and Debugging.

14

Switching between Build Configurations

To switch between Build Configurations, use the Active Configuration
submenu in the ProjectTree Menu.

15

Using the Debugger
Codecraft comes with a built-in source level debugger. A debugger is
one of the most essential tools when making your program bug free.

The debugger is capable of stopping execution at breakpoints.

Stopping a Program is Impossible on the Amiga

It is important that the user manually stops a running program in the
debugger. The Amiga is limited in what we can do here, so for now at
least it is better to stop the program gracefully.

The reason is that the Amiga doesn’t have resource tracking, so while
we can stop the program from actively running we cannot safely free
memory allocated by it or close its windows etc, etc.

Limited debugging with some compileres

For now the debugger can only show values for programs compiled
with: - SAS/C 6.58 and with debug=symbol. - E-VO

It is intended to expand this functionality to more compilers and
languages in the future.

Any executable that has debug LINE hunks can be debugged using
breakpoints and stepping. Many compilers produces this already. But
you will not be able to see variables and their values.

The Debug Menu

The debug menu is where you run your app and control Codecrafts
integrated debugger.

16

• Run In Debugger Starts your application for debugging by
loading the debug information and prepares the breakpoints.
Execution will break, as soon as a breakpoint is hit.

• Run Without Debugger Simply starts your application as if it
would be started from Workbench or CLI. The debug
information of you application is not loaded and breakpoints
are ignored.

• Break Breaks the current execution immediately.

• Resume Continues the execution of your application when a
breakpoint was hit or the execution was stopped using Break.

• Resume Without Debugger Continues the execution of your
application by temporarily disabling all breakpoints. This
allows to gracefully run the application to end, without further
interruption by breakpoints. The breakpoints are reenabled on
the next debugger run. Because of the shared memory
architecture of the Amiga, running debugging sessions cannot
be terminated immediately without endangering the stability
of the system. Therefore, it is necessary to stop running
debugging sessions by gracefully exiting the debugged

17

application. And for doing so, Resume Without Debugger is very
convenient.

• Step Into Executes the next program line. Steps into
functions, if the program line to execute is a function call.

• Step Over Executes the next program line, but steps over
function calls by executing the whole function.

• Step Return Continues execution until the current function is
exited, then breaks the execution.

• Toggle Breakpoint Sets or removes a breakpoint on the
current position of the cursor, or on the nearest code line
possible.

• Delete All Breakpoints All breakpoints are removed
immediately.

• Disable All Breakpoints All breakpoint are disabled -
i.e. they stay in place but the debugger does not stop when a
breakpoint is hit.

The Related ProjectTree Parameters

18

• Command The name of your executable. You can specify
either a path relative to you build drawer, or an absolute path.

• Command Arguments The arguments to supply to your
program.

• Working Drawer The drawer where the program is running.
You maybe have some test files here etc.

• Start as if From Radio buttons to choose whether you
application is started as CLI or Workbench application. When
from Workbench is selected, your application gets send the usual
WBStartup message.

In general, Codecraft runs you application with a Stack size of
100000.

The Breakpoints Browser

The Break Points Browser is located in the tab Breakpoints, below
the code editor in the Codecraft window.

The Break Point Browser lists all breakpoints in the current
ProjectTree by displaying the file and line the breakpoint is set. By
double clicking an entry, Codecraft takes you to the file and line of the
breakpoint. Further, by checking/unchecking the checkbox, you can
enable/disable the corresponding breakpoint.

19

The Debugger Variables
Browser
When you run your application in debug mode (see Using the
Debugger) and a breakpoint is hit, the application execution breaks. In
this state you can watch different information of your app.

One of this information is the current values of the variables of your
application. The variables are displayed by switching to the Variables
tab in bottom tab bar in the Codecraft user interface:

The variables and their values are displayed in three columns:

First Column The first column shows the name of the variable and
some additional information. If the variable is a complex element like
an Array or Struct for example, the variable can be expanded and
nested elements are displayed. If a variable is stored in a register, the
name of the register is displayed.

Second Column The second column shows the value of the variable.
The display-format of the value is chosen automatically by Codecraft,
depending on the variable type.

20

Third Column The third column shows the datatype of the variable.
Datatype names are shown as used in the code. This means that
typedefs are displayed as is and are not substituted by their basic type
names.

21

The Debugger Call
Stack
When your application is stopped by hitting a breakpoint, you can
inspect the call hierarchy of your application using the Call stack tab,
also located in the bottom tab bar.

The call stack shows the source file, name of the function and line
number your application has called to reach the current breakpoint.
The blue arrow on the first entry of the call stack indicates the
position of the current program execution.

When you double click on the other entries in the call stack Codecraft
navigates you to the corresponding line of code. At the same time the
entry you double clicked will get a blue curved arrow, and the variable
browser is updated to reflect the variables at that place in the code.

22

Registers View
The Register View displays the current values of the CPU registers
during debugging.

It shows the names and values of the data registers D0-D7 and A0-A7
for addresses, along with the program counter (PC) and status register
(SR). By examining these registers, you can monitor changes, diagnose
issues, and verify instruction execution.

23

Memory Browser
The Memory Browser View allows you to inspect memory contents
during debugging.

This view helps diagnose issues by providing a detailed look at how
data is stored and manipulated. To display a memory area, you can
either type the memory address to display into the Goto Addr field, or
you can double click a variable value in the Debugger Variable Browser to
display directly to the memory of the variable.

Further, you can switch the display of the memory data from Hex to
ASCII to match the kind of data you want to inspect.

24

Search in Files
Codecraft extends the editor functions of TextEdit. One of the
extensions is Search in Files. Searching in files can be accessed via the
Edit menu.

In the “Search in Files” dialog, enter the search criteria you want to
search for and press Search to start the search.

25

• Search For The text you want to search for.

• Match Case When checked, the search is case sensitive.

• Match Whole Word When checked, the search finds only
exact matches of the whole word.

• Search In The folder within which to search.

• Search in Subfolders When checked, the text will be searched
in all subdirectories of the directory specified by _“Search
In_”.

• File Pattern By entering a File Pattern, you specify the types of
files to include in the search. The regular Amiga style wildcards
can be used - e.g. ‘#?.h’ would search in header files only.

Codecraft displays the Search results in an additional tab in the
Auxillary Browsers section.

The search results are grouped per file and the corresponding lines
containing the searched text are displayed. Double-clicking on one of
the lines navigates to the corresponding location in the source code in
the editor.
Close the Search Results tab to end the search and discard the search
results.

26

Codecraft Settings
In addition to the settings that TextEdit provides, Codecaft provides
some more specific settings.

• Reopen ProjectTree on Startup allows you to get right back
to the project when you last quit Codecraft.

• Switch Tab on Break provides the option to make Codecraft
automatically switch to a specific tab of the bottom tab bar
during debugging, when a breakpoint is hit. You can choose
either the Variables tab, the Call stack tab or not to switch to
another tab.

Note that Save Settings saves the above mentioned settings as well.

27

About Project
Templates
Project Templates are a convenient and easy way to create a base for a
new development project in Codecraft. Project Templates are
presented in the New ProjectTree requester.

A Project Template usually consists of a collection of files and
resources that are prefilled with code and data, to create a specific
development project from it. Like a CLI application, an Amiga library,
etc.

When creating a new Project Tree from a template, Codecraft copies
the files and data of the project template to the newly created Project
Tree directory, and adjusts the content of the copied template files
according to your new Project Tree specifics.

Templates shipped with Codecraft

The list of ProjectTree Templates shipped with Codecraft is
constantly expanding. Here are descriptions of some of them:

Simple Workbench Application
The Simple Workbench Application template creates a project with
necessary startup code to run as a Workbench application. That is
responding to the Workbench startup message and parsing the
application Tooltypes.

Simple Commandline Application
The Simple Commandline Application template creates a command line
application, running in the Shell. The template code also reads some

28

command line parameters, as a starting point for your own
implementation.

BOOPSI Window Application
The BOOBSI Window Application template creates a Workbench
application that just opens an empty window. It is a good starting
point for any gui application.

Creating custom templates

Codecraft comes already with a set of predefined project templates.
However, it is easily possible to add further, individual templates for
your own development projects. For this, a separate folder for user
templates is created when Codecraft was installed. That folder is
named UserTemplates and it is located in the Codecraft program folder.

To create your own project templates, you have to create an folder
within the UserTemplates folder for each of your project templates.
Create all files of your project template in the respective project
template directory, like:

• source files

• smake file

• ProjectTree file for your template

• all sorts of other resources for your template (images, sources,
whatsoever)

Important conventions for project template
files

In order for Codecraft to be able to customize the files of a project

29

template when creating a plain ProjectTree from it, the following
conventions must be used:

Renaming of files

Any file which name is or contains “TEMPLATE” will be renamed
during project creation by replacing “TEMPLATE” with the name of
the Project Tree.

Example:

Let’s assume you create a template that should contain a #?.c file with
some code and a #?.info icon file. When creating a project from the
template, you want the c file and the icon get renamed with the project
name.

Names of the template files: TEMPLATE.info
TEMPLATE.c

Names after project creation (e.g. MyAmigaApp.projecttree):
MyAmigaApp.info
MyAmigaApp.c

Replacing of text tokens

It is possible to insert the name of your project (= ProjectTree name)
in the files when a project is created from a template. E.g. for the
name of the binary to be created by the makefile, of just the
application name shown in the window title. Codecraft searches for
the token %TEMPLATE% in all files of your template (except binary
files) and will replace %TEMPLATE% by your project name.

Example:

30

Let’s assume the name of your project is MyAmigaApp and you want
the name to appear in the window title of your workbench
application.

Code in the template that creates a window:
windowObject = NewObject(WINDOW_GetClass(), NULL,
WINDOW_Position, WPOS_CENTERSCREEN,
WA_Activate, TRUE,
WA_Title, “%TEMPLATE%”,
WA_DragBar, TRUE,
WA_CloseGadget, TRUE,
etc…

Code after project creation:
windowObject = NewObject(WINDOW_GetClass(), NULL,
WINDOW_Position, WPOS_CENTERSCREEN,
WA_Activate, TRUE,
WA_Title, “MyAmigaApp”,
WA_DragBar, TRUE,
WA_CloseGadget, TRUE,
etc…

This feature is also very handy to adjust smakefile files included in
templates. For further reference and more examples, you can inspect
the project templates provided with Codecraft, they are located in the
Templates folder inside the Codecraft application folder.

One further note: You can organize your templates by putting them
into subfolders within the UserTemplates folder. This will make
Codecraft to show the templates in the New ProjectTree Dialog sorted
into groups, named by the folder name.

31

Appendix
About the Codecraft Project

For news and to download the latest version of Codecraft, visit the
official Codecraft homepage at: http://boemann.dk/codecraft/.

Codecraft development is hosted on GitLab, see:
https://gitlab.com/boemann/codecraft.

Currently we do decided on how to report report bugs or submit
suggestions. But, for now, you can use the gitlab feature or write in the
forum at developer.amigaos3.net.

Copyright

Codecraft is Copyright 2022-2024 by Camilla Boemann, Ralf
Hasemann and Darren Coles.

Codecraft is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.

But note, that it is made like a plugin into TextEdit of AmigaOS 3.2
which has its own license.

Codecraft is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

For more information about the GNU General Public License, see
https://www.gnu.org/licenses/.

32

Requirements

Hardware
Technically, Codecraft runs an Amiga with a plain 68000 CPU, some
Fast RAM (e.g. 4MB) and a hard drive to hold the system and the
development environment. However, such a system would be really
slow and compiling stuff would take a long time.

Therefore, we recommend the following system equipment to run
development using Codecraft:

• Amiga with 68030 CPU running at 25MHz

• 8 MB Fast RAM

• Flicker Fixer to run PAL Highres Interlaced

• Hard drive or SD Card

These are the minimum requirements to work meaningfully with
Codecraft. A faster system makes it even better!

Software
At least AmigaOS 3.2.2 is currently required to run Codecraft 1.0 and
greater. Since Codecraft relies heavily on TextEdit, which is part of
the AmigaOS distribution, AmigaOS 3.2.2 is a mandatory
requirement.

SRC6 Hunk Documentation

As part of the Codecraft project, the Amiga SRC6 hunk format, as
generated by SAS/C, was reverse engineered. This was necessary to
develop the Codecraft Debugger. Because of the complexity of the
SRC6 Hunk format, this is still a work in progress.

33

You can find the current documentation of the SRC6 hunk format on
the Codecaft GitLab page:

https://gitlab.com/boemann/codecraft/-
/blob/master/SRC6%20description.txt

